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1.1 What is a Fleet?

A fleet is a group of systems (e.g., cars, aircraft) that are designed and
manufactured the same way and are intended to be used the same way. For
example, a fleet of delivery trucks may consist of one hundred instances of
a particular model of truck, each of which is intended for the same type
of service—almost the same amount of time and distance driven every day,
approximately the same total weight carried, etc. For this reason, one may
imagine that data mining for fleet monitoring may merely involve collecting
operating data from the multiple systems in the fleet and developing some sort
of model, such as a model of normal operation that can be used for anomaly
detection. However, one then may realize that each member of the fleet will be
unique in some ways—there will be minor variations in manufacturing, quality
of parts, and usage. For this reason, the typical machine learning and statis-
tics algorithm’s assumption that all the data are independent and identically
distributed is not correct. One may realize that data from each system in the
fleet must be treated as unique so that one can notice significant changes in
the operation of that system.

The reality of data mining for fleet monitoring lies between these two
extremes. Even though each system must be monitored on its own so that
one can observe significant changes in its unique operations, data from all
systems in the fleet are helpful in determining how unique each system really
is relative to the remaining systems in the fleet and when fleet personnel
should expect to perform various maintenance actions. One can begin with
the assumption that each system in the fleet is comparable to a sample drawn
from some distribution, so that all the systems in the fleet are independent
and identically distributed. However, one can then adjust the methods being
used to account for changes related to any information that is known. For
example, if one knows which parts were used at different times, one can make
adjustments to the model to account for differences in the qualities of those
parts. That way, to evaluate subsystems related to that part, we can choose
to use only the other systems in the fleet that have the same part to extract
information on maintenance needs and remaining useful life.

In the next section, we will describe some past work in fleet monitoring.
We will describe the drawbacks of this past work that motivated the work
done recently in this area. We will also discuss what we see as the role of data
mining in fleet health monitoring. In the following section, we will describe the
key issues of heterogeneity and efficiency-stopping issues (large data volume
and distributed data) that serve as challenges to effective fleet monitoring.
The following two sections will give overviews of methods designed to handle
heterogeneity and efficiency issues. In each section, we will give one example
algorithm and its use in anomaly detection in more detail to give an idea of
how these algorithms work. We will end with a summary of this chapter.
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1.2 Background

In this section we describe some past work in the area of fleet health
monitoring and then discuss the role of data mining within this area. This
will serve as background material for the following sections which will provide
more details.

1.2.1 Past work in fleet health monitoring

In the next two subsections, we briefly describe several systems that have
been used to monitor fleets by analyzing numeric data and some other at-
tempts at extracting useful information from text data, respectively.

1.2.1.1 Numeric data

In this section, we briefly describe six systems for fleet-wide health man-
agement. Two systems monitor each individual unit of the fleet separately
and in an online manner. Information about how other units are currently
behaving is not utilized in the monitoring of any unit. Three other systems
we discuss collect data from all units in one place and analyze that data to
monitor the fleet as a whole and units behaving abnormally are identified.
Unlike the first two systems, baselines are not developed for each individual
unit or for any subpopulations. The last system attempts to create baselines
for the global population and for several subpopulations.

MineFleet [22] is a system that monitors individual vehicles in a fleet by
collecting and processing data on-board. It collects data that are produced
by many sensors present in most modern vehicles. The sensor data streams
are continuously monitored by an on-board computing device for any new
emerging patterns. If necessary, these patterns are sent over a low-bandwidth
wireless network to a central location for possible further analysis. The sys-
tem provides the ability to calculate numerous statistical aggregates such as
correlations and distance matrices efficiently on the vehicle itself on embedded
computing platforms such as PDAs, with the idea that these statistical aggre-
gates form the basis of algorithms to detect anomalies in a vehicle’s operation.
The system also monitors changes in these statistical aggregates in real time
and in an efficient manner. This system is intended to monitor changes in
the way the vehicle is operating and is being operated in a setting where the
available computing power and communication bandwidth are low. Because
of this, each vehicle is only monitored relative to its own baseline—data and
statistics from the various vehicles are not communicated to one another auto-
matically. Any knowledge gained from analysis of the entire fleet’s data would
have to be manually added to each vehicle to enable it to assess itself relative
to a global baseline during operation, and that global baseline is not updated
in real time. The system allows data from vehicles to be uploaded manually
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to a central repository for offline analysis and generation of a global base-
line and global knowledge to facilitate manual updating of vehicles’ baseline
definitions.

The Quantitative Condition Alerting and Analysis Support (QCAAS) sys-
tem [36] is an on-board software system that uses sensors currently available
on most commercial aircraft to monitor for several events of interest such as
severe load encounters, landing gear speed exceedances, and hard landings.
This system additionally maintains cumulative load statistics for the aircraft
on which it is installed and indicates when the allowable level of cumulative
load between inspections has been exceeded. The system additionally uses
both onboard sensors and physics-based models to estimate loads in the tail
of the aircraft, where current commercial aircraft are not instrumented to take
direct measurements. QCAAS checks each aircraft independently relative to
a global baseline; however, this global baseline is fixed. That is, the global
baseline is not learned from data but is rather set by regulations. QCAAS
does not currently have the capability to detect anomalies relative to an indi-
vidual vehicle’s normal behavior and is, therefore, unable to adapt to typical
vehicle-to-vehicle variations.

The Aviation Performance Measuring System (APMS) [15] was a NASA
program to move analysis of data collected during commercial flights, known
as Flight Operational Quality Assurance (FOQA) data, beyond identification
of single-parameter exceedances. The program identified three major goals—
analyzing data beyond simply looking for exceedances of typical ranges of
single parameters, focused analysis of higher-risk phases of flight, and looking
for potential precursors to aviation safety incidents and accidents. As part
of APMS, numerous tools were developed such as tools to search for pat-
terns in particular flight parameters within multiple flights’ data, document
the distribution of key parameters related to standard operating procedures,
report key descriptive statistics grouped by phase of flight, link flight data
to corresponding weather data or air traffic data, and multivariate clustering
to group flights based on flight signatures derived from parameter values to
identify atypical flights. APMS was clearly oriented toward analyzing the data
from multiple flights together and did not look at individual flights to assess
them based on their own unique baseline. Additionally, APMS’s tools analyze
the flight data as static data, i.e., the data at each point in time is examined
independently rather than as a sequence. The sequential nature of the data
is only considered indirectly—by adding parameters such as slopes and flight
signatures.

Google [31] collects data from all of its systems and saves them in a repos-
itory for offline analysis. Such data is clearly too large to store in a single
place; therefore, this data is stored on multiple machines using a distributed
file system and Google’s well-known Mapreduce framework is used to allow
large-scale data analysis programs to analyze that data in a distributed man-
ner and collect the results. However, the distributed storage of the data is
not necessarily related to the distributed nature of the Google system being
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monitored. Therefore, the data analysis on the collected data is necessarily
an offline analysis. No attempt is made to analyze individual servers in the
system to obtain a server-specific baseline.

The Morning Report (MR) [3] was designed for individual airlines to use
to analyze their flight data in a manner much like APMS—that is, collect all
the data together in one place and analyze them as if they came from mul-
tiple independent flights drawn from the same distribution. The subsequent
System Level Morning Report (SLMR) attempted to address the problem
we described earlier of balancing between analyzing all the data together the
way MR does versus analyzing each flight as a unique entity and setting each
flight’s normal baseline separately. SLMR allowed users to analyze flight data
in the context of individual airlines and the context of all the airlines. In par-
ticular, each airline participating in the system would analyze its data and
send summary information on the typical patterns observed in their data to a
central site—only summary information is sent in order to preserve each air-
line’s privacy. The combined information is analyzed to find global patterns in
various flight phases. Information on these global patterns is then sent back to
each airline. Each airline then can analyze its data not only within the context
of its own flights, but also within the context of the global patterns. This sys-
tem was only designed for offline analysis; therefore, after each flight, data is
uploaded to that airline’s system, and the data is filtered, derived parameters
are calculated, single-parameter exceedance checks are performed, flights are
partitioned into phases, and each flight parameter’s signature is calculated
(capturing characteristics like rate of change and variability). These flight sig-
natures are then clustered, enabling identification of flights with anomalous
signatures. Linear Discriminant Analysis is then used to devise rules for each
of these clusters, which are then used to ”classify” new flights. The individual
airlines’ clusters are then sent to a central site and combined to form a global
set of clusters that represent global flight patterns. SLMR has the notion of
examining flights relative to the entire global set and an individual airline’s
flights, but does not examine each flight independently. Additionally, just like
with APMS, the sequential nature of the data within a flight is only considered
indirectly through the flight signatures, which only give a local indication of
how parameters are changing—SLMR is not able to examine a full flight as
a sequence. Additionally, the metric by which normality is measured is such
that a flight can be normal or abnormal with respect to that airline’s data
and normal or abnormal with respect to the the global pattern—i.e., all four
combinations are possible. This means that in order to assess whether a flight
is globally normal, assessing its normality within one or even multiple airlines’
data is not sufficient—it has to be examined with respect to all the airlines’
data at once. For the sake of efficiency, we would like to have that only locally
anomalous flights are globally anomalous. This way, local anomaly detection
algorithms can identify relatively few candidates that can then be evaluated
for anomalousness at the global level. We will later review two algorithms for
which this guarantee has been proven.
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1.2.1.2 Text

