Data Mining and Knowledge Discovery of Land Cover and Terrestrial Ecosystem Processes from Global Remote Sensing Data

Mark Friedl Department of Geography & Environment, Boston University friedl@bu.edu

Carla Brodley Department of Computer Science, Tufts University brodley@cs.tufts.edu

Surajit Ray Department of Mathematics and Statistics, Boston University sray@math.bu.edu

Support from NASA (NASA TEP, LCLUC, MODIS, and IDU)

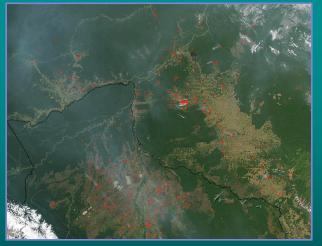
Context: Global Change Studies

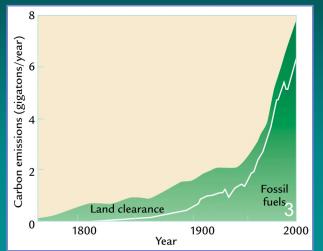
- Global Observation Systems
 - EOS/GEOSS, remote sensing, in-situ, sensor webs....
 - Large, heterogeneous, complex data sets
 - High dimensional: multi-spectral, multi-temporal, multi-resolution...
 - Significant analysis problems: noise, missing data...
- Dynamics in Earth System
 - Characterized by high complexity, variability at multiple scales
 - Climate change vs variability
 - Ecosystem response (species composition, phenology, & population dynamics)
 - Human activities

Why Does this Matter?

Monitoring and quantification of human impacts

- Land conversion and land use by humans represent the largest single mechanism of environmental change
- Carbon storage/release
- Biodiversity
- Ecosystem Services
 - Land resources & food security
 - Hydrology and water resources
- Etc.....

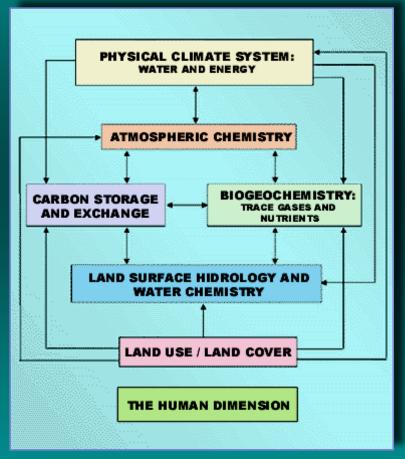




Global Land System

 Modeling Perspective

 Global ecosystems and land surface provides key boundary condition to global weather and climate system



(credit: NASA LBA)

Ecosystem Response to Climate Change

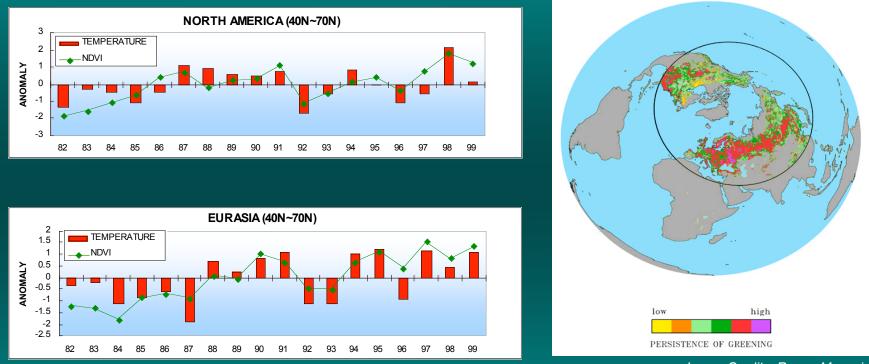


Image Credits: Ranga Myneni

Growing evidence that ecosystems are responding to changing climate at a variety of space-time scales (Myneni et al, *Nature*, 1997; Nemani et al, *Science*, 2003; others...)

