Friedl presentation at CIDU
shared by Elizabeth Foughty, updated on Sep 10, 2010
Summary
The land remote sensing community has a long history of using supervised and unsupervised methods to help interpret and analyze remote sensing data sets. Until relatively recently, most remote sensing studies have used fairly conventional image processing and pattern recognition methodologies. In the past decade, NASA has launched a series of remote sensing missions known as the Earth Observing System (EOS). The data sets acquired by EOS instruments provide an extremely rich source of information related to the properties and dynamics of the Earth’s terrestrial ecosystems. However, these data are also characterized by large volumes and complex spectral, spatial and temporal attributes. Because of the volume and complexity of EOS data sets, efficient and effective analysis of them presents significant challenges that are difficult to address using conventional remote sensing approaches. In this paper we discuss results from applying a variety of different data mining approaches to global remote sensing data sets. Specifically, we describe three main problem domains and sets of analyses: (1) supervised classification of global land cover from using data from NASA’s Moderate Resolution Imaging Spectroradiometer; (2) the use of linear and non-linear cluster and dimensionality reduction methods to examine coupled climate-vegetation dynamics using a twenty year time series of data from the Advanced Very High Resolution Radiometer; and (3) the use of functional models, non-parametric clustering, and mixture models to help interpret and understand the feature space and class structure of high dimensional remote sensing data sets. The paper will not focus on specific details of algorithms. Instead we describe key results, successes, and lessons learned from ten years of research focusing on the use of data mining and machine learning methods for remote sensing and Earth science problems.
Files
Discussions
Elizabeth's Projects (21)
-
-
-
Intelligent Data Understanding Group
5 members
-
Elizabeth's posts
Elizabeth's Tags
Need help?
Visit our help center