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Abstract

The use of Gaussian processes can be an effective approach to prediction in a supervised
learning environment. For large data sets, the standard Gaussian process approach re-
quires solving very large systems of linear equations and approximations are required for
the calculations to be practical. We will focus on the subset of regressors approximation
technique. We will demonstrate that there can be numerical instabilities in a well known
implementation of the technique. We discuss alternate implementations that have better
numerical stability properties and can lead to better predictions. Our results will be illus-
trated by looking at an application involving prediction of galaxy redshift from broadband
spectrum data.

Keywords: Gaussian Processes, Low Rank Approximations, Numerical Stability, Photo-
metric Redshift, Subset of Regressors Method

1. Introduction

The use of Gaussian processes can be an effective approach to prediction in a supervised
learning environment. For large data sets, the standard Gaussian process approach requires
solving very large systems of linear equations and approximations are required for the
calculations to be practical. We will focus on the subset of regressors technique which
involves low rank approximations. The goal of the paper is to describe techniques that
are fast – requiring O(nm2) operations where n is the number of data points available for
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training and m is the rank of a low rank approximation – and have good numerical stability
properties in the sense that the growth of computer arithmetic errors is limited.

The paper begins with a review of Gaussian processes and the subset of regressors
approach. We then show that implementation of the subset of regressors method using
normal equations can be inaccurate due to computer arithmetic errors. A key contribution of
the paper is a discussion of alternative implementations of the subset of regressors technique
that have improved numerical stability. Another valuable contribution of the paper is a
discussion of how pivoting can be incorporated in the subset of regressors approach to
further enhance numerical stability. We discuss the algorithm of Lucas (Lucas, 2004, pp.
4-5) for construction of a partial Cholesky factorization with pivoting and emphasize that
with this algorithm the flop count, including subset selection, of the subset of regressors
calculations is O(nm2).

In Section 2 we provide background about using Gaussian processes to facilitate predic-
tion. In Section 3 we discuss how low rank approximations lead to the subset of regressors
approach. In Section 4 we describe why a commonly used implementation of this technique
may suffer from numerical instabilities and in Section 5 we propose two alternative imple-
mentations that have better numerical stability properties. In Section 6 we address the
subset selection problem and indicate that a solution to this problem can enhance numer-
ical stability. In Section 7 we discuss tools that aid in the choice of rank in the low rank
approximation. In Section 8 we illustrate that the numerical stability issues addressed in
Section 4 can lead to unacceptably large growth of computer arithmetic errors in an impor-
tant application involving prediction of galaxy redshift from broadband spectrum data. Our
alternative implementations of the subset of regressors method overcome these difficulties.
Also in Section 8 we discuss code, available at dashlink.arc.nasa.gov/algorithm/stableGP,
that implements our ideas. Finally, in Section 9 we summarize our results.

2. Gaussian Processes

Supervised learning is the problem of learning input-output mappings using empirical data.
We will assume that a training dataset is known consisting of a n × d matrix X of input
measurements and a n by 1 vector y of output or target values. The task is to use the
training dataset to develop a model that can be used to make prediction with new data.
We will assume the new data, called the testing data, is contained in an n∗ × d matrix X∗

of inputs. The n∗ × 1 vector y∗ will represent the target values corresponding to X∗. The
goal is to predict the value of y∗ given X, y, and X∗.

In the Gaussian process approach the prediction of y∗ involves selection of a covariance
function k(x, x′), where x and x′ are vectors with d components. It is required that the
covariance function be positive semidefinite (Rasmussen and Williams, 2006, p. 80) which
implies that the n × n covariance matrix K with entries Kij = k(xi, xj) where xi and xj

are rows of X is symmetric positive semidefinite (SPS), so that vT Kv ≥ 0 for any n × 1
real column vector v. The covariance function can be used to construct K and also the n∗

by n cross covariance matrix K∗ where K∗
ij = k(x∗i , xj) where x∗i is the ith row of X∗. The

prediction ŷ∗ for y∗ is given by the Gaussian processes equation (Rasmussen and Williams,
2006, p. 17):

ŷ∗ = K∗(λ2I + K)−1y (1)

2



Stable and Efficient Gaussian Process Calculations

The parameter λ in this equation represents the noise in the measurements of y and, in
practice, it is often selected to improve the quality of the model (Rasmussen and Williams,
2006).