IDU Challenge

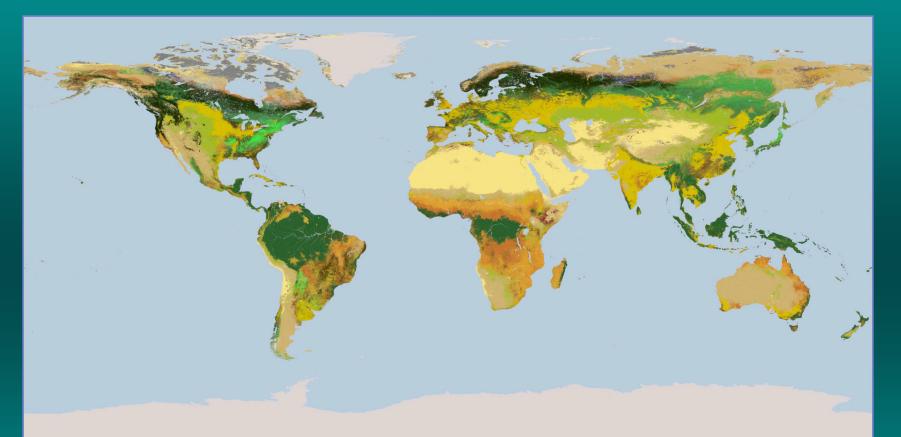
...Better tools for processing, analyzing, detecting change, and understanding patterns and process from large scale Earth science data sets......

- Machine learning, data mining, statistical tools are not the answer, but they can be part of the solution.
- Danger: Fishing expeditions
- *Require*: Earth scientists to better understand tools, data modelers to better understand problem domains.

Overview of Talk

- Three Problem Domains/Applications
 - Supervised classification of global land cover
 - Map global land cover from remote sensing
 - Unsupervised deomposition of space-time variance in remote sensing time series
 - Search, mine, discover patterns related to data artifacts and patterns in coupled climate-ecosystem dynamics
 - Use of functional models, clustering & mixture models
 - Reduce dimensionality & understand class structure in data.

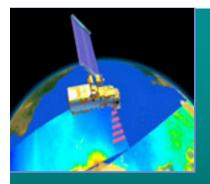
Supervised MODIS Land Cover Classification



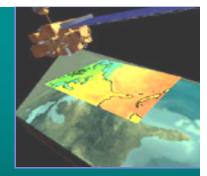
- 0 Water
- 1 Evergreen Needleleaf Forest
- 2 Evergreen Broadleaf Forest
- 3 Deciduous Needleleaf Forest
- 4 Deciduous Broadleaf Forest
- 5 Mixed Forests

- 6 Closed Shrublands
- 7 Open Shrublands
- 8 Woody Savannas
- 📕 9 Savannas
- 10 Grasslands
- 11 Permanent Wetlands

- 12 Croplands 13 Urban and Built-Up
- 14 Cropland/Natural Veg. Mosaic
- 15 Snow and Ice
- 16 Barren or Sparsely Vegetated
- 17 Tundra

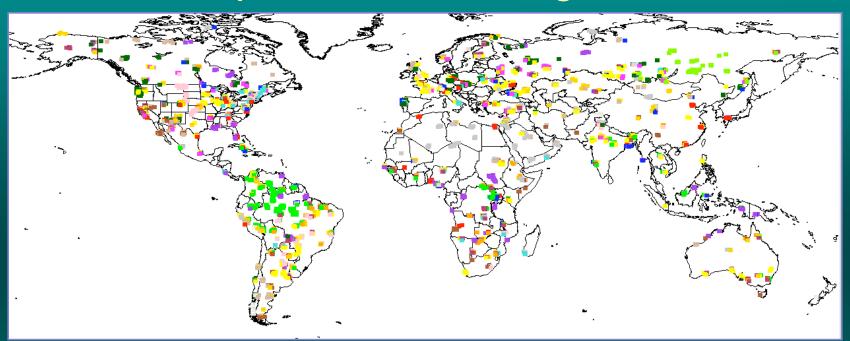


MODIS



- Moderate Resolution Imaging Spectroradiometer
- Onboard EOS Terra (10:30 AM descending); and EOS-Aqua (1:30 PM ascending) local solar equatorial crossing
- Sun synchronous, near polar orbit; 705.3 km
 - 36 spectral bands, VNIR, SWIR, TIR (0.4–14 μm)
 - Spatial resolution 500-m; scan angle: +/-55°; 2330 km swath
 - 2-day global repeat, 1-day or less poleward of 30°
 - Onboard calibration; Band-to-band registration, etc.
- Ingest: global, 500-m, 9-bands, 8-day intervals for one year
 - ~2.8 x10¹¹ input elements to produce a map with ~175x10⁶ cells

