
Data Mining and Knowledge Discovery of
Land Cover and Terrestrial Ecosystem

Processes from Global Remote Sensing Data

Mark Friedl
Department of Geography & Environment,

Boston University
friedl@bu.edu

Carla Brodley
Department of Computer Science,

Tufts University
brodley@cs.tufts.edu

Surajit Ray
Department of Mathematics and Statistics,

Boston University
sray@math.bu.edu

Support from NASA (NASA TEP, LCLUC, MODIS, and IDU) 1



Context: Global Change Studies
• Global Observation Systems

– EOS/GEOSS, remote sensing, in-situ, sensor webs….

– Large, heterogeneous, complex data sets
• High dimensional: multi-spectral, multi-temporal, multi-resolution…

• Significant analysis problems: noise, missing data…

• Dynamics in Earth System
– Characterized by high complexity, variability at multiple scales

• Climate change vs variability

• Ecosystem response (species composition, phenology, &
population dynamics)

• Human activities
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Why Does this
Matter?

Monitoring and quantification of
human impacts
– Land conversion and land use by

humans represent the largest single
mechanism of environmental change

– Carbon storage/release
– Biodiversity
– Ecosystem Services

• Land resources & food security
• Hydrology and water resources

– Etc……
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Global Land System

• Modeling Perspective
– Global ecosystems

and land surface
provides key
boundary condition to
global weather and
climate system

(credit: NASA LBA)
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Ecosystem Response to
Climate Change
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Growing evidence that ecosystems are responding to changing climate
at a variety of space-time scales

(Myneni et al, Nature, 1997; Nemani et al, Science, 2003; others…)
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IDU Challenge
…Better tools for processing, analyzing, detecting

change, and understanding patterns and process
from large scale Earth science data sets……
– Machine learning, data mining,statistical tools are not the

answer, but they can be part of the solution.

– Danger: Fishing expeditions

– Require: Earth scientists to better understand tools, data
modelers to better understand problem domains.
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Overview of Talk
• Three Problem Domains/Applications

– Supervised classification of global land cover
• Map global land cover from remote sensing

– Unsupervised deomposition of space-time variance in
remote sensing time series

• Search, mine, discover patterns related to data artifacts and
patterns in coupled climate-ecosystem dynamics

– Use of functional models, clustering & mixture models
• Reduce dimensionality & understand class structure in data.
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Supervised MODIS Land Cover Classification

0 Water
1 Evergreen Needleleaf Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forests

6 Closed Shrublands
7 Open Shrublands
8 Woody Savannas
9 Savannas
10 Grasslands
11 Permanent Wetlands

12 Croplands
13 Urban and Built-Up
14 Cropland/Natural Veg. Mosaic
15 Snow and Ice
16 Barren or Sparsely Vegetated
17 Tundra
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MODIS

• Moderate Resolution Imaging Spectroradiometer

• Onboard EOS Terra (10:30 AM descending); and EOS-Aqua (1:30 PM
ascending) local solar equatorial crossing

• Sun synchronous, near polar orbit; 705.3 km
– 36 spectral bands, VNIR, SWIR, TIR (0.4–14 µm)

– Spatial resolution 500-m; scan angle: +/-55o; 2330 km swath

– 2-day global repeat, 1-day or less poleward of 30o

– Onboard calibration; Band-to-band registration, etc.

• Ingest: global, 500-m, 9-bands, 8-day intervals for one year

– ~2.8 x1011 input elements to produce a map with ~175x106 cells
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Supervised: Training Data

10

~2000 Sites derived from hi-res
imagery & spanning all major regions
& ecosystems, but sampling based

on “opportunistic” criteria



Technical Challenges
• Algorithms cannot compensate for inadequate features

– Use of spatially varying priors

• Unbalanced, misrepresentative representative training data
– Bias correction via global priors

• Each of these “corrections” reduce accuracy of predictions
relative to training data, but improve quality of final maps!

• (Year-to-year classification variability vs real change?
– Heuristic for updating labels based on estimated posterior probs)
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Apply Boosted DT’s
to Global Data

MODIS Land Cover Processing Chain
Extract Exemplars From 

Site Database

Adjust Sample Bias, 
Apply Priors via 

Bayes’ Rule

Maps

Estimate DTs from 
Training Data (AdaBoost, c4.5)

Posterior probability
for each class at

each pixel

Class-conditional
probability for each
class at each pixel
(Friedman et al., 2000)

1st & 2nd most likely
class at each pixel
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Sample Bias and Spatial Priors
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Raw DT

After spatial
priors

Adjusted for
sample bias

Final map



A. Independent Component Analysis (ICA)
• Non-linear decomposition of temporal variance
• Feature extraction from NDVI time series