It is often not clear how to choose the covariance function k. There exist many different
covariance functions that apply broadly to many cases. Potential covariance function choices
include the squared exponential (sometimes called the radial basis function), Matern, ratio-
nal quadratic, neural network, polynomial or other covariance functions (Rasmussen and
Williams, 2006, pp. 79-102). Most of these covariance functions contain free parameters
that need to be selected. Such parameters and λ in (1) are called hyperparameters. We
will not focus on the choice of a covariance function or alternative methods for selection of
hyperparameters in this paper. In the examples discussed in Section 8 we tried out a variety
of covariance functions and selected the one that provided the best predictions. Hyperpa-
rameters were selected using the Matlab routine minimize from (Rasmussen and Williams,
2006, pp. 112-116, 221) which finds a (local) maximum of the marginal likelihood function
calculated using the training set data.

We should mention that the choice of the hyperparameter λ can affect the numerical
stability of the Gaussian process calculations. Generally larger values of λ lead to reduced
computer arithmetic errors but a large value of λ may be a poor theoretical choice – note
that ŷ∗ → 0 as λ → ∞. One needs to select a value of λ that balances such competing
errors. The choice of λ in Gaussian processes is closely related to the parameter choice in
ridge regression in the statistics literature (Montgomery et al., 2006, pp. 344-355) and in
the literature on regularization (Hansen, 1998, pp. 175-208). As mentioned above we select
hyperparameters, including λ, using the routine minimize from (Rasmussen and Williams,
2006, pp. 112-116, 221). This technique worked well for the practical example presented in
Section 8 when used with our algorithms with improved numerical stability.

We should note that Gaussian process approach also leads to an equation for C the
covariance matrix for the predictions in (1). If the n∗ × n∗ matrix K∗∗ has entries K∗

ij =
k(x∗i , x

∗
j ) then (Rasmussen and Williams, 2006, pp. 79-102):

C = K∗∗ −K∗(λI + K)−1K∗T . (2)

The superscript T indicates transpose. The pointwise variance of the predictions is diag(C),
the diagonal of the n∗ × n∗ matrix C.

3. Low Rank Approximation: the Subset of Regressors Method

In (1) the matrix (λ2I + K) is an n by n matrix that, in general, is dense (that is has few
zero entries). Therefore for large n, for example n ≥ 10000, it is not practical to solve (1)
since the memory required to store K is O(n2) and the number of floating point operations
required to solve (1) is O(n3). Therefore for large n it is useful to develop approximate
solutions to (1).

To do this, for some m < n, we can partition the matrices K and K∗ as follows:

K =
(

K11 K12

K21 K22

)
=

(
K1 K2

)
, K∗ =

(
K∗

1 K∗
2

)
(3)
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Here K11 is m×m, K21 is (n−m)×m, K12 = KT
21 is m× (n−m), K22 is (n−m)× (n−m),

K1 is n×m, K2 is n× (n−m), K∗
1 is n∗×m and K∗

2 is n∗× (n−m). Next we approximate
K and K∗ using

K ∼= K̂ ≡ K1K
−1
11 KT

1 (4)

and
K∗ ∼= K̂∗ ≡ K∗

1K−1
11 KT

1 (5)

and in (1) we replace K with K̂ and K∗ with K̂∗. Therefore

ŷ∗ ∼= ŷ∗N ≡ K̂∗(λ2I + K̂)−1y =

K∗
1K−1

11 KT
1 (λ2I + K1K

−1
11 KT

1 )−1y =

K∗
1K−1

11 (λ2I + KT
1 K1K

−1
11 )−1KT

1 y, so that

ŷ∗N = K∗
1 (λ2K11 + KT

1 K1)−1KT
1 y. (6)

Equation (6) is called the subset of regressors method (Rasmussen and Williams, 2006,
p. 176) and was proposed, for example, in (Wahba, 1990, p. 98) and (Poggio and Girosi,
1990, p. 1489). As we discuss in the next section the subscript N stands for normal
equations. We refer to use of (6) as the SR-N approach.

If m << n then (6) is substantially more efficient than (1). For large n the leading order
term in the operation count for the calculations in (6) is nm2 flops or floating point opera-
tions (where a floating point operation is either an addition, subtraction, multiplication or
division), whereas the calculations in (1) require approximately 2n3/3 flops. If n = 180, 000
and m = 500, as in an example discussed later, the solution to (1) requires approximately
4×1015 flops which is five order of magnitudes greater than the approximately 4×1010 flops
required to solve (6). Furthermore, to use (1) one needs to calculate all n2 + nn∗ elements
of K and K∗ whereas (6) requires that one calculate only the nm + n∗m elements in K1

and K∗
1 . This also improves the efficiency of the calculations and will reduce the memory

requirements dramatically.
We should add that if in equation (2) we use the approximations (4), (3) and

K∗∗ ∼= K̂∗∗ ≡ K∗
1K−1

11 K∗T
1 (7)

then, in (2) replacing K with K̂, K∗ with K̂∗, K∗∗ with K̂∗∗ and using algebra similar to
that used in deriving (6), it follows that

C ∼= ĈN ≡ λ2K∗
1 (λ2K11 + KT

1 K1)−1K∗T
1 . (8)

For an alternate derivation of (8) see (Rasmussen and Williams, 2006, p. 176). Also diag(C)
∼= diag(ĈN ) so that diag(ĈN ) provides approximations for the variance of the predictions.