Supervised: Training Data

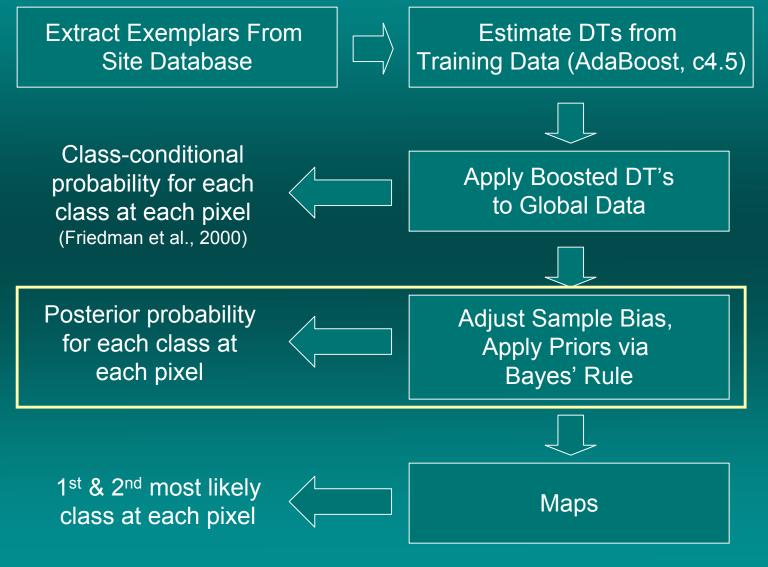


~2000 Sites derived from hi-res imagery & spanning all major regions & ecosystems, but sampling based on "opportunistic" criteria

Technical Challenges

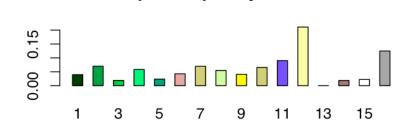
- Algorithms cannot compensate for inadequate features
 - Use of spatially varying priors
- Unbalanced, misrepresentative representative training data
 - Bias correction via global priors
- Each of these "corrections" reduce accuracy of predictions relative to training data, but improve quality of final maps!
- (Year-to-year classification variability vs real change?
 - Heuristic for updating labels based on estimated posterior probs)

MODIS Land Cover Processing Chain

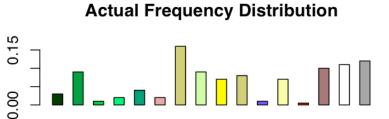


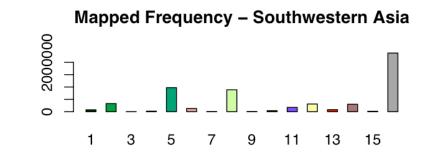
Friedl and Brodley, 1997; Friedl et al, 1999, 2002, 2008; McIver and Friedl, 2001, 2002