In this section, we describe issues in working with text. A more compre-
hensive survey of text classification and text mining in general can be found
in [1]. In the area of text classification, there are two key decisions that have to
be made: representation of the text and the classification method used. The
documents in their raw form are not amenable to classification, so another
representation is needed. The simplest document representation is the bag of
words (BOW). In this representation, each document is represented by a vec-
tor consisting of as many elements as there are unique words in the document
repository. Each vector element represents the number of times that a given
word occurs in that document. The repository can be represented by a BOW
matrix in which each document’s vector is a row in the matrix. In machine
learning terminology, each document is an example or instance and each word
frequency is a feature. In principle, one could then apply one of many pos-
sible classification algorithms to document repositories after converting them
to BOW matrices. One difficulty with this scheme is the weighting of words.
Both rare words and very common words should be given low weight because
both types of words are not useful for classification, where one generally wants
features that come as close as possible to splitting the set of examples into
equal-sized bins. However, very common words are given very high weight
in BOW matrices due to their high word frequency. For this reason, weight-
ing schemes such as term frequency inverse document frequency (TFIDF) are
often used. TFIDF multiplies the term frequency by the inverse document
frequency, which is related to the reciprocal of the fraction of documents in
which the word appears. This reduces the weights of very common words.
Term frequency and even TFIDF give excessive weight to long documents, so
these are often normalized so that all documents’ vectors have equal length.
Stop words, which are very common words such as articles (e.g., ’the,’ ’a,’
’an’), are often eliminated from documents using a stopword list.

The bag of words and its weighted variants have a major weakness—
they lose all semantic information because the order of words is lost. A given
document is treated exactly the same way no matter how its words are re-
ordered. Semantic information is clearly very important in human understand-
ing of text. Natural Language Processing (NLP) methods attempt to main-
tain semantic information in documents while making the representation more
amenable to machine learning. Examples of what NLP methods do include ex-
panding acronyms and collapsing phrases so that different expressions with
exactly the same meaning (e.g., FL vs. flight level) are reduced to one word
or phrase, and setting nouns to their singular form and verbs to their infini-
tive conjugation. Others have attempted to use pairs or triples of words as
features rather than individual words. Full parse trees can be constructed in
which the subject and object for each sentence are identified and sometimes
broken down further into nouns, adjectives, prepositional phrases, etc. The
chief drawback of such methods is that they are typically computationally
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very intensive. Also, the BOW representation does maintain information on
the collocation of terms within a document and the frequency with which
pairs, triples, and larger groups of words appear. This appears to often be
sufficient for classification, because NLP methods have so far yielded too little
improvement in classification performance (at least in aviation safety [12])) to
justify their computation time.

Many of the same methods used for non-text classification, such as decision
trees, random forests, and Support Vector Machines, are used for text [19,
1]. Past experiments have shown that Support Vector Machines seem to be
especially suitable because they are naturally suited to dealing with very large
numbers of features, which typically exist in text classification problems [1].

Topic extraction is the act of examining the text repository and identifying
the topics represented. Topics are typically in the form of a vector of words that
tend to co-occur frequently. Examples of methods that do this include Latent
Dirichlet Allocation [10] and Non-Negative Matrix Factorization (NMF) [26].
The representation issues for topic extraction algorithms are the same as for
text classification algorithms. However, instead of necessarily relying on an
existing document classification system, topic extraction algorithms operate
in an unsupervised manner and identify topics based just on the documents
themselves.

One example of a text repository is the Aviation Safety Reporting Sys-
tem (ASRS), which was started 30 years ago. It is a joint effort by the FAA
and NASA [29]. The program was established to collect data and information
about aviation events which could lead to unsafe situations, or non-standard
procedures, and use the data and information to identify deficiencies in the Na-
tional Airspace (NAS) so appropriate solutions could be implemented. ASRS
reports are publicly available and are written by pilots, flight controllers, tech-
nicians, flight attendants, and others including passengers. In general, the
reports are filed in response to a specific event, but general concerns and
complaints are also filed. ASRS reports include factual information about the
aircraft, location, parties involved and a narrative in which the author de-
scribes the event(s) and/or situation. Since these narratives are specific to
aviation they are filled with acronyms and abbreviations that only those with
a working knowledge of the industry are likely to understand. Each report
is read by at least two aviation experts who identify hazardous conditions
and underlying causes of the reported events and classify the report into the
appropriate categories. There are now over 700,000 documents in the ASRS
data base with more than 3000 reports added each month. Many air carri-
ers also have their own internal safety reporting system under the Aviation
Safety Action Plan (ASAP) which may or may not be linked to the ASRS.
Different airlines devised different categorizations for their documents, which
necessitated the development of a master version of the categorizations which
all organizations could reference. The archive consisting of these documents
recategorized using this master version is known as the Distributed National
ASAP Archive (DNAA).
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The ASRS documents and their classifications can be used by text classifi-
cation algorithms to learn models that can be used to classify new documents.
However, aviation safety experts do not completely trust the classification sys-
tem because many problems are unique and do not fit well within the clas-
sification scheme. Therefore, topic extraction algorithms that either do not
use the text classifications at all or only use them as a guide are of interest
with the goal of extracting new topics that represent operationally significant
problems that have been previously unknown and/or unstudied.

1.2.2 Role of data mining in fleet health monitoring

Gathering data, transforming data into information, and discovering useful
knowledge from the information have been identified as the three major steps
in extracting valuable resources from the operations of all kinds of processes
or systems. Organizations have recognized the importance of historical data
that have been collected over decades and seek ways to utilize this knowledge
in improving organizational effectiveness. For this, we turn to the field of data
mining. By data mining we mean the art and science of analyzing a large
collection of observations. More specifically, data mining is the process of sift-
ing through data and extracting relevant knowledge about the system being
described by the data. Such knowledge can then be used to make decisions
relevant to the system, such as decisions involving appropriate utilization and
maintenance of the system. Data mining is highly multidisciplinary in nature
and uses sophisticated techniques from various areas like statistics, pattern
recognition, information retrieval, machine learning, knowledge organizations,
dynamic programming, high-performance computing, data visualization, etc.
The whole purpose is to develop an automated process to manage informa-
tion, discover previously unknown knowledge, predict trends and behaviors,
comprehend the underlying relationships in large data and information sets
and finally provide a means to aid decision-making activities.

1.2.2.1 Anomaly Detection Problem

Anomaly detection is an example of data mining. Since the theme of this
chapter is anomaly detection, we will mostly discuss data mining problems and
applications that involve anomaly detection, which is also known as outlier
detection or surprise pattern detection. Outlier or anomaly detection refers
to the task of identifying new or unknown patterns which, in many cases, are
abnormal or inconsistent relative to most of the data. In the last decade or
so, researchers have found tremendous potentials in applications of anomaly
detection algorithms in various disciplines. Some of the thrust areas include
medical applications, airspace safety, fraud and intrusion, and business an-
alytics. The problem of outlier detection has been extensively studied using
several approaches. The two broadest categories of anomaly detection prob-
lems are supervised and un-supervised. In the supervised approach a model
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is built from training data containing inputs for which the class labels are
known. The resulting model can classify new data into one or more of the
classes, which may correspond to normal or anomalous categories. Supervised
anomaly detection is typically implemented using standard machine learning
methods for classification, such as Support Vector Machines (SVMs). However
class labels are often not easily available and, if they are available, they are typ-
ically expensive to obtain—especially for historical data representing systems
which are no longer available in the precise configuration used to generate the
data. Additionally, it is often impossible to know all possible classes of normal
and anomalous operation and corresponding data. Unsupervised techniques
do not require knowledge of normal and anomalous operation modes/classes.
Unsupervised anomaly detection methods typically assume that all or most of
the training data represent normal behavior and attempt to model this data.
When new data arrives, the model is used to identify them as normal if they
fit the model and anomalous otherwise. We encourage interested readers to go
through [27, 28, 33, 13] which have extensively reviewed and studied various
methods for anomaly detection.

1.2.2.2 Some Preliminaries

Figure 1.1 gives an overview of various popular anomaly detection tech-
niques and some of these techniques have been extensively discussed in a
survey on outlier detection [13]. Typical classification based techniques such
as Bayesian inference, decision trees, Support Vector Machines (SVMs) and
neural network models are built on previously labeled instances of both nor-
mal and abnormal data instances. In classification based outlier detection, the
objective is to assign a new test object to one of the existing classes i.e. label
previously unseen data points either as a normal class or any of the abnormal
classes. On the other hand, there are some kernel-based classification meth-
ods like one-class SVMs, one-class kernel Fisher Discriminants, etc., which
fall under the anomaly detection category and are unsupervised in nature. In
these detection techniques a solution is offered by modeling normal data and
deriving a threshold for determining how far data can be from the model and
still be considered normal. In the nearest neighbor based approach, the aim
is to infer the outliers based on the data itself—for example, by finding those
points which are at a greater distance from most of the other data points
or by finding those points which are in low density regions. In most cases
k-Nearest Neighbor (k-NN) based solutions have quadratic time complexity
since a comparison between every two points is needed to find the nearest
neighbors. Researchers like Angiulli and Pizzuti [5], Angiulli and Fassetti
[4], Ramaswamy et al. [34], and Bay and Schwabacher [7] have addressed
this problem by introducing some promising techniques with improved run
time complexities. We will elaborate on some of the above methods in the
sections to follow.