4. Numerical Instability

The sensitivity of a problem measures the growth of errors in the answer to the problem
relative to perturbations in the initial data to the problem, assuming that that there are
no errors in the solution other than the errors in the initial data. A particular algorithm
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implementing a solution to the problem is numerically stable if the error in the answer
calculated by the algorithm using finite precision arithmetic is closely related (a modest
multiple of) the error predicted by the sensitivity of the problem. An algorithm is unstable
if the error in the answer calculated by the algorithm is substantially greater than the error
predicted by the sensitivity of the problem.

A straightforward implementation for the subset of regressors approximation using (6)
has a potential numerical instability. To see this note that since K is SPS it follows that
the m×m submatrix K11 is also. Therefore we can factor the matrix K11 with a Cholesky
factorization (Golub and Van Loan, 1996, p. 148)

K11 = V11V
T
11 (9)

where V11 is an m×m lower triangular matrix. Now let

A =
(

K1

λV T
11

)
and b =

(
y
0

)
, (10)

where 0 is an m× 1 zero vector, A is an (n + m)×m matrix and b is a (n + m)× 1 vector.
Consider the least square problem:

min
x
||Ax− b|| (11)

where the norm is the usual Euclidean norm. The normal equations solution (Golub and
Van Loan, 1996, p. 237) to this least squares problem is x = (AT A)−1AT b = (λ2V11V

T
11 +

KT
1 K1)−1KT

1 y and so by (9)

xN = (λ2K11 + KT
1 K1)−1KT

1 y. (12)

Therefore the solution ŷ∗N presented in (6) can also be written

ŷ∗N = K∗
1xN . (13)

The subscript N indicates the use of the normal equations solution to (10).
The potential difficulty with the above solution is that the intermediate result xN is

the solution to a least squares problem using the normal equation. It is well known that
the use of the normal equation can, in some cases, introduce numerical instabilities and
can be less accurate than alternative approaches. As discussed in (Golub and Van Loan,
1996, p. 236-245) the sensitivity of the least squares problem (11) is roughly proportional
to cond(A) + ρLS cond2(A), where ρLS = ||b − Ax|| and cond(A) = ||A||||(AT A)−1AT || is
the condition number of A. The problem with the normal equations solution to (11) is that
the accuracy of the calculated solution is (almost always) proportional to cond2(A), the
square of the condition number of A, whereas in the case that ρLS is small the sensitivity
of the least squares problem is approximately cond(A). To quote from (Golub and Van
Loan, 1996, p. 245):

We may conclude that if ρLS is small and cond(A) is large, then the method
of normal equations . . . will usually render a least squares solution that is less
accurate than a stable QR approach.

We will discuss use of the stable QR approach and another alternative to the normal equa-
tions in the next section.
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5. Improving Numerical Stability

The calculation of ŷ∗N as given by (6) is equivalent to the solution to (11) and (13) using the
normal equations (12). We can reduce the computer arithmetic errors in the calculation of
ŷ∗N if we develop algorithms that avoid the use of the normal equations in the solution to
(11) and (13) . We will present two alternative algorithms for solving (11) and (13). We
should add that although these algorithms can have better numerical properties than use
of (6), all the algorithms presented in this section are mathematically (in exact arithmetic)
equivalent to (6).

5.1 The Subset of Regressors using a QR factorization

We first describe use of the QR factorization to solve (11). In this approach [Golub and
Van Loan, 1996, p. 239] one first factors A = QR where Q is an (n + m)×m matrix with
orthonormal columns and R is an m×m right triangular matrix. Then

xQ = R−1QT b = R−1QT

(
y
0

)
(14)

so that

ŷ∗Q = K∗
1xQ = K∗

1R−1QT

(
y
0

)
. (15)

With the above algorithm ŷ∗ can still be solved quickly. Assuming that the elements
of K1 and K∗

1 have been calculated, and that m << n, then the approximate number of
operations for the QR approach is 2nm2 flops. Therefore both the QR and normal equations
approach require O(nm2) flops.