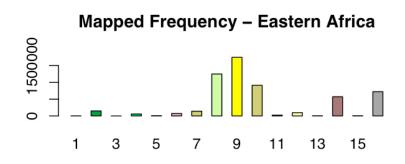
Sample Bias and Spatial Priors

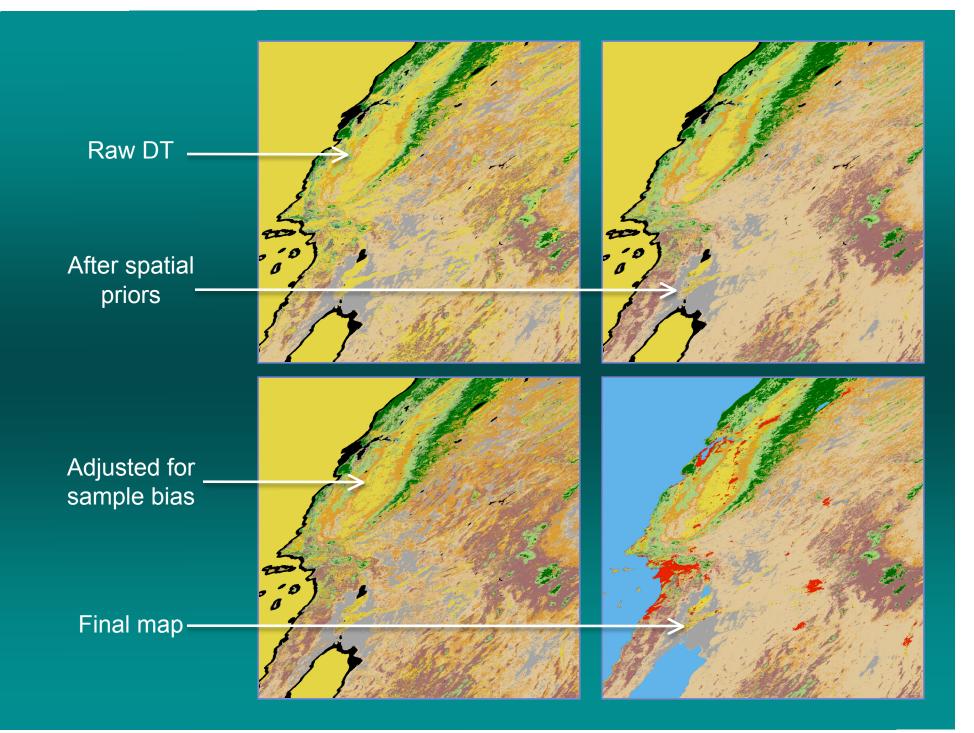


Sample Frequency Distribution









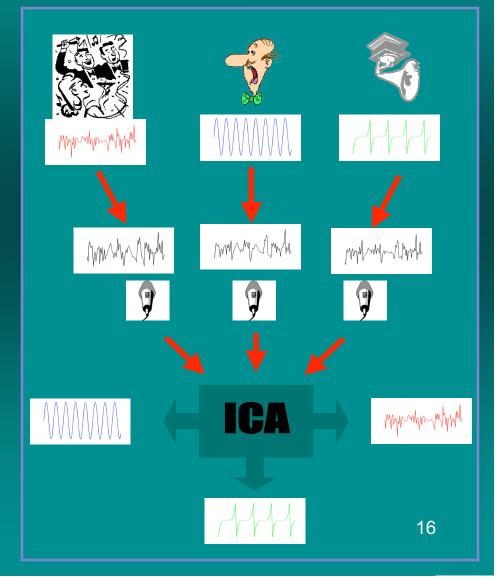
Unsupervised Analysis of Gridded Time Series

A. Independent Component Analysis (ICA)

- Non-linear decomposition of temporal variance
- Feature extraction from NDVI time series
- B. Principal/Canonical Correlation Analysis (PCA/CCA)
 - Joint (linear) variability of global vegetation and precipitation
 - Analysis of NH drought and SST patterns

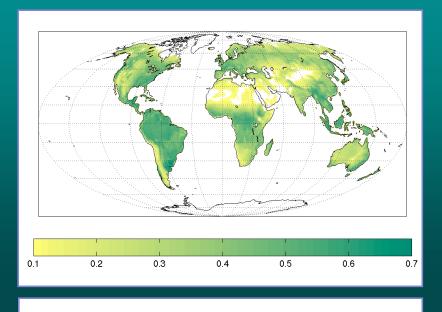
Independent Component Analysis of Time Series NDVI

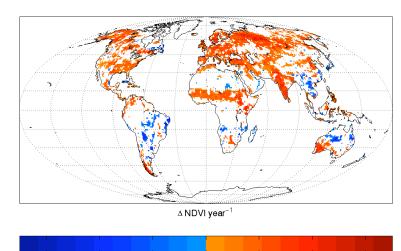
- Independent signals are convoluted and recorded by a sensor (e.g. microphones, satellite instrument)
- ICA separates the signal mixtures into the original source signals
- Independent, not just uncorrelated
- Blind Source Separation no a priori knowledge about the sources
- Looking for hidden sources of variance in time series



FASIR-NDVI

- Fourier Adjusted
 Solar zenith angle corrected
 Interpolated
 Reconstructed
 Normalized Difference Vegetation
- NOAA (7,9,11,14)-AVHRR
- Monthly 1982-1998
- 1x1 degree spatial resolution