In some of the popular clustering techniques such as the ones based on
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Gaussian Mixture model using EM, C-means fuzzy clustering, k-means (or
median), and centroid linkage hierarchical approach, the basic approach is to
partition the entire data into a number of clusters, where each data point
will be assigned to each cluster with certain degree of association, also called
“degree of membership”. Here the anomaly detection problem is framed as a
method of finding the odd member (data point) whose association to any of
the existing clusters is very low—i.e. the sample does not belong to any of the
existing clusters.

In statistical approaches, the models are based on the statistical properties
of the training data themselves. In the testing phase the job boils down to esti-
mating whether the sample under investigation could have been generated by
the same distribution that generated the training data. There exist two main
approaches, of which one makes some assumptions about the data distribution
and the other derives the distribution along with the distribution parameters
from the data. The former are known as parametric methods, which assume
that the density function belongs to one of the standard and well-known dis-
tribution families, such as the normal distribution, binomial distribution, and
Poisson distribution. On the other hand, the latter approach, which does not
assume a particular form for the underlying distribution of the data in ad-
vance, is widely known as the non-parametric approach.

Most of the algorithms described above have been mostly used for data
containing only continuous real-valued data attributes. However, many appli-
cations, such as aviation safety, have heterogeneous data sources (e.g., dis-
crete, continuous, text, and others) and; therefore, there is a need to develop
intelligent knowledge refinement and integration techniques that work with
heterogeneous data sources. It is important to note that in order to enable
knowledge discovery, algorithms in general require an integrated and merged
view of the data available from various sources. Knowledge extraction from
multiple heterogeneous data sources remains a challenge. Another challeng-
ing problem is to keep the methodologies flexible to the heterogeneous nature
of the data sources so that problem reformulation is not required whenever
there is a change in information content or data structure. In the rest of the
chapter we will describe different frameworks for data integration and knowl-
edge discovery that can utilize heterogeneous data sources. Our notion here is
to demonstrate how to extract and merge information contained in heteroge-
neous data sources and how the combined information can be effectively used
to achieve the needs of the analysis. More recently, much research has been
conducted to extend the scope of some of the state-of-the art techniques to
include information from continuous data, as well as knowledge created from
other structured data sources, such as discrete data which may be binary,
ordinal, categorical or sequential. Here we will discuss a few of them. Some of
these techniques can be even further extended for various unstructured data
sources as well.
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1.3 Key issues in fleet health monitoring

In this section, we examine two challenges in many modern fleet data sets:
heterogeneity and large data volume. We follow these in the next section with
methods designed to address these challenges.

1.3.1 Heterogeneity

“Heterogeneity is to be expected in a meta-analysis: it would be surprising

if multiple studies, performed by different teams in different places with dif-

ferent methods, all ended up estimating the same underlying parameter. From

the standpoint that heterogeneity is inevitable in a meta-analysis, we are left

with the question of whether there is an acceptable degree of heterogeneity.

My own view is that any amount of heterogeneity is acceptable, providing

both that the predefined eligibility criteria for the meta-analysis are sound

and that the data are correct. The challenge is then to decide on the most

appropriate way to analyze heterogeneous studies, and this will depend on the

aims of the synthesis.....” (Julian P T Higgins [20])

In the light of the above statement, it seems clear that we must expect
the presence of varying degrees of heterogeneity across different problems. It is
fairly well accepted among practioners that mixtures of observations described
using multiple attributes (parameters, features etc.) of diverse nature, mea-
sured with varying degrees of uncertainty results in heterogeneity in the data.
Sometimes these heterogeneous data sets can reveal enriched information that
can help in making critical decisions. These decisions can be in the form of
detection, classification, prediction, forecasting, etc. The fact that this hetero-
geneous nature of the data influences the entire analysis and decision-making
process is a central point of this chapter. Imagine that we are analyzing a large
volume of heterogeneous data with unknown class labels and we are asked to
identify those objects exhibiting strange behavior. One of the popular ways of
doing this is using a data-driven anomaly detection model which is a process of
identifying abnormal or inconsistent patterns in a dataset. Identifying strange
events or entities can be extremely important in several applications includ-
ing fraud and intrusion detection, financial market analysis, medical research,
safety-critical vehicle health management etc. These adverse events or entities
are also known as anomalies or outliers which can be defined as data points
that lie in low density regions or in areas far away from the majority of points.
The choice of the appropriateness of the algorithm is dependent on the nature
of the input features and the goal that needs to be achieved. In this chap-
ter, we study the requirements of anomaly detection methods that take into
account the heterogeneous nature of the data set to accurately find anoma-
lies. This chapter summarizes studies on such anomaly detection techniques
that have appeared in the technical literature during the last two decades.
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The primary purpose of this study is to bring together and compare a set
of methods for anomaly detection on heterogeneous datasets. We start off by
discussing various heterogeneous sources within data sets. We examine some
of the existing state-of-the-art algorithms for anomaly detection in data con-
taining both discrete and continuous variables. Furthermore we demonstrate
that some of the benchmark algorithms may be motivated by the problem
of working with more complex types of data where sequential dependencies
exist between points in the data set. We focus on techniques that can extract
information from multivariate heterogeneous data sources.

Over the last few decades we have seen a tremendous increase in informa-
tion flow, in terms of the volume and complexity, in several disciplines. Today,
we are left with the challenge of dealing with a vast number of heterogeneous
information sources in a variety of semantic structures. Knowledge discovery
from these heterogeneous resources is still a challenging task. By knowledge
discovery we mean the process of extraction of implicit, either known or un-
known, potentially useful information that can be used to infer particular
events or general characteristics. Knowledge discovery is composed of many
computer science subfields like machine learning, pattern recognition, and ex-
pert systems, as well as other fields like statistics, information theory, and
stochastic machines. With this increased complexities of data sources there
is a potential need for building intelligent refinement and integration frame-
works, focusing on information content and semantics.

The key aspect of any data analysis method is how the input data were
measured and transformed into information. The two major categories of data
are structured data and unstructured data. Unstructured data are data with
limited restrictions on their format. A typical example of unstructured data
is free text data; for example, reports or scripts describing some events, and
experts’ feedback on a process. Structured data have much more restricted
formats. One typical example is numeric data, in which the attributes may
be either continuous or discrete. Continuous data can be defined as numeri-
cal responses measured on an infinitely divisible scale. Continuous variables
can be used to describe the properties of any process or the assets related to
that process. For example, the measured variables can be used to express pa-
rameters like height, weight, length, temperature, pressure etc., of a wooden
box or it can express the time needed to build the box or the cost (in terms
of money) of the box. Discrete data are numeric attributes measured on a
finitely divisible scale. Discrete attributes can be either binary or categorical,
and they can either be independent measurements or part of a sequence. An
example of binary data is measuring the switching (on/off, presence/absence
etc.) characteristics in a process. An example of categorical data is a satis-
faction rating on a scale of 1 to 5. In contrast to the previous two categories,
discrete sequences preserves the order (time aspect) of the discrete events. For
example, the sequence ABC is different from CBA as the order information
has been reversed in the later case, where A, B and C are categorical values
or events.
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In any application, heterogeneity is the measure of how different the at-
tributes of the data are from one another. There are a wide range of sources
from which heterogeneity may be introduced in data attributes. Heterogeneity
may occur due to the presence of multiple attributes as compared to a single
attribute in each data point. The latter is termed as univariate data while
the former is multi-variate data. In multivariate data, the attributes may or
may not belong to the same data type. For example each attribute can be
either continuous or discrete, independent of every other attribute. The other
source of heterogeneity can be the behavioral or functional properties of these
attributes. Some typical relationships that are present among data instances
are spatial, temporal, spatio-temporal, graphical etc. A detailed description
of the nature of input data can be obtained in [13]. Another type of exam-
ple is the logical ordering in sequential data. Either it defines a relationship
among observations or it may define the switching behaviors of the associated
features. As a simple illustration we can take the example of the Fibonacci
numbers which are an integer sequence where the first two Fibonacci num-
bers are 0 and 1, and each subsequent number is the sum of the previous
two [42]. An interesting way to characterize the switching behavior of a group
of variables is to generate a vector where each item in the vector represents
a combination of a switch attribute and the direction in which it was flipped.
Later in this chapter we will further discuss situations where discrete switching
patterns may have some causal relationship with some continuous attributes.

1.3.2 Efficiency: Large data volume, distributed data

Often, data representing the operations of fleets are very large. For exam-
ple, major commercial airlines have databases containing tens to hundreds of
terabytes of flight-recorded data. Simply reading the data from a disk may
take months. Therefore, anomaly detection methods need to be judicious in
deciding how large a subset of the data they need to read in order to derive
useful results. Often, these data are distributed over many storage devices.
This happens not only because of the substantial amount of data which is
more than typically can be stored at one location, but also because of the
geographically distributed nature of the data generation, which makes storing
the data at locations close to where they were generated convenient. For ex-
ample, one can imagine storing the data from a commercial aviation fleet at
the destination airports of the corresponding flights. That is, every time an
aircraft lands, its data may be uploaded to a storage device located at that
airport. Consolidating the data may be impractical given how much data there
is. In addition, the fact that the data are distributed should be beneficial—
methods should be able to process each storage location in parallel, which
would clearly be faster than processing all the data sequentially on a single
computer. Therefore, anomaly detection algorithms that can operate on the
data even though they are distributed, but give the same results as what a
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traditional algorithm would give after centralizing all the data, are clearly
useful. We will discuss such methods later in this chapter.