We should also note that we can use the QR factorization to reduce computer arithmetic
errors in the computation of the approximate covariance matrix in (8). If we let

ĈQR ≡ λ2(K∗
1R−1)(K∗

1R−1)T (16)

then mathematically (in exact arithmetic) ĈN and ĈQR are the same. However, for reasons
similar to those discussed in Section 4, the computer arithmetic errors in ĈQR will usually
be smaller than those in ĈN , assuming, for example, that ĈN is computed using a Cholesky
factorization of λ2K11 + KT

1 K1.
We will refer to the subset of regressors method using the QR factorization as the SR-Q

method. We should add that the use of a QR factorization in equations related to Gaussian
process calculations is not new. For example (Wahba, 1990, p. 136) discusses using a QR
factorization for cross validation calculations.

5.2 The V method

If we assume the V11 is nonsingular we can define the n×m matrix V :

V = K1V
−T
11 (17)

where the superscript −T indicates inverse transpose. Note that by (9) it follows that V

is lower trapezoidal and that V =
(

V11

V21

)
, where V21 = K21V

−T
11 . Substituting K1 = V V T

11
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and (9) into (12) we get

xV = V −T
11 (λ2I + V T V )−1V T y (18)

so that

ŷ∗V = K∗
1xV = K∗

1 V −T
11 (λ2I + V T V )−1V T y (19)

We should note that this formulation of the subset of regressors method is not new. It is
presented, for example, in (Seeger et al., 2003) and (Wahba, 1990, p. 136) presents a
formula closely related to (19). We will call the formula (19) for ŷ∗ the V method. We
should note, as will be seen in Section 6.2, that one can calculate V as part of a partial
Cholesky factorization rather than using (17).

We will see in our numerical experiments and the theoretical analysis in Section 6 that
the V method is intermediate in terms of growth of computer arithmetic errors between the
normal equations and QR approach. Often, but not always, the accuracy of the V method
is close to that of the QR approach.

Assuming that the elements of K1 and K∗
1 have been calculated, and that m << n, then

the approximate number of operations for the V method is 2nm2 flops – approximately nm2

flops to form V and another nm2 flops to solve for xV using (18). This is approximately
the same as SR-Q and approximately twice the flop count for the SR-N method.

We can also compute the approximate covariance matrix with the V method approach:

ĈV ≡ λ2K∗
1V −T

11 (λ2I + V T V )−1V −1
11 K∗T

1 . (20)

In exact arithmetic ĈN , ĈQR and ĈV are identical but the computer arithmetic errors are
often smaller in ĈV and ĈQR than ĈN .

5.3 Examples illustrating stability results

We present two sets of examples that illustrate some of the above remarks.

Example 1 Let the n × n matrices K be of the form K = UDUT where U is a random
orthogonal matrix (Stewart, 1980) and D is a diagonal matrix with diagonal entries s1 ≥
s2 ≥ . . . sn ≥ 0. Therefore s1, s2, . . ., sn are the singular values of K. We will choose a

vector w ∈ Rn, where Rn is real n dimensional space, of the form w =
(

x
0

)
where x ∈ Rm

is a random vector and 0 indicates a zero vector with (n−m) components. We let the target
data be y = Kw. We will also assume for simplicity that λ = 0.

Due to the structure of w each of xN (12), xQ (14), and xV (18) will calculate x exactly
in exact arithmetic. Therefore in finite precision arithmetic ||x − ẋ||, with ẋ = xN , xQ or
xV will be a measure of the computer arithmetic errors in the calculation.

We carried out an experiment n = 100, m = 50, si = 10−(i−1)/5, i = 1, 2, . . . ,m, and
si = 10−10, i = m+1,m+2, . . . , n using a set of one hundred random matrices of this type.
For this class of matrices the singular values of K vary between 1 and 10−10, cond(K) = 1010

and cond(K1) ∼= 1010. The results are:
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ẋ = xN xV xQ

min ||x− ẋ||/||x|| 9.3× 10−1 5.1× 10−7 2.7× 10−8

mean ||x− ẋ||/||x|| 9.1× 10 0 3.6× 10−6 1.2× 10−7

max ||x− ẋ||/||x|| 9.6× 10 1 9.9× 10−6 4.5× 10−7

Table 1: Min, mean and max errors, ||x− ẋ||/||x||, for 100 matrices and various methods.

For this set of matrices xQ and xV have small errors. However xN has large errors due to
its use of normal equations.

Example 2 This example will illustrate that, although the V method often greatly improves
upon the stability of the SR-N method, this is not always the case. For 0 < s ≤ 1 let

C =
(

s2 10s
10s 200

)
, let the 4 × 4 matrix K =

(
s2C 10sC
10sC 200C

)
, let x =

(
1/3
1/3

)
, w =

x
0
0

,

λ = 0 let y = Kw.
Due to the structure of w we again have each of xN , xQ and xV will calculate x exactly

in exact arithmetic. However, in finite precision arithmetic the calculated values will not be
exact. For this example for small s the errors in both xN and xV can be significantly larger
than the errors in xQ. For example if s = 10−4 we get the following results:

ẋ = xN xV xQ

||x− ẋ||/||x|| 8.8× 10−1 2.1× 10−1 7.7× 10−11

Table 2: Errors ||x− ẋ||/||x|| for a 4× 4 matrices and various methods.