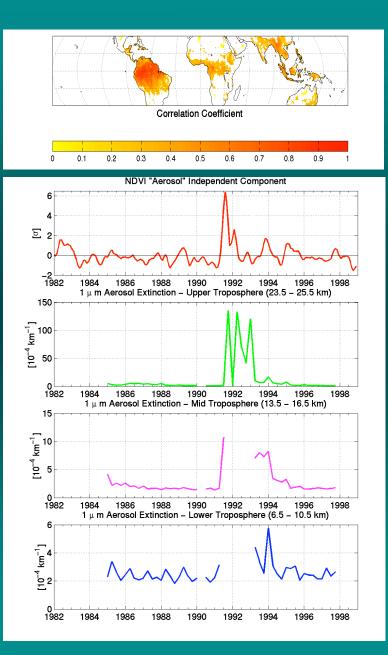




"Aerosols" IC

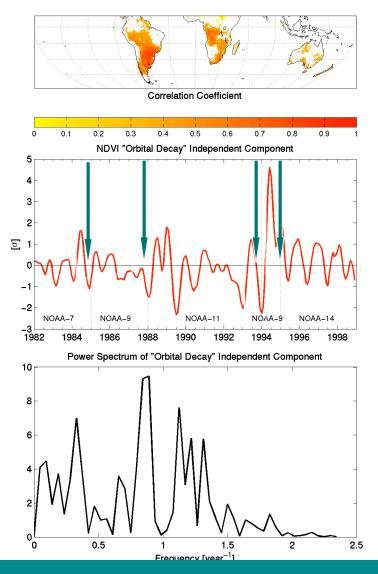
- Residual aerosol signal in tropics
- Co-variation with Stratospheric Aerosol and Gas Experiment (SAGE) II data 1985-1998
- Not revealed via linear methods like PCA

Lotsch et al., IEEE TGARS, 2003



"Orbital Drift" IC

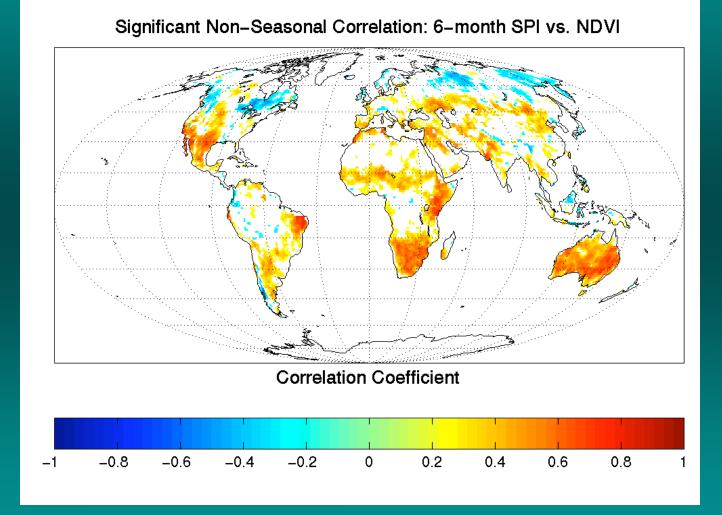
- Discontinuities coincide with AVHRR sensor changes
- Reflect changes in sensor view geometry & orbital drift
- Limited to southern latitudes



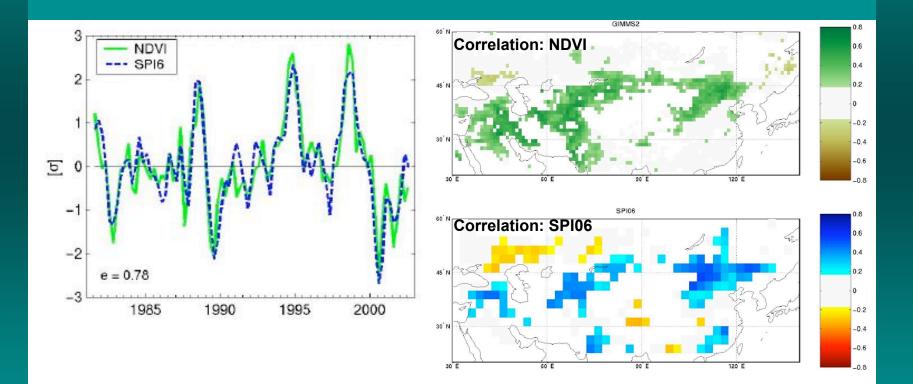
Lotsch et al., IEEE TGARS, 2003

Joint Variability in Climate & Vegetation

(GIMMS-NDVI vs Standardized Precipitation Index 7/1981-3/2003)



Canonical Correlation Example: Eurasia (CF1)

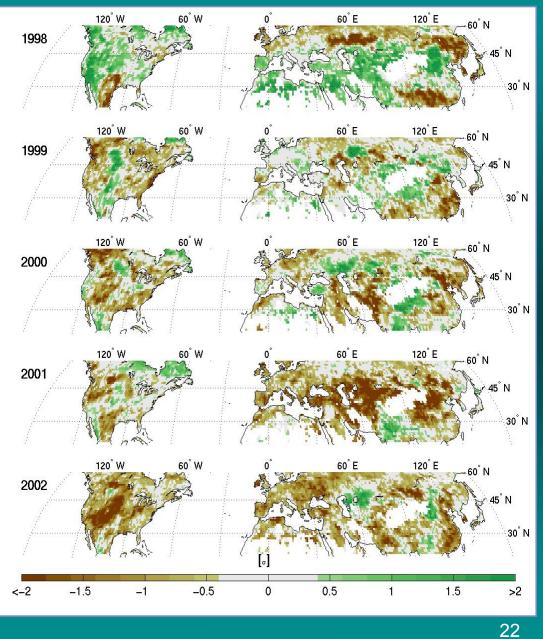


Lotsch et al, Geophysical Research Letters, 2003

1998 –2002 Northern Hemisphere Mid-Latitude Browning

June-August standardized anomalies in NDVI relative to 1981-2002 mean

Motivated by Hoerling and Kumar 2003, Perfect Ocean for Drought, *Science*



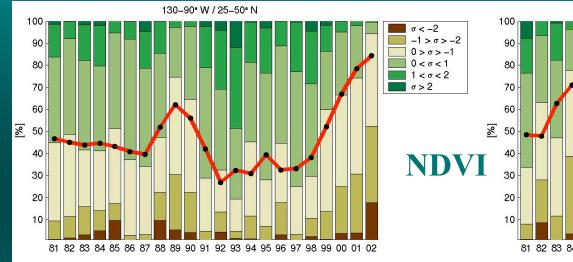
Lotsch et al. (2005) Geoph. Res. Letters

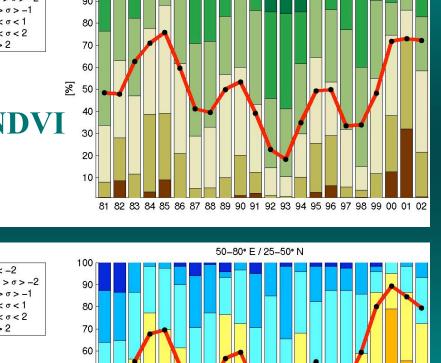
NDVI and SPI Anomalies May-September 1981-2002

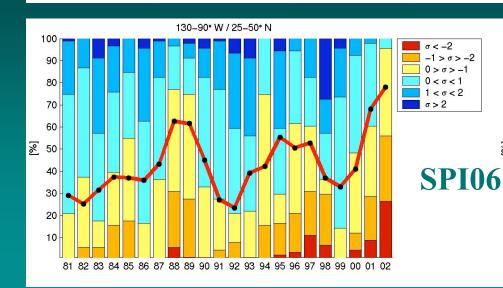
North America 130°-90°W

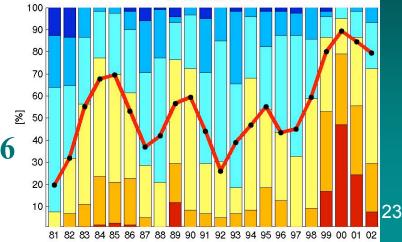
CSW Asia $50^{\circ}-80^{\circ}W$

50-80° E / 25-50° N

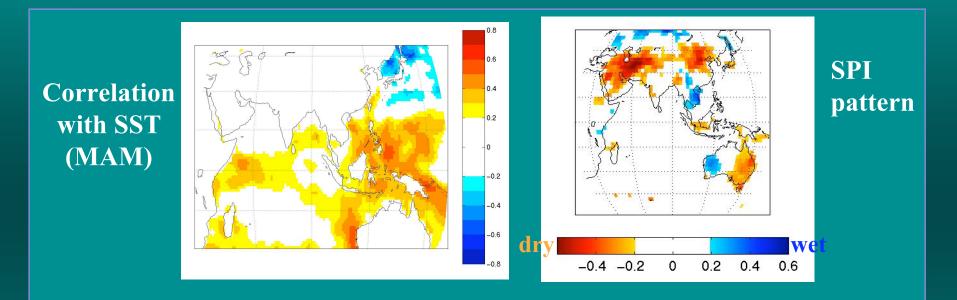


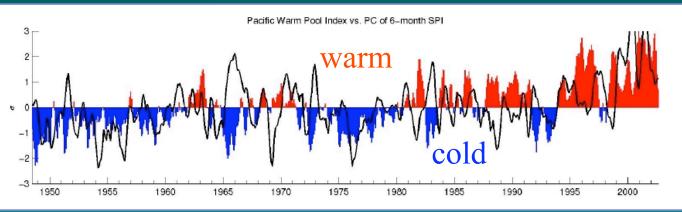






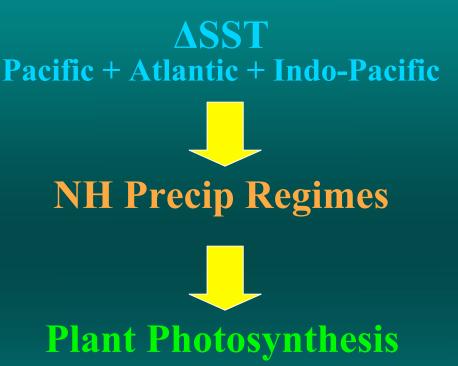
Ocean-Drought Teleconnections e.g., Eurasia & Australasia 1948-2002

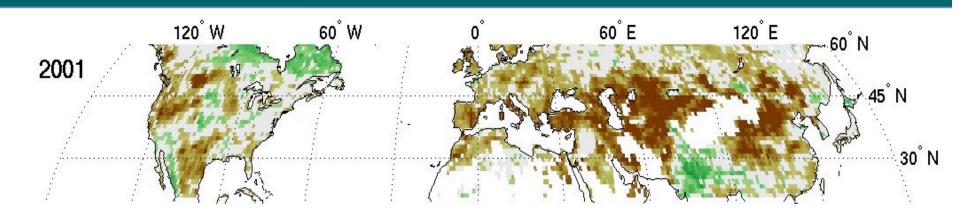




Conclusion

Unprecedented reduction of plant photosynthetic activity linked to synchronous patterns of sea surface temperature fluctuations and extensive patterns of drought in the Northern Hemisphere midlatitudes during 1998-2002





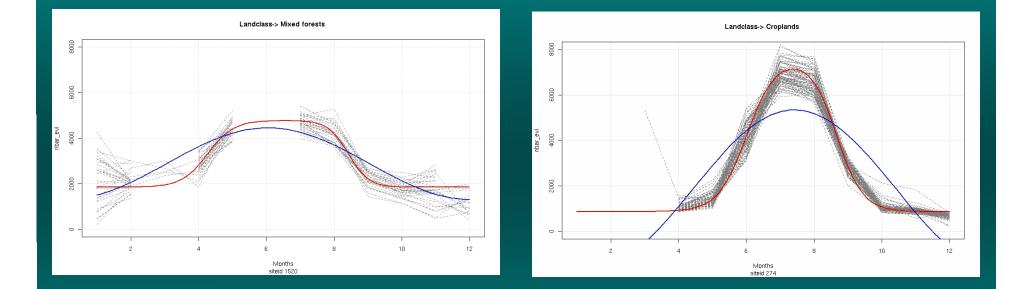
Ongoing Work

- Functional Data Analysis & Modal Clustering
 - Basic Question: How to best characterize temporal patterns and reduce feature dimensionality?
 - Functional Model Double Logistic:

$$Y(x) = a_1 + (a_2 - a_1) \left(\frac{1}{1 + \exp(-a_3(x - a_4))} + \frac{1}{1 + \exp(a_5(x - a_6))} - 1 \right)$$

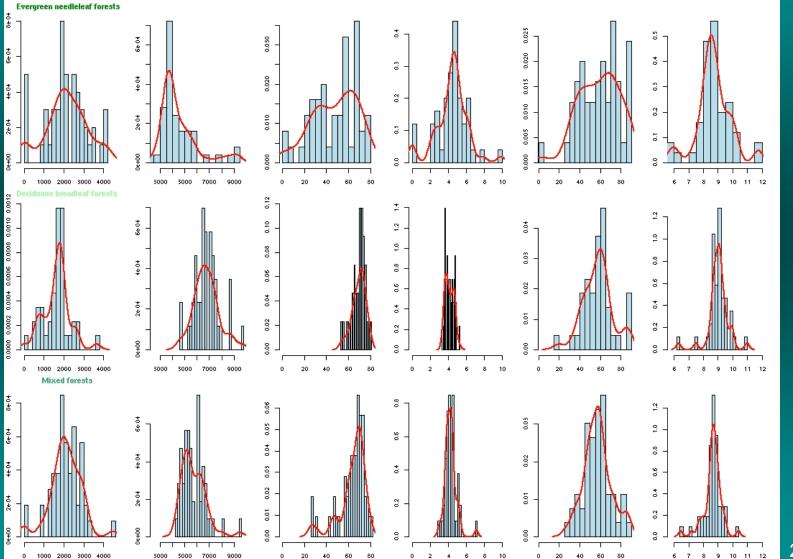
- captures timing, magnitude & form of temporal variation (a_1 = min; a_2 = max, a_3 = angle of inflection 1; a_4 = time of inflection 1 a_5 = angle of inflection 2; a_6 = time of inflection 2)

Sample Double Logisitic Fits



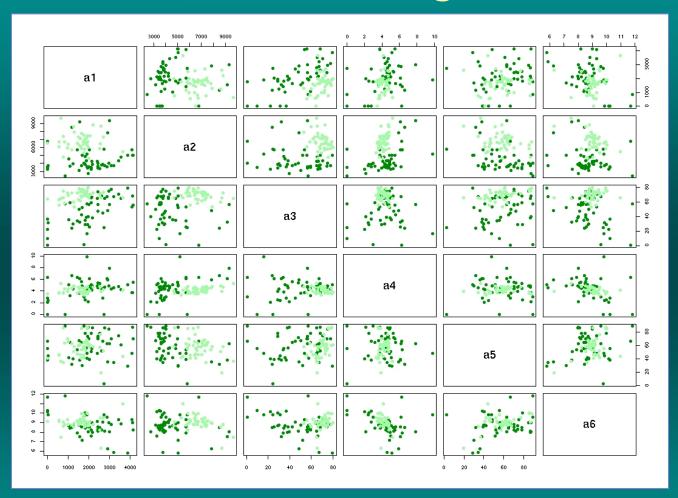
Blue: symmetric (Fourier-based) model; Red: double logistic Note fit, missing values

Distribution of Coefficients Across Classes



28

Clustering



Next step: compare clustering of original data w/coefs from functional model using modal clustering to deal with non-normal distributions

Ray, S. and Lindsay, B. G. (2008). Model selection in high dimensions: a quadratic-risk-based approach. *J. Roy. Statist. Soc. Ser. B*, 70(1):95–118. Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian wavelet methods., *J. Roy. Statist. Soc.* Ser. B, 68(2):305–332.

Conclusions: Technical

• Supervised Learning

- It's not just the learning algorithm.....
- Data and biases associated with training data are what count
 - Unbalanced training data
 - Feature selection
 - Active Sampling or identifying redundant training data
 - How to stabilize classification results across years
- Unsupervised
 - Linear vs non-linear methods; Gaussian vs non-Gaussian
 - Danger of fishing expeditions
 - Analyses need to be hypothesis driven
 - Toolkit feels less mature, esp for very large data sets.
 - Clustering, PCA, CCA, etc. (may reflect my ignorance)
 - Dimensionality, feature selection key challenges.

Conclusions: General

- Data mining in Earth Sciences is hard
 - Looking for causal relations, not just patterns
 - Need teams to prevent natural scientists from doing naïve analysis and computational scientists from doing naïve science
 - NASA should be supporting this interests in missions and measurements in support of science
- Need to foster community
 - Funding?
 - Publishing:
 - Where to publish this work?
 - Is it technical or is it science?
 - Where to present? What meetings?