B. Principal/Canonical Correlation Analysis (PCA/CCA)
• Joint (linear) variability of global vegetation and

precipitation
• Analysis of NH drought and SST patterns

Unsupervised Analysis of Gridded
Time Series
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Independent Component Analysis
of Time Series NDVI
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• Independent signals are
convoluted and recorded by a
sensor (e.g. microphones,
satellite instrument)

• ICA separates the signal mixtures
into the original  source signals

• Independent, not just
uncorrelated

• Blind Source Separation – no a
priori knowledge about the
sources

• Looking for hidden sources of
variance in time series



FASIR-NDVI
• Fourier Adjusted

Solar zenith angle corrected

Interpolated

Reconstructed

Normalized Difference Vegetation
Index

• NOAA (7,9,11,14)-AVHRR

• Monthly 1982-1998

• 1x1 degree spatial resolution

Mean Monthly FASIR NDVI 1982 - 1998

Significant Linear Trends in NDVI 1982-1998

Los et al. (1994), Tucker et al. (2001)
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“Aerosols” IC

• Residual aerosol signal in tropics

• Co-variation with Stratospheric
Aerosol and Gas Experiment
(SAGE) II data 1985-1998

• Not revealed via linear methods
like PCA

El Chichon Mt. Pinatubo

Lotsch et al., IEEE TGARS, 2003
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“Orbital Drift” IC

• Discontinuities coincide with
AVHRR sensor changes

• Reflect changes in sensor
view geometry & orbital drift

• Limited to southern latitudes

Lotsch et al., IEEE TGARS, 2003
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Joint Variability in Climate & Vegetation
(GIMMS-NDVI vs Standardized Precipitation Index 7/1981-3/2003)
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Canonical Correlation
Example: Eurasia (CF1)

Correlation: NDVI

Correlation: SPI06

21Lotsch et al, Geophysical Research Letters, 2003



1998 –2002
Northern

Hemisphere
Mid-Latitude

Browning

June-August standardized
anomalies in NDVI  relative to
1981-2002 mean

Motivated by Hoerling and
Kumar 2003, Perfect Ocean
for Drought, Science

Lotsch et al. (2005) Geoph. Res. Letters
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NDVI and SPI Anomalies
May-September 1981-2002

NDVI

SPI06

North America 130°-90°W CSW Asia 50°-80°W
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Ocean-Drought Teleconnections
e.g., Eurasia & Australasia

warm

cold

Correlation
with SST
(MAM)

dry wet

1948-2002

Pacific Warm Pool

PC1 of SPI06

SPI
pattern
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Conclusion
Unprecedented reduction of
plant photosynthetic activity

linked to synchronous patterns
of sea surface temperature
fluctuations and  extensive
patterns of drought in the

Northern Hemisphere mid-
latitudes during 1998-2002

Pacific + Atlantic + Indo-Pacific

NH Precip Regimes

 Plant Photosynthesis

ΔSST
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Ongoing Work

• Functional Data Analysis & Modal Clustering
– Basic Question: How to best characterize temporal

patterns and reduce feature dimensionality?

– Functional Model - Double Logistic:

– captures timing, magnitude & form of temporal variation
(a1= min; a2= max, a3=angle of inflection 1; a4= time of inflection 1

a5=angle of inflection 2; a6= time of inflection 2)
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Sample Double Logisitic Fits
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Blue: symmetric (Fourier-based) model;
Red: double logistic

Note fit, missing values



Distribution of Coefficients Across Classes
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Clustering

Next step: compare clustering of original data w/coefs from functional
model using modal clustering to deal with non-normal distributions

Ray, S. and Lindsay, B. G. (2008). Model selection in high dimensions: a quadratic-risk-based approach. J. Roy. Statist. Soc. Ser. B, 70(1):95-118.
Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian wavelet methods., J. Roy. Statist. Soc. Ser. B, 68(2):305-332.



Conclusions: Technical
• Supervised Learning

– It’s not just the learning algorithm…..
– Data and biases associated with training data are what count

• Unbalanced training data
• Feature selection
• Active Sampling or identifying redundant training data
• How to stabilize classification results across years

• Unsupervised
– Linear vs non-linear methods; Gaussian vs non-Gaussian
– Danger of fishing expeditions

• Analyses need to be hypothesis driven

– Toolkit feels less mature, esp for very large data sets.
• Clustering, PCA, CCA, etc. (may reflect my ignorance)
• Dimensionality, feature selection key challenges.
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Conclusions: General
• Data mining in Earth Sciences is hard

– Looking for causal relations, not just patterns

– Need teams to prevent natural scientists from doing naïve analysis and
computational scientists from doing naïve science

– NASA should be supporting this – interests in missions and
measurements in support of science

• Need to foster community
– Funding?

– Publishing:
• Where to publish this work?

• Is it technical or is it science?

– Where to present?  What meetings?