1.4 Dealing with heterogeneity

As discussed earlier, we needs ways to integrate and merge knowledge of
the data available across various resources to discover abnormal patterns or
outliers in the data. One approach, which we call the hybrid approach, involves
multiple model development, where we choose, for each modality of data that
is present, one or more models appropriate for extracting useful information
from that data. The results of these models can then be combined to yield
useful information about the entire dataset. This is depicted in figure 1.4.
The basic idea is to complement the deficiencies of one algorithm with the
strength of the other algorithm or algorithms. A decision is made taking into
account the combined output of all the supporting models. For example if the
objective is to discover abnormal patterns in a heterogeneous numerical data
set with both continuous and discrete values, we can choose method A that
works well on the continuous data and another method B that works in the
discrete domain. We can then use a suitable way to amalgamate the findings
of both the methods to generate a set of anomalies in that data set. Here A
and B may be any machine learning techniques (see figure 1.4).

An alternative way to approach this problem is to examine the possibilities
of knowledge integration, followed by the development of a single model on
the combined knowledge. This is depicted in figure 1.4. In general, authors
approach this problem by using a group of complementary metric functions
to extract useful information from various data sources and thus, in a way,
maximizing the knowledge extraction. Each metric function is chosen based
on their performance on some information content or data types. Once the
knowledge integration is complete, the remaining task is to build a suitable
model to attain the goal of the analysis.

Choosing the right metric function and integrating knowledge from mul-
tiple sources must be done judiciously. We will later discuss a method that
calculates a weighted combination of such functions to perform anomaly de-
tection on heterogeneous data. Identifying the best combination of weights to
integrate knowledge sources is itself an optimization problem and is another
interesting research area which is not within the scope of this discussion.

In the following sub-sections we will describe some anomaly detection tech-
niques that can easily integrate information from multiple heterogeneous data
sources. Some of these are shown in dark shaded blocks in figure 1.1. The
current state-of-the-art algorithms have both strengths and shortcomings in
detecting a variety of anomalous conditions. The following subsections will
present methods that aim to combine both strengths into a single approach
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FIGURE 1.2: In this figure we illustrate the two stage conceptual model for
knowledge discovery. The first layer represents heterogeneous data sources.
The second layer is the knowledge management process layer where the data
is appropriately processed (preprocessing, refinement etc.) to knowledge. The
third layer represents how the knowledge was communicated, corroborated or
shared to build models. In this framework individual models are created on
different knowledge bases and a decision is made at the final stage corrobo-
rating all the outputs of different models.
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FIGURE 1.3: This is an alternative knowledge discovery scheme compared
to the two stage conceptual model shown in figure 1.4. The first two layers
represent heterogeneous data sources and knowledge management process.
The third layer represents how the knowledge was integrated, communicated,
collaborated or shared to a single model. In this framework single model is
created on the fused knowledge and a decision is made at the final stage.
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to allow for detection of a variety of anomalies. The benchmark anomaly de-
tection algorithms discussed in this chapter are Orca, GritBot and one-class
Support Vector Machines.

1.4.1 Orca

Orca [7] is a method used for detecting anomalies in both continuous and
discrete (binary format) data in vector space, using a nearest neighbor based
approach to detect anomalous points. For continuous data, Orca takes a ref-
erence data set and calculates some function over each data point’s nearest
neighbors (using the Euclidean distance) in the original vector space. For bi-
nary attributes the Hamming distance [43] is used. Orca has a nested loop
structure to calculate pairwise distances between data points but uses ran-
domization and a simple pruning rule to keep the algorithm’s actual time
complexity significantly less than the square of the number of data points. In
fact, the pruning used in this algorithm helps to achieve near linear time per-
formance with high dimensional data. This makes the algorithm scalable for
analyzing large data sets. The advantages of distance-based anomaly detection
algorithms are that no explicit distribution needs to be defined to determine
a priori whether data points are normal or anomalous, and that they can be
applied to any feature space for which we can define a distance measure. In
this algorithm, each data point is scored independently and therefore it is
unsuitable for sequential data where the order of data points is operationally
significant. The pseudo code of Orca is shown in figure 1.4.1.

1.4.2 GritBot

GritBot [35] is a commercially available machine learning tool that per-
forms anomaly detection on discrete and/or continuous attributes. Gritbot
uses the C4.5 decision tree algorithm [32] to detect outliers. GritBot was de-
veloped by RuleQuest Research. GritBot is more like a classifier which defines
a simple boundary that separates the normal patterns from the rest and tests
whether the new data falls inside or outside the boundary. The outlierness
is based on values of discrete variables or ranges of continuous variables, for
which the target variable holds a specific value. The point is considered to be
an anomaly when the target variable corresponding to that point is signifi-
cantly different from the rest of the target values of the other points in that
subset. GritBot does not provide an overall score, or even monitor the score
for each data point, but instead ranks the top anomalous scores according
to their statistical significance. Since GritBot is based on decision trees, it
requires no prior knowledge of the data unlike many machine learning tech-
niques that may require parameters or distribution models derived from the
data set.
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Algorithm 1 Orca Algorithm
1: Input:

Apq : Matrix with q dimensional dataset having p instances arranged in a
random order
k : Number of nearest neighbors (default 5)
n : Number of outliers used (default: n = p)

2: Output:
O(n) : Set of outliers
Sglobal : Global scores

3: Argument:
a : Entries in A
B : Block of examples from A
b : Entries in B
C : Cut-off threshold
wd : Weight of discrete parameters

4: Definitions:
x ∈ (xc, xd)
D ∈ (Dc, Dd)
Hd(xd, Dd) = wd1(xd1 �= Dd1) + wd2(xd2 �= Dd2) + . . .+ wdn(xdn �= Ddn)
d(x,D) =�
(xc1 −Dc1)

2 + (xc2 −Dc2)
2 + . . .+ (xcn −Dcn)

2 +Hd(xd, Dd)
d(x,D): maximum distance between x and an example in D
Mk

x,D :k closest example in D to x

S(D,x) = 1
m

�m
i=1 d(x,D) distance based score

5: Initialize:
Let p instances of Apq be divided in NB blocks and Knn(x) be the
matrix that keeps track of the nearest neighbors/examples of x. And
C = 0 and O = Φ, where Φ is a null vector

6: For block = 1: NB {
B = A(:, block);Knn(b) = Φ

7: For each a in A, {
8: For each b in B and b �= a {
9: If Length(Knn(b)) < k or d(b, a) < dm(b,Knn(b)) {

Knn(b) ← Mk
b,Knn(b)∪a

10: If S(Knn(b), b) < c {
Remove example b from set B
}}}}

11: O = O ∪B
12: Sglobal = score(O)
13: C ← min(Sglobal(0))

}
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FIGURE 1.4: This figure illustrates the higher dimensional mapping of the
data. The data is non-linearly separable in 2−d data space whereas it is lin-
early separable in the 3−d feature space.

1.4.3 Kernel Based Anomaly Detection

In this section, we describe kernel-based methods for anomaly detection
in more detail than we devoted to other algorithms because of recent results
demonstrating the strong promise of kernel methods for anomaly detection
in heterogeneous datasets. In general, a kernel function, which is the heart of
any kernel method, can be informally thought of as a measure to calculate
the similarity between two data points. The use of certain kernel functions
turns out to be equivalent to mapping n−dimensional input data into a high
dimensional (possibly infinite dimensional) feature space and then using lin-
ear methods within that feature space. This is possible because vectors in
the high-dimensional feature space are only present as part of dot products,
which are always scalars. Tasks like anomaly detection, classification, cluster-
ing, or regression are then performed in this high-dimensional feature space.
This method of mapping the data into a high-dimensional space and using
linear methods rather than using non-linear methods in the original input
space yields the benefits of linear methods (well established theory, guarantee
of achieving the optimal solution given a fixed training set) with the represen-
tational benefits of a non-linear method. Support Vector based classification,
regression, anomaly detection are classical examples of kernel based methods.
Some popular kernel based techniques are shown in shaded (solid color) blocks
in figure 1.1.

1.4.3.1 Kernel Theory and Operations

Often, we find that linear methods for anomaly detection, classification,
and regression are not sufficient. In such cases, we may like to use methods that
are nonlinear in the input space. However, such methods’ theory are not as
well developed as linear methods. Additionally, methods for finding nonlinear
models, such as gradient descent methods, are typically not able to guarantee
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that they find the optimal solution given the training data supplied. Kernel
methods avoid this problem by instead mapping the data to a much higher
dimensional space (called the feature space) and then using linear methods
within the new space. The conceptual diagram shown in figure 1.4.3.1 de-
picts the data mapping. The left side shows the representation of the data in
the space of the original features (depicted here as a two-dimensional space)
whereas on the right hand side the same data has been represented in the
feature space, which is depicted here as three-dimensional. The feature space
is almost always of much higher dimension than the input space. In the input
space R, suppose we are given the data D = {(�xi)}ni=1, where �xi ∈ Rd (d = 2
in figure 1.4.3.1). We define a feature space F , and assume that there exists
a function φ that can be used to map any variable x from the input space
to the feature space i.e. φ : Rd → F . The feature space is often of infinite
dimension. However, the feature space is never explicitly defined, but rather
is induced by a kernel function. That is, a kernel function k is defined such
that it induces a mapping φ. That is, k(�xi, �xj) = φ(�xi) · φ(�xj). For example,
the Gaussian kernel k(�xi, �xj) = exp(−��xi, �xj�)/2σ2 induces a function φ that
maps the input space into an infinite-dimensional feature space, but one need
not know what that feature space is because the feature-space vectors are only
represented as dot products which can be replaced by k(�xi, �xj). This implicit
use of very high or infinite-dimensional vectors is commonly referred as the
kernel trick in the machine learning literature.

1.4.3.2 Is It a Mercer’s Kernel

Now the question arises how to chose a kernel function which is “appro-
priate?” The answer to this question is illustrated using a combination of two
very different views. The first and definitely the most immediate requirement
to be an “appropriate” kernel function k(xi, xj) is to prove that the function
satisfies Mercer’s conditions. This means that the function must be continu-
ous, symmetric, and positive definite. Any function that satisfies these three
conditions is known as a Mercer kernel. In general, a Mercer kernel can be
used because the kernel trick can be applied to it.

Continuous ∀� > 0 ∃δ > 0 s.t. |k(xi, xj)− k(xi ± δ, xj)| < � (1.1)

Symmetric k(xi, xj) = k(xj , xi) (1.2)

Positive definite

�

i,j

aiaj(k(xi, xj)) ≥ 0 (1.3)

The continuous (Eqn. (1.1)) and symmetric (Eqn. (1.2)) properties are fairly
easy to understand. The positive definiteness property of function k means
that it must satisfy the following mathematical condition. For all n, i ∈
{1, 2, . . . , n} and �xi ∈ Rd, the function k results in a kernel matrix (Gram
matrix) K such that Ki,j := k(xi, xj) which is positive definite as shown in
Eqn. (1.3).
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Apart from mathematical convenience, another criterion for selecting a
kernel function typically depends on the purpose of the study. Using an ap-
propriate function will help in extracting useful knowledge from the under-
lying data. The kernel function will be more effective if it is sensitive to the
knowledge the user is looking for. This implies that the choice of the kernel is
based on how the kernel function matches the application. The kernel function
should be a measure of similarity appropriate to the application.

1.4.3.3 Problem Specific Kernel Functions

There are several class of kernels that satisfy Mercer’s conditions. In this
section we will elaborate on a few interesting candidates out of many popular
kernel functions which are greatly used in kernel based learning algorithms.
A very popular example of such kernel is the Gaussian kernel, also known as
radial basis function (RBF), which takes the form of,

k(�xi, �xj) = e−||�xi−�xj ||2/2σ2

(1.4)

where ||.|| denotes the Euclidean norm and σ defines the width of the Gaus-
sian distribution, also known as kernel width. RBF is one of the most widely
used kernel functions due to its translation invariance property—the value
of the kernel at any two points does not depend on their absolute positions
but only on the distance between them in the input space. The RBF kernel
width (σ) must be greater than zero. The choice of the kernel width plays an
important role in effectively capturing the spread among the data and thus
affects the performance of algorithms. There is active research on techniques
to automatically choose the optimal value of the kernel width (σ) from the
data.

Another commonly used kernel is the polynomial kernel. There are two
distinct features of the polynomial function, namely the degree or power (d)
of the variables and the offset (c). The two different types of polynomial
functions are shown in Eqn. (1.5) and Eqn. (1.6).

k(�xp, �xq) = ��xp, �xq�d Homogeneous (1.5)

or = (��xp, �xq�+ c)d Inhomogeneous (1.6)

Under specific scenarios when the user wants to model switching sequences
for a given process and where the order of the switching is important, normal-
ized Longest Common Subsequence (nLCS) based kernel is a good candidate.
To define this, we first give some preliminary definitions. z is a subsequence
of x if there are symbols that can be added before and/or after z to obtain x.
z is a common subsequence of �xi and �xj if z is a subsequence of both �xi and
�xj . The longest such subsequence of is called the longest common subsequence
(LCS) and is denoted by LCS(�xi, �xj) and |LCS(�xi, �xj)| is its length. Such a
kernel over discrete sequences, when normalized, takes the form of,
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k(�xi, �xj) = nLCS(�xi, �xj) =
|LCS(�xi, �xj)|�

l�xi l�xj

, (1.7)

where l�x is the number of symbols in sequence �x. Each sequence of switches
is compared against other sequences by using the longest common subsequence
(LCS) as the metric for comparison. Sequences that are similar are bound to
hold high nLCS values, while dissimilar sequences will hold very low nLCS
values.

If the data being used is text, then one may use the bag-of-words represen-
tation, which is a very simple representation of text. A bag of words is a vector
whose length is the number of words M used in all the documents in a repos-
itory (minus “stop words”—very commonly used words such as ”the,” ”a,”
”an,” and others that are found in nearly all documents and therefore have
little usefulness is distinguishing unique characteristics of documents). Each
entry in this vector is the number of times that this word appears in the cor-
responding document. Clearly, this representation does not retain information
on the order of words in the document.

Given a corpus of N documents and a dictionary of M words, one possi-
ble goal is to establish “relationships” between documents. Latent semantic
analysis aims to do this. A co-occurrence matrix (C) of size M ×N can easily
be formed. Each column in the co-occurrence matrix represents a document
(d�) with the number of occurrences of every term while each row (t�) rep-
resents the number of times a term from the dictionary is contained in all
the documents. Entry Cij represents the frequency of the ith term in the jth

document. A kernel based on the co-occurrence matrix can be defined as,

k(�xp, �xq) = dTp dq ∀p, q = 1, ..N (1.8)

or = tTp tq ∀p, q = 1, ..M (1.9)

Here Eqn. (1.8) gives the similarity between two documents over all the
terms while Eqn. (1.9) gives the similarity between two terms over all docu-
ments.

There are many papers describing the use of kernel methods for many
different types of data simultaneously with various types of features such as
graphs and multiple feature types in computer vision such as color, shape, tex-
ture, and graphs based on image segmentations. Interested readers can explore
literature [40, 23, 14, 44, 18] that looks into various other classes of kernels
like sigmoid, spline, graph based, tree based, mismatch-based functions, etc.

1.4.3.4 Information Fusion

In previous sections we have demonstrated that evaluating a kernel func-
tions on a pairs of objects is equivalent to measuring the similarity between
those objects. Some of these similarity measures are normalized between 1 and
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0. Once an “appropriate” kernel function is chosen and the kernel matrix K is
formed, it can be incorporated into any kernel based classification, regression,
or anomaly detection methods where the kernel matrix is the sufficient repre-
sentation of the input data. In another word, by “kernelizing” any method we
encode knowledge about the data, expressed in terms of pairwise similarities.
This provides us with the opportunity to incorporate vast amount of knowl-
edge from heterogeneous sources using particular kernel functions. This field
of research is known as Multiple Kernel Learning (MKL) [6, 24]. MKL takes
advantage of the mathematics of kernels allowing us to derive new kernels from
existing ones, thereby using multiple kernels simultaneously. For any λ, if Kλ

is a Mercer kernel then it can be easily shown that for positive coefficients, a
weighted combination of kernels (Eqn. 1.10) also preserves the Mercer kernel
properties, i.e. K̂ is also a Mercer kernel.

K̂ =
�

λ

βλKλ λ ∈ R+ (1.10)

A common practice is to use a convex combination (i.e.
�

λ βλ = 1) of
various kernels which may be constructed on very different feature sets such
as color, shape, texture etc. Therefore a major advantage of the multiple kernel
learning approach is its ability to incorporate more knowledge in the decision
process while analyzing complex heterogeneous systems that involve various
data sources and data structures.

1.4.3.5 One-Class Support Vector Machines: An Overview

Here we provide here a brief overview of the one-class SVMs, followed
by some descriptions of a case study for handling heterogeneous data. Let
us consider situations where the users have ideas about what could be the
normal behavior of the system (or data) as opposed to the nature of abnormal
patterns. Unsupervised techniques like one-class SVM are a perfect fit to such
an anomaly detection problem. One-class SVM is designed o estimate the
density of the data. It builds a model on single (known) class of data and then
finds a set of outliers using a decision boundary—a hyperplane that separates
these outliers from the rest of the training examples. Schölkopf [39] showed
that in the high dimensional feature space it is possible to construct an optimal
hyperplane by maximizing the margin between the origin and the hyperplane
in the feature space by solving the following primal optimization problem,

minimize P (w, ρ, ξi) =
1

2
wwT +

1

ν�

��

i=1

ξi − ρ

subject to (w.φ(xi)) ≥ ρ− ξi, ξi ≥ 0, ν ∈ [0, 1] (1.11)

where ν is an user-specified parameter that defines the upper bound on
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the training error, and also the lower bound on the fraction of training points
that are support vectors, ξ is the non-zero slack variable, ρ is the offset, φ(xi)
represents the transformed image of xi in the Euclidean space and i ∈ [�]. The
origin is the only representative of the second class with negative label. For
multiple kernels, the dual form of the optimization can be written as,

minimize Q =
1

2

�

i,j

αiαj(
�

λ

βλK
λ
i,j)

subject to 0 ≤ αi ≤
1

�ν
,
�

i

αi = 1,
�

λ = 1, ρ ≥ 0, ν ∈ [0, 1] (1.12)

where βλ are the weights of the kernels and the αi are Lagrange multipli-
ers. Once this problem is solved at least ν� training points with non-zero
Lagrangian multipliers (�α) are obtained and these points {xi : i ∈ [�] , αi > 0}
are called support vectors. The selected points can be marginal Im = {i : 0 <
αi < 1} and non-marginal Inm = {i : αi = 1} support vectors. Once �α is
obtained, SVMs compute the following decision function.

f(�xz, α, β, ρ) = sign(
�

i∈I
αi(

�

λ

βλK
λ
i,z)− ρ) (1.13)

where I = Im + Inm. The key aspect of this formulation is that many
training exampels are no longer needed—only the support vectors are used
to define the function. If the decision function predicts a negative label for
a given test point xj , then it is classified as an outlier. Test examples with
positive labels are classified as normal. The pseudo code of one class SVMs is
shown below.

Algorithm 2 Single Class SVMs Algorithm

1: Input Vector: X = {x1, x2....xm, z}, X ∈ Rd.
2: Map Features:

�
λ βλKλ

i,j).
3: Solve Eqn. 1.12 to obtain α corresponding to Support Vectors (SVs).
4: Calculate bias, ρ =

�Ns
k=1 αk(

�
λ βλKλ

�x,�xk
).

5: Calculate score, f(�z) =
�Ns

k=1 αk(
�

λ βλKλ
�z,�xk

).
6: if f(�z) > ρ then
7: return 1
8: else
9: return 0

10: end if
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1.4.3.6 An Example of Multiple Kernel Anomaly Detection

The whole detection process is nothing but a systematic way of looking at
events in the collected data, analyzing the extracted knowledge, and finally
making some decisions using certain criteria. As researchers we may gain a
better understanding of why a certain event happened as it did, and what
might be causing it. We give here an example that focuses on the use of data
analysis techniques to identify anomalies on systems where the data is recorded
in both the continuous and discrete form across its subsystems. We chose to
elaborate on this example because it is the only example we are aware of
that utilizes multiple kernel learning for anomaly detection over heterogeneous
data. We feel this method has great potential to improve anomaly detection
for engineered systems such as commercial aircraft.

Here we consider a scenario where the order of switching is absolutely
important as compared to the magnitude. Here, the sequential nature of the
discrete switches influences the dynamics of the system and hence constitute
the main driving factors in the measured continuous output parameters of
that system. For an algorithm to find anomalous behavior in such systems it
should be able to detect anomalies in both the continuous and discrete se-
quences simultaneously. Anomaly types that may appear in such continuous
and discrete sequences are shown in figure 1.4.3.6. By continuous sequence we
mean the quantized version of the continuous variables arranged in a sequence
form. Discrete sequences are representations of the order in which the tran-
sitions of the switches happens. The details on the preprocessing and feature
extraction steps are scripted in [16].

A synthetic data set was generated to simulate the scenario where the
discrete switches are the driving factors in the measured continuous param-
eters. The data generation method allows the continuous parameters to vary
directly with the state of the binary inputs. In addition to this, Types I, II,
III, & IV anomalies were randomly injected in the synthetic data. Ten bi-
nary parameters were generated with three fundamental behaviors: random
flipping, constant throughout, and deliberate switching. One parameter was
set to randomly switch between 0 and 1, while two parameters never changed
states. For the deliberate switching six channels would hold a value at their
initial state and then change to the alternate state when a separate channel
toggled from 0 to 1. Apart from all the above three, abnormal patterns which
are independent of discrete variables were injected arbitrarily in certain parts
of the continuous data. This serves as an excellent platform where different
algorithms could be tested to demonstrate their ability to detect anomaly of
each type and for comparing the performances of multiple algorithms.

For comparison to MKL we choose Orca and SequenceMiner which, with
their own strengths, are strong contenders for detecting a variety of anoma-
lous conditions. SequenceMiner [11] was originally designed to model binary
switch inputs from pilots during important periods in flight. The switch tran-
sitions for a given flight are formatted into a single sequence of switches. Each
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FIGURE 1.5: The figure represents the summary of the different abnormal-
ity categories injected in the synthetic data. A total of 12 faults have been
randomly injected, out of which 3 are continuous (Type IV) and 9 are discrete
(Type I, II and III).
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FIGURE 1.6: This figure represents three stages of kernel based anomaly
detection technique. The first stage being the data preprocessing & refinement,
the second stage is information fusion followed by the final stage which is
model development.

sequence of switches is compared against other sequences by using the longest
common subsequence (LCS) as the metric for comparison. Sequences that
are similar are clustered together. Outliers are sequences that have very low
LCS values. Since sequenceMiner takes into account the order in which the
switches were triggered it has the ability to identify anomalies in the temporal
domain, however it is unable to handle continuous data and therefore does not
have the ability to detect anomalies in continuous parameters. Both Orca and
sequenceMiner will be compared with multi-kernel one-class SVMs.

In using multi-kernel one-class SVMs, as an initial step we preprocessed
the data and then generate continuous and discrete features. We used a convex
combination of two kernels with equal weights. The resultant kernel takes the
form of,

K(�xi, �xj) = ηKd(�xi, �xj) + (1− η)Kc(�xi, �xj) (1.14)

where Kd is a kernel over discrete sequences constructed using the normal-
ized Longest Common Subsequence (nLCS) metric, Kc is a kernel constructed
over the Symbolic Aggregate approXimation (SAX) [2] representation of con-
tinuous data, i.e continuous sequences, using the same nLCS metric, and η is
used to weight the two kernels. From our earlier discussions, one can under-
stand that the constructed kernel K, as well as Kd and Kc are all symmetric
positive semi-definite matrices. MKL appears to be a promising way to meet
our requirement of incorporating knowledge of both discrete and continuous
sequences in anomaly detection as this method aims to combine both strengths
of Orca and SequenceMiner into a single approach to allow for detection of a
variety of anomalies. The different steps of multiple kernel one class SVMs is
shown in figure 1.6.
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FIGURE 1.7: The figure represents the summary of the performance of all
three algorithms in detecting the abnormalities in the synthetic data for each
abnormality category. A total of 12 abnormal candidates have been randomly
injected, and these abnormal cases are represented by the ground truth. Mul-
tiple kernel one class SVMs was the only algorithm to detect all fault types.

Figure 1.7 summarizes the outcomes. Since the actual fault injection in-
cidents are known, we are able to evaluate the performance of all algorithms
in detecting those faults. Out of twelve injected faults, Orca was able to find
the three continuous anomalies. Even though Orca can handle both discrete
(binary) variables and continuous variables, the algorithm is unable to de-
tect sequential anomalies where the ordering of transitions is embedded in
some form. SequenceMiner, using one standard deviation threshold calculated
from the reference set, was able to detect most of the discrete anomalies and
clearly missed all the continuous anomalies. Whereas the multiple kernel one
class SVMs stand out among all the algorithms since it was able to identify
all twelve fault types (both discrete and continuous).

1.4.4 Text Mining

1.4.4.1 Data and Algorithms

As mentioned in section 1.2.1.2., our example text repository, ASRS, has
two relevant problems: classification and topic extraction. We now discuss
two algorithms developed and implemented to analyze and extract useful in-
formation from ASRS reports. The first is Mariana [30], a Support Vector
Machine with Simulated Annealing, which is a search method used to find
the best hyperparameter settings for the model. Since SVMs were explained
earlier, we will not do so here. The second method is classification built on
top of Non-negative Matrix Factorization (NMF), which attempts to find a
document model that represents document features that add up in various
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combinations to form documents. NMF has the potential to provide basis
vectors that are interpretable and indicative of different topics present within
the repository. This is critical to discovering new, previously undiscovered
problem areas within ASRS and other repositories.

Non-negative Matrix Factorization (NMF) [25] is a variation on the host
of mathematically motivated techniques for factoring large vector-valued data
sets into basis and distribution matrices. Suppose we have d documents and t
terms.1 The general approach is to seek a relatively small set of k basis vectors
represented by the t x k matrix W , and a corresponding set of distribution
weight vectors represented by the k x d matrix H, such that the transposed
bag-of-words matrix X (for NMF, we assume X is t x d rather than the usual
convention of being d x t) is factored according to X ≈ W ∗H by minimizing
some measure of the difference, X−W ∗H. The hope is that the basis vectors
in W will correspond to some fundamental properties of the data set, with
the distributions in H combining those properties to form the data.

The convention in NMF-based text analysis is that the jth column of
X represents the term weights of document j, each column of W is a basis
vector over the term set, and each column of H is a set of weights over the
basis vectors. Thus, if we use H•j to denote the jth column of H and Hi• to
denote the ith row of H, then for the jth document, W ∗H•j ≈ X•j . If each
basis vector W•b is individually L1 normalized to a single term weight, and
the rows Hb• are inversely scaled to maintain the product W•bHb•, then Hbj

is the approximate number of terms, from basis vector W•b, found in the jth
document. If the columns H•j are then L1-normalized, they give the relative
basis vector weights, independent of document size.

In NMF applications, the data values are non-negative, typically counts or
scalar measurements, and the factorization is constrained to keep both W and
H non-negative. With non-negativity, the basis vectors may be thought of as
components, and the distributions as recipes for adding components to match
the data. Both aspects seem more natural than the alternatives, particularly
so for intrinsically non-negative data.

While non-negativity is an appealing property for factorization methods,
constraining conventional difference minimization algorithms to maintain non-
negativity has mostly been difficult. This changed in 2002, with spreading
recognition of the potential of Lee and Seung’s multiplicative update approach
[25, 37]. For the squared Frobenius norm, the standard sum of squared matrix
values �X − WH�2F , Lee and Seung’s original paper gives the minimizing
reestimation equations for iteration as:

Wab ← Wab
(X ∗HT )ab

(W ∗H ∗HT )ab
(1.15)

Hbi ← Hbi
(WT ∗X)bi

(WT ∗W ∗H)bi
(1.16)

1in general, NMF can be used in the case where there are d examples that have t features
each, but we present NMF as used for text classification.
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where a and i index over the attributes and instances of X, respectively, and
b indexes over the basis vectors. This is actually a reformulation of the stan-
dard gradient driven norm minimizing search, augmented with a conceptually
simple step size computation that maintains the non-negativity constraint.

Starting with non-negative W and H, and applied alternately, these reesti-
mation equations are proven to monotonically lower the norm toward a local
stationary point, while maintaining the non-negative properties of W and
H. Lee and Seung also provided an alternate multiplicative minimization for
the Kullback-Liebler divergence of probability matrices, and [17, 41] describe
schemes for other matrix norms.

In factoring the prepared data, there is the fundamental choice of what
function ofX−WH shall be minimized with consequences that are not yet well
understood. A basis size must be chosen, or a range of sizes searched over and
evaluated. Algorithmic details, particularly factor initializations, may have sig-
nificant effects. Since the multiplicative NMF algorithms are gradient driven,
they approach their stationary points at exponentially decreasing rates. This
requires stopping criteria that balance the opposing requirements of compu-
tational efficiency and numerical accuracy.

The columns of W form vectors of words, each of which can be seen as a
topic represented in the text repository. If one wants to use NMF for classifi-
cation, then a linear model is fit using the criterion that the product of the H
matrix and the document categorization matrix is the same for the training
and the test set. Since the H matrices for the training and test data are known
and the categorization matrix for the training set is known, one can solve for
the categorization matrix for the test data.

1.4.4.2 Results

We first discuss text classification results. The authors of [12] tested Mari-
ana with raw text in BOW format and the same text after being processed by
an NLP system called PLADS to assess how useful PLADS and the simulated
annealing within Mariana would be. Mariana’s process of choosing better hy-
perparameters improves the area under the ROC curve by 10% or more in
some of the categories on raw text. It also gives equal improvement on text
that has been processed by the PLADS system. As shown in figure 1.8, there
is little difference in performance when this process is used on raw text and
PLADS processed text. Others have also found that NLP methods do not give
enough performance improvement to justify their high running time.

The authors of [12] then evaluated the performance of Mariana by auto-
classifying 100 randomly selected reports and having the results reviewed by
a problem report expert. The reviewer agreed with the top classification by
Mariana 73% of the time. The reviewer agreed with one or both of the top
two classifications 86% of the time, and with the top three classifications 90%
of the time. A separate review of the 100 reports was done by another subject
expert. Then the first reviewer reviewed the second reviewer’s classifications,
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FIGURE 1.8: Comparison of Raw Text and PLADS Processed Text using
Optimum Hyperparameters

and agreed with their top (and only) classification 89% of the time. These
results indicate that Mariana is classifying documents reasonably well and
in a manner reasonably consistent with human experts given that reviewers
(including presumably those who provided the original classifications to the
documents that they used in training) disagree among themselves.

Figure 1.9 shows the areas under the ROC curves for Mariana, NMF,
and a baseline method (Linear Discriminant Analysis) applied to the ASRS
categories, as well as the fraction of documents in each category (the boxes),
normalized so that the category with the largest number of documents has a
value of 1. The categories on the x-axis are sorted in ascending order of this
normalized fraction. The vertical lines connect the highest area to the lowest
area for each category and are meant to facilitate comparisons within each
category. Overall, Mariana outperforms Linear Discriminant Analysis on 16
of the 22 categories and NMF outperforms Linear Discriminant Analysis on
21 of the 22 categories—however, not by a great amount.

We now discuss NMF’s results for topic extraction. Table 1.1 gives exam-
ples of two basis vectors from three runs of NMF (each with a different training
and test set mix drawn from the original dataset) on the ASRS repository.
One basis vector was drawn from each of the three runs such that the result-
ing three basis vectors were the closest such triple in terms of L1-norm—these
form the three left columns of table 1.1. The three right columns are the basis
vectors corresponding to the second closest such triple. Within each column,
the words are given from top to bottom in order of weight. One can see from
these examples that the three runs came up with bases that are relatively
close to one another. The two triples are also quite different from each other,
indicating that the basis vectors represent different topics (combinations of
categories). However, the 20 words within a basis vector are clearly quite re-
lated. The first basis set clearly seems to be describing some fuel tank related
problem and the second basis set clearly describes an issue related to a repair.
It appears that NMF is finding the significant collocations that are indicative
of topics and keeping them together.
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FIGURE 1.9: Performances on ASRS categories.

1.5 Dealing with efficiency issues: Distributed Anomaly
Detection

Often, data representing the operations of fleets are distributed over many
storage devices. This happens not only because of the substantial amount of
data which is more than typically can be stored at one location, but also be-
cause of the geographically distributed nature of the data generation process,
which makes storing the data at locations close to where they were generated
convenient. For example, one can imagine storing the data from a commercial
aviation fleet at the destination airports of the corresponding flights. That is,
every time an aircraft lands, its data may be uploaded to a storage device
located at that airport. Consolidating the data may be impractical given how
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much data there is. Therefore, anomaly detection algorithms that can operate
on the data even though they are distributed, but give the same results as
what a traditional algorithm would give after centralizing all the data, are
clearly useful.

We briefly give overviews of two algorithms for which there are mathe-
matical proofs that they yield the same anomalies with the same ranking of
anomalousness on any distributed dataset as what a corresponding central-
ized algorithm would give after centralizing all the data. Additionally, these
algorithms are designed to be efficient in that they require much less commu-
nication than what would be required to actually copy all the data from the
different nodes to one location. One algorithm is a distributed expectation
maximization (EM) algorithm for learning Gaussian Mixture Model (GMM)
parameters. The second algorithm is a distance-based anomaly detection al-
gorithm.

1.5.1 GMM

Here, we discuss a density-based anomaly detection algorithm. This is
an example of a class of algorithms that learn a density function over the
training dataset. This density function can clearly be used for many purposes,
but when used for anomaly detection, the user assumes that normal data tend
to be in higher density regions whereas anomalous data tend to be in lower
density regions. The density may be learned using non-parametric methods,
such as histogram methods or methods to construct Voronoi tesselations of the
data [38]. A parametric method may also be used, whereby a model structure
is assumed and the learning task involves calculating the parameters of the
model that best fit the training data. Either way, when new data arrive, the
learned density function is calculated on these points and those for which the
probability density is lower than a certain threshold may be judged to be
anomalous data. The algorithm we discuss in this section is an example of a
parametric method.

This algorithm, called PeDEM [9] learns the parameters of a GMM on
the entire distributed dataset, monitors whether the GMM’s parameters are
still valid given new data that has arrived at each of the nodes of the dis-
tributed system, and, if necessary, updates the GMM’s parameters to reflect
the inclusion of the new data in the distributed repository.

Expectation Maximization (EM) is an iterative optimization technique to
estimate unknown parameters Θ (typically sufficient statistics for the prob-
ability distribution being used to model the data) given data D. The EM
algorithm alternates between two steps to maximize the posterior probability
distribution of Θ given D. The algorithm utilizes hidden variables H, which
often are assumed to represent hidden state information. The two steps are

• E-step: Calculate the expected value of H given Θ and D.
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• M-step: Calculate Θ to maximize the likelihood of the data D given the
expected value of H.

For GMMs, the generative model for a vector x ∈ Rd, where x is a d-
dimensional vector of real numbers, is

P (x) =
M�

j=1

πjP (x|j),

where M is the number of Gaussians in the mixture, πj is the prior prob-
ability of the jth mixture being used to generate a data point, and the jth
mixture’s density is

P (x|j) =
1

(2π)d/2�Cj�1/2
exp−(x− µj)

TC−1
j (x− µj)/2.

Each density is parameterized by its mean vector µj = [µj.1µj,2 . . . µj,d]
and its covariance matrix Cj = (x − µj)(x − µj)T . Assuming that we have a
training dataset X = {x1,x2, . . . ,xn}, EM attempts to estimate the model
parameters such that they maximize the likelihood of the parameters given
the data. Normally, the log-likelihood is maximized instead, which gives the
same result since logarithm is a monotonically increasing function.

A centralized version of EM for GMMs would have the following E-step:

qj,i =
πjN(xi;µj,Cj)�M
k=1 πjN(xi;µj,Cj)

.

and the following M-step:

πj =

�n
i=1 qj,i
n

µj =

�n
i=1 qj,ixi�n
i=1 qj,i

Cj =

�n
i=1 qj,i(xi − µj)(xi − µj)T�n

i=1 qj,i
,

for each of the M Gaussians in the Gaussian mixture. N(xi;µj,Cj) denotes
the probability density function at data point xi under a normal distribution
with mean µj and covariance matrix Cj.

The corresponding version of EM in PeDEM has the following E-step:

qa,j,i =
πjN(xa,i;µj,Cj)�M

k=1 πkN(xa,i;µk,Ck)
.
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and the following M-step, where B is the number of nodes in the distributed
system:

πj =

�B
a=1

�n
i=1 qa,j,i�

a = 1BNa

µj =

�B
a=1

�n
i=1 qa,j,ixa,i�B

a=1

�n
i=1 qa,j,i

Cj =

�B
a=1

�n
i=1 qa,j,i(xa,i − µj)(xa,i − µj)T�B

a=1

�n
i=1 qa,j,i

,

The E-step computation for each node involves only data and parameters
available at that node. However, the M-step computation at each node requires
information from all the other nodes. Obviously, the distributed anomaly de-
tection problem would be trivial if all the computations at each node only
involved information available at that node.

The goal of the exercise in [9] was to continually check that the current
parameters of the GMM are valid with respect to the global data set even as
new data are added and to update the parameters when they are incompatible
with the data. In PeDEM, four monitoring problems are solved—one each for
the log-likelihood (L̄), prior probabilities of the mixture models, the means of
the mixture models, and the covariances. In particular, they monitor for

L̄(Θ̂|G) > �

|πj − π̂j� < �1

�|µj − µ̂j�| < �2���||Cj| |F − Ĉj

��� < �3.

In case of log-likelihood, clearly one would want the log-likelihood to be
high—if it drops below a threshold, then that means that the new data is
too different from the data seen so far for the current model to be valid, so
model updating is needed. For the remaining three conditions, if the difference
between the last stable value calculated based on the global data and what
is estimated at a node based on current data at a given node, then model
updating is needed. More details on the algorithm and the proof that the dis-
tributed algorithm returns the same results as the centralized EM algorithm
are shown in [9]. However, in summary, the proof relies on a notion of cover-
ing the global data with convex regions where if each node’s knowledge (the
data stored at that node plus any data communicated to it by other nodes)
are contained within one such convex region, then the results that each node
returns would be the same as what would be returned by a centralized algo-
rithm. This condition means that the nodes do not need to communicate until
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the condition is violated. The authors of [9] demonstrated experimentally that
the level of communication required for the algorithm is quite low assuming
that the data is not changing wildly at every node.

1.5.2 Distance-based

In distance-based anomaly detection methods, data points for which neigh-
boring data points are relatively nearby are judged to be normal, whereas
those with relatively distant neighbors are judged to be anomalous. A variety
of distance functions is used, such as distance to the kth nearest neighbor
for some chosen k, and average distance to the k nearest neighbors, Given a
dataset, one can calculate this distance function for every data point and rank
order the data points in decreasing order of the distance function. The data
points with high values for the distance function can be returned as examples
of anomalies.

A näıve algorithm for this task would require calculation of the distance
between all pairs of data points. In particular, for a given data point x, its
distances to all the other data points seemingly need to be calculated in order
to determine its k nearest neighbors, which in turn can be used to calculate
the distance function. However, there is one restricted scenario in which all
pairs of points do not need their distances calculated. This idea has been
implemented within Orca [8]. The algorithm takes as input a dataset and a
number L and returns the top L anomalies in the dataset by one of several
metrics such as distance to the kth nearest neighbor or average distance to
the k nearest neighbors—that is, the points having the L highest values of
the chosen metric are returned as anomalies. Orca starts running in the naive
way by calculating the distance from the first data point to all the remaining
data points, calculating the chosen metric for that data point, calculating the
distance from the second data point to the following data points, etc. However,
Orca keeps track of the top L anomalies and their values for the metric. Note
that while a data point is being examined, its value for the metric can only
decrease. 2 Therefore, if the value of the metric for the current data point being
examined drops below the value of the metric for the Lth most anomalous data
point found so far, then the current data point cannot be an anomaly, so we
can stop calculating distances for the current point and move onto the next
one. This happened because we have already determined that there are at least
L data points with higher values for the metric than the current point being
considered. Orca has been demonstrated experimentally to have a running

2For example, suppose we are calculating the metric for the first data point, have checked
its distances to the next 20 data points, and are finding points based on distance to the 10th
nearest neighbor. In this case, the 22nd data point can either be closer than the current 10th
nearest neighbor or farther away. If the 22nd data point is farther away, then the distance
to the 10th nearest neighbor will not change. If it is closer, then either the 22nd point or
the current 9th nearest neighbor will become the 10th nearest neighbor and the distance to
the 10th nearest neighbor will decrease.
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time that is, on average, slightly greater than linear in the number of data
points submitted, although its worst-case running time is quadratic in the
number of data points just like the näıve algorithm.

For distance-based distributed anomaly detection algorithms to return the
same anomalies as the centralized algorithm discussed above, we depend on
this property that adding new data points can only reduce a given data point’s
value for a metric. This is known as the anti-monotonicity property [21]. More
formally, assume that the anomaly detection algorithm A takes as input a
finite set of points P , a function R : D × 2D → R+, and a positive integer L,
and returns the data points having the L highest values of R. Given a data
point x ∈ D and two sets of data points P1 ⊆ P2 ⊆ D, we require the following
two properties

• Anti-monotonicity: R(x, P1) ≥ R(x, P2).

• Smoothness: if R(x, P1) > R(x, P2), then there exists y ∈ P2 P1 such
that R(x, P1) > R(x, P1 ∪ z).

According to the theorems and proofs in [21], only the anti-monotonicity
property is needed to prove that the distributed algorithm will terminate in
finite time with all the nodes agreeing on the anomalous points and their
supports (the nearest neighbors needed to calculate the metric). Both anti-
monotonicity and smoothness properties are needed to prove that the agreed
upon anomalies are the globally correct ones—that is, the ones that would
have been identified by the corresponding distance-based anomaly detection
acting on all the data after being collected at one site.

1.6 Conclusions

It may be noticed that in this chapter, the detection problem was formu-
lated with an emphasis on how to handle heterogeneous knowledge sources to
obtain a meaningful solution in a more robust way. The data-driven concept
for developing heterogeneous anomaly detection models outlined in this chap-
ter is an attempt to provide a broad sample of recent techniques with detailed
coverage on a few algorithms to illustrate how they work but obviously, we
are unable to cover all approaches in a single chapter. Readers are advised to
consider that there is no single universally accepted approach that can per-
form extremely well on all possible datasets and anomalous conditions. The
goodness of any algorithm depends a lot on its applicability which in most
cases is very application specific. So far authors have developed a wide va-
riety of machine learning tools and techniques and have demonstrated their
applicability on various complex systems. Often it is seen that a particular
approach is well suited to address certain problem. Also one cannot ignore
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the importance of data refinement, cleaning, and transformation techniques
in effective data mining and knowledge discovery. The nature of the algorithm
decides how well and in what form this knowledge can be integrated in the
core algorithm. We have already seen in previous examples that the ability to
represent the data in the form of discrete and continuous sequences and to in-
tegrate this knowledge, with the notion of similarity between sequences, in the
optimization problem of multiple kernel based technique, provides us with an
opportunity to detect all different types of anomalies simultaneously. Moreover
since the discrete and continuous sequences can be transformed into a single
sequence of switches and are representative of “system level” information over
time, another important feature of the multiple kernel anomaly detection al-
gorithm is its ability to do “system-wide” analysis to detect anomalies. Even
though improvements to the multiple kernel learning-based technique that we
discussed may be found, it does point in the direction of the types of methods
that we want—those that can handle heterogeneous sequence data.
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TABLE 1.1: Examples of ASRS Basis Vectors. After performing three
runs of NMF (each with a different initialization of the W and H matrices),
we selected the three basis vectors (one column of W from each run) that
were closest to each other in terms of L1-norm—these constitute the first
three columns of this table. The next three columns are the second closest
such triple of basis vectors.

TABLE 1.1: Examples of ASRS Basis Vectors. After
performing three runs of NMF (each with a different
initialization of the W and H matrices), we selected the
three basis vectors (one column of W from each run) that
were closest to each other in terms of L1-norm—these
constitute the first three columns of this table. The next
three columns are the second closest such triple of basis
vectors.

FUEL FUEL FUEL
TANK TANK TANK

POUND POUND POUND
GALLON GALLON GALLON
GAUGE GAUGE GAUGE
PUMP PUMP PUMP

FUELTANK BURN BURN
BURN FUELTANK FUELTANK

FUELER FUELER FUELER
FUELQUANTITY FUELQUANTITY FUELQUANTITY

CENTER CENTER CENTER
MAINTANK DISPATCH FUELGAUGE

FUELGAUGE FUELGAUGE MAINTANK
IMBAL MAINTANK IMBAL

REFUEL IMBAL REFUEL
CROSSFEED REFUEL PLAN
QUANTITY QUANTITY CALCULATE
BALANCE PLAN CROSSFEED

CALCULATE CROSSFEED BALANCE
EMPTY CALCULATE EMPTY

INSTALL INSTALL INSTALL
INSPECT INSPECT REMOVE
REMOVE REMOVE REPLACE
REPLACE MECHANIC ENGINEER

MECHANIC REPLACE MANUAL
FOUND PART INSPECT
WORK MANUAL WORK

MANUAL WORK SHIFT
REPAIR REPAIR FOUND

PART FOUND ASSEMBLE
ENGINEER SIGN TECHNICIAN

TEST ENGINEER REPORT
CHECK NUMBER PANEL
SHIFT SHIFT REPAIR
SIGN MAINTAIN JOB

ASSEMBLE TEST XYZ
MAINTAIN ASSEMBLE BOLT

SERVE AIRCRAFT CARD
CARD XYZ LEAK
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