In Section 6 and Appendix A we will discuss the reason that the V method performs
poorly in this example and show that the numerical instability illustrated in this example can
be cured by interchanging the columns and rows of K appropriately. Also we should note that
although difficulties like the one illustrated here are possible for the V method, experiments
like those in Example 1 suggest that such difficulties are not likely. As we discuss in Section
6, the method performed well when we applied it to real world applications.

6. Pivoting and Subset Selection

In Section 5 we discussed low rank approximations to K which involved the first m columns
of K. However one can select any subset of the columns to construct a low rank approxima-
tion. The choice of these columns or the “active” set is the subset selection problem. This
problem has been addressed by, for example, (Smola and Bartlett, 2001), (Seeger et al.,
2003), (Csato and Opper, 2002) and (Fine and Scheinberg, 2001). The technique that
we will use is the same as that in (Fine and Scheinberg, 2001). However we will focus on
the effect of the resulting choice of the active set on the numerical stability of the resulting
algorithm. This is a different motivation than the motivations in the above references.
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6.1 The Singular Value Decomposition

To pursue this we will first discuss the singular value decomposition which, in a certain
sense, produces an optimal low rank approximation to K. The singular value decomposition
(SVD) of the symmetric semidefinite matrix K produces the factorization

K = UDUT =
(
U1 U2

) (
D1 0
0 D2

) (
U1 U2

)T (21)

where U is an n×n orthogonal matrix, D is an n×n diagonal matrix whose diagonal entries
s1 ≥ s2 ≥ . . . ≥ sn ≥ 0 are the singular values of K, U1 is n×m, U2 is n× (n−m), D1 is
an n× n diagonal matrix, and D2 is an (n−m)× (n−m) diagonal matrix. We then can
construct the truncated singular value decomposition (TSVD) low rank approximation to
K:

K̂SV D = U1D1U
T
1 . (22)

The TSVD approximation K̂SV D is the best low rank approximation (Golub and Van Loan,
1996, p. 72) to K in the sense that

min
rank(K̂)=m

||K − K̂|| = ||K − K̂SV D|| = sm+1. (23)

Given an n× q matrix A with rank m ≤ min(n, q) we will define (Björck, 1996, p. 28) the
condition number of A to be cond(A) = s1/sm where s1 and sm are singular values of A.
This definition generalizes to singular matrices the definition of condition number that we
used in Section 4 (where A had m columns). It then follows from (22) that

cond(K̂SV D) = s1/sm (24)

where s1 and sm are singular values of K (which are the same as the singular values of
K̂SV D). Thus the singular value decomposition provides two desirable properties:

• equation (23) indicates that K̂SV D will be close to K, if there exists a rank m ap-
proximation that is close to K, and

• equation (24) limits the condition number of K̂SV D which will limit the growth of
computer arithmetic errors in the use of K̂SV D.

However, for large n, it is not practical to calculate the SVD of K since the SVD requires
O(n3) operations and is much more expensive than the algorithms described in Section
5 which require O(nm2) operations. We would like to construct an approximation that
requires only O(nm2) operations and that produces low rank approximations with properties
related to (23) and (24).

6.2 Cholesky factorization with pivoting

The algorithms describe in Sections 3 and 5 (which are mathematically but not numerically
identical) do not satisfy relations related to (23) and (24) as is apparent from the following
example.

9
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Example 3 For the matrix

K =

 1 + ε 1− ε 0
1− ε 1 + ε 0

0 0 1

 (25)

if we let m = 2 then by (4) and (22) we have

K̂ =

 1 + ε 1− ε 0
1− ε 1 + ε 0

0 0 0

 and K̂SV D =

 1 1 0
1 1 0
0 0 1

 (26)

so that, for small ε,

||K − K̂SV D|| = 2ε << 1 = ||K − K̂|| and (27)

cond(K̂SV D) = 2 << 1/ε = cond(K̂) (28)

For this example the low rank approximation K̂ has two problems: (1) it does not provide
a good approximation to K even though a good low rank approximation exists and (2) the
condition number of K̂ can be arbitrarily large which potentially could lead to a large growth
of computer arithmetic errors.

To overcome the difficulties illustrated in this example we can use a Cholesky factoriza-
tion, with pivoting, to insure that linearly independent columns and rows appear first. The
Cholesky factorization with pivoting produces a decompostion

P T KP = LLT (29)

where P is an n × n permutation matrix and L is an n × n lower triangular matrix. To
produce our low rank approximations to the Gaussian process equations we do not need to
factor all of K, rather it is sufficient to calculate a partial factorization that factors only m
columns and rows of P T KP . This is a partial Cholesky factorization with pivoting. If the
pivoting is done using complete pivoting (that is the pivoting in the Cholesky factorization
is equivalent to using complete pivoting in Gaussian elimination) then there are a variety
of algorithms that determine the factorization (Higham, 2002, p. 202), (Golub and Van
Loan, 1996, p. 149), (Lucas, 2004, pp. 4-5), (Fine and Scheinberg, 2001, p. 255). Here we
will summarize the algorithm presented in (Lucas, 2004, pp. 4-5) since it is not as widely
known as the algorithms in (Higham, 2002, p. 202), (Golub and Van Loan, 1996, p. 149)
and is more efficient in our context. The algorithm below is also the same as that in (Fine
and Scheinberg, 2001, p. 255) except for the stopping criteria.
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Data: an n× n symmetric positive semidefinite matrix K
a stopping tolerance tol ≥ 0
the maximum rank, max rank ≤ n, of the low rank approximation

Result: m, the rank of the low rank approximation
an n×m partial Cholesky factor V
a permutation vector piv
Note: on completion the first m rows and columns of P T KP − V V T are
zero, where P is a permutation matrix with Ppivi, i = 1, i = 1, . . . , n

initialize:
di = Kii, i = 1, . . . , n
Kmax = maxi=1,...,n (di)
pivi = i, i = 1, . . . , n
m = max rank

for j = 1 to max rank do
[dmax, jmax] = maxi=j,...,n (di)
where jmax is an index where the max is achieved
if dmax ≤ (tol)Kmax then

m = j − 1 ;
exit the algorithm ;

end
if jmax 6= j then

switch elements j and jmax of piv and d
for i = j + 1 : n let ui = element i of column jmax of P T KP
switch rows j and jmax of the current n× (j − 1) matrix V

end
Vjj =

√
dmax

for i = j + 1 to n do
Vij = (ui −

∑j−1
k=1 VikVjk) / Vjj

di = di − V 2
ij

end
end

Algorithm 1: Algorithm for the partial Cholesky factorization

There are two choices of the stopping tolerance tol that have been suggested elsewhere.
For the choice tol = 0 the algorithm will continue as long as the factorization determines
that K is positive definite (numerically). This choice of tol is used in LINPACK’s routine
xCHDC (Dongarra et al., 1979) and also by Matlab’s Cholesky factorization chol (which
implements a Cholesky factorization without pivoting). The choice tol = n × ε where ε is
machine precision is suggested in (Lucas, 2004, p. 5) and in (Higham, 2002). The best
choice of tol will depend on the application.

There are a number of attractive properties of the partial Cholesky factorization.

• The number of floating point operations in the algorithm is approximately nm2 −
2m3/3 flops. The calculations to determine the pivoting require only O(nm) flops.

• The algorithm accesses only the diagonal entries of K and elements from m columns
of K.
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• The storage requirement for the algorithm is approximately n(m + 2) floating point
numbers plus storage for the integer vector piv and any storage needed to calculate
entries in K.

• The accuracy and condition number of the low rank approximation to K produced
by the algorithm is related to the accuracy and condition number of the low rank
approximation produced by the singular value decomposition. In particular

Theorem 1 Let the n ×m matrix V be the partial Cholesky factor produced by Al-
gorithm 1 and let

K̂P = PV V T P T . (30)

Also let K̂SV D be the rank m approximation (22) produced by the singular value de-
composition. Then

||K − K̂P || ≤ c 1 ||K − K̂SV D|| and (31)

cond(K̂P ) ≤ c 2 cond(K̂SV D) where (32)

c 1 ≤ (n−m)4m and c 2 ≤ (n−m)4m. (33)

Proof The theorem follows from results in (Gu and Eisenstat, 1996) for the QR
factorization with pivoting. First we consider a Cholesky factorization, without piv-
oting, of K so that K = LLT where L is and n × n lower triangular matrix. Let
σi(A) represent the ith singular value of a matrix A. Then, making use of the singular
value decomposition, it follows easily that σi(K) = σ2

i (L), i = 1, . . . , n. Consider a
QR factorization of LT with standard column pivoting (Golub and Van Loan, 1996,
p. 249-250) so that QR = LT P1. The permutation matrix P1 produced by this QR
factorization will be identical, in exact arithmetic, to the permutation matrix produced
by the Cholesky factorization with pivoting applied to K (Dongarra et al., 1979, p.
9.26). In addition, the Cholesky factorization, with pivoting, of K is P T

1 KP1 = RT R,
assuming the diagonal entries of R are chosen to be nonnegative (Dongarra et al.,
1979, p. 9.2). Now we partition the Cholesky factorization:

P T
1 KP1 =

(
RT

11 0
RT

12 RT
22

) (
R11 R12

0 R22

)
(34)

It follows from Theorem 7.2 of (Gu and Eisenstat, 1996, p. 865) that

σ1(R22) ≤ c3 σm+1(L) and
1

σm(R11)
≤ c4

1
σm(L)

where c3, c4 ≤
√

n−m 2m. (35)

Now the first m steps of Cholesky factorization, with pivoting, of K will produce iden-
tical results to the m steps of the partial Cholesky factorization described in Algorithm
1. Let

V =
(

V11

V21

)
and R1 =

(
R11 R12

)
so that RT

1 =
(

RT
11

RT
12

)
. (36)

In the (complete) Cholesky factorization with pivoting of K, after the first m steps of
the algorithm additional pivoting will be restricted to the last n−m rows and columns

12
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of P T KP . Let P2 be a n× n permutation matrix representing the pivoting in the last
n−m steps in the algorithm. Then it follows that

P1 = PP2, V11 = RT
11 and RT

1 = P T
2 V. (37)

Therefore
K̂P = PV V T P = P1P

T
2 V V T P2P

T
1 = P1R

T
1 R1P

T
1 . (38)

By (23), (34), (35), (36) and (38) we can conclude that

||K − K̂P || = ||RT
22R22|| = σ2

1(R22) ≤ c2
3 σ2

m+1(L) = c1 σm+1(K) = c1 ||K − K̂SV D||.
(39)

Also, by (35), (38) and the interlace theorem (Björck, 1996, p. 15)

σm(K̂P ) = σ2
m(R1) ≥ σ2

m(R11) ≥ σ2
m(L)/ c2

4 = σm(K)/ c2
4. (40)

Next by (38) and the interlace theorem

σ1(K̂P ) = σ2
1(R1) ≤ σ2

1(R) = σ1(K). (41)

Finally, (24), (40) and (41) imply that

cond(K̂P ) = σ1(K̂P )/σm(K̂P ) ≤ c2
4 σ1(K)/σm(K) = c2 cond(K̂SV D). (42)

The bounds in (33) on c1 and c2 grow exponentially in m and in principle can be large
for larger values of m. In practice this appears to be very uncommon. For example the
constants c3 and c4 in (35) are closely related to ||W || where W = R−1

11 R22 (Gu and
Eisenstat, 1996, p. 865). Numerical experiments indicate the ||W || is almost always small
in practice (typically less than 10) (Higham, 2002, p. 207), (Higham, 1990). Therefore
c1 = c2

3 and c2 = c2
4 will not be large in practice. We should add that there are choices

of the pivot matrices P in (30) which guarantee bounds on c1 and c2 that are polynomials
in n and m rather than exponential in m as in (33) (Gu and Miranian, 2004). However
algorithms that produce such pivot matrices are more expensive than Algorithm 1 and, in
practice, usually do not lead to an improvement in accuracy.

Prior to applying one of the methods – SR-N, SR-V and SR-Q – from Sections 3 and
5 one can carry out a partial Cholesky factorization of K to determine the permutation
matrix P , and apply the algorithms of Sections 3 and 5 using the matrices K̃ ≡ P T KP ,
K̃∗ = K∗P and the vector ỹ = P T y. If pivoting is used in this manner, we will call the
algorithms SR-NP, SR-VP and SR-QP corresponding, respectively, to the algorithms SR-N,
SR-V and SR-Q without pivoting.

Since the algorithms SR-N, SR-V and SR-Q are all mathematically (in exact arithmetic)
equivalent, then by (4) in all these algorithms the low rank approximation to K̃ is K̃1K̃

−1
11 K̃T

1

where K̃1 is the first m columns of K̃ and K̃11 is the first m rows of K̃1. Therefore the low
rank approximation to K = PK̃P T would be

K̂P = PK̃1K̃11K̃
T
1 P T . (43)

We then have
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Theorem 2 In exact arithmetic the matrices K̂P in (30) and (43) are the same.

Proof Let V be the factor produced by a partial Cholesky factorization, with pivoting, of
K. Then, as mentioned in Algorithm 1, the first m columns and rows of P T KP − V V T

are zero. Since K̃ = P T KP it follows that K̃11 = V11V
T
11 and K̃1 = V V T

11, where V11 is the
m×m leading principle submatrix of V . Therefore that V V T = K̃1K̃

−1
11 K̃T

1 . We conclude
PV V T P T = PK̃1K̃

−1
11 K̃T

1 P T .

A key conclusion of Theorems 1 and 2 is that for the algorithms SR-NP, SR-VP and SR-
QP which use pivoting, the low rank approximation K̂P to K has the desirable properties
(31-33) which show that the accuracy and condition number of K̂P is comparable to the
accuracy and condition number of the low rank approximation produced by the singular
value decomposition. Therefore if m is small, difficulties such as those illustrated in Example
3 are not possible since for small m the bound (n − m)4m for c1 and c2 is not large.
Furthermore, such difficulties are unlikely for large m since, as mentioned earlier, for large
m, the values of c1 and c2 are, apparently, not large in practice.

For the algorithm SR-VP one does not need to calculate V using (17) since, as shown
in the proof of Theorem 2, V is calculated by the partial Cholesky factorization. Using this
fact the floating point operation counts of the six algorithms that we have discussed are:

method no pivoting pivoting
SR-N / SR-NP nm2 2nm2

SR-V / SR-VP 2nm2 2nm2

SR-Q / SR-QP 2nm2 3nm2

Table 3: Approximate flop counts, for n and m large and n >> m, for various algorithms.

We should note that flop counts are only rough measures of actual run times since
other factors, such as the time for memory access or the degree to which code uses Matlab
primitives, can be significant factors. This is discussed further in Section 8.

Also we should note that all the algorithms listed in Table 3 require memory for O(mn)
numbers.

Another advantage of the use of pivoting is that if pivoting is included in the V method
then for small examples such as Example 2 the potential numerical instability illustrated in
Example 2 cannot occur. We illustrate this in the next example. In Appendix A we describe
the reason that the SR-VP method is guaranteed to be numerically stable for small problems
and why numerical instability is very unlikely for larger real world problems.

Example 4 This example illustrates that if one includes pivoting in the V method then
the numerical instability illustrated in Example 2 does not occur in the V method. As in
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Example 2 for 0 < s ≤ 1 let C =
(

s2 10s
10s 200

)
, let the 4 × 4 matrix K =

(
s2C 10sC
10sC 200C

)
.

Now let x =
(

1/3
1/3

)
, w =


0
x2

0
x1

, λ = 0 let y = Kw.

Due to the structure of w (and since, in this example, a partial Cholesky factorization
will move column 4 of K to the first column of K̃ = P T KP ) we again have each of xNP ,
xQP and xV P will calculate x exactly in exact arithmetic. In finite precision arithmetic the
calculated values will not be exact. For this example for small s the errors in both xV P and
xQP are very small. For example if s = 10−4 we get the results in Table 4.

ẋ = xNP xV P xQP

||x− ẋ||/||x|| 1.7× 10−1 2.6× 10−11 9.7× 10−12

Table 4: Errors ||x− ẋ||/||x|| for a 4× 4 matrices and various methods.

Note that even with pivoting the error in the normal equations approach is large. With
the normal equations approach the error in the calculated x includes a term proportional
to cond 2(K1). Even with pivoting cond 2(K1) can be large enough so the accuracy of the
normal equations approach is poor.

7. Rank Selection

In using low rank approximation the choice of rank will affect the accuracy of the approx-
imation. It may be impractical to repeat the computations for a variety of different ranks
and it is useful to have techniques to facilitate determination of the accuracy of a variety
of low rank approximations.

We first consider the case that the true target values y∗ corresponding to the testing
data X∗ are known. Then if n∗ < n the accuracy of the prediction for y∗ can be calculated
efficiently for all low rank approximations with rank less than a specified value m.

To illustrate this we first consider the QR implementation, (14) and (15), of the subset
of regressors method. For the (n + m) × m matrix A in (10) let A = QR where Q is
an (n + m) × m matrix with orthonormal columns and R is an m × m upper triangular
matrix and let x = R−1QT b, as in (14) (where we omit the subscript Q on x to simplify our
notation). Then by (15) the predicted values of y∗ are

ŷ∗ = K∗
1x (44)

where K∗
1 is the n∗ ×m matrix defined in (3).

Now for some i, 1 ≤ i ≤ m, consider the construction of a prediction for y∗ using a
rank i low rank approximation. Let Ã consist of the first i columns of A. It then follows
from (11), (15) and the fact that the last m − i rows of b and Ã are zero that the rank i
prediction, which we call ỹ∗, for y∗ is given by solving

min
x̃
||Ã x̃− b|| and letting (45)
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ỹ∗ = K∗
1

(
x̃
0

)
(46)

where x̃ ∈ Ri and the 0 in (46) indicates a vector of m− i zeros. Since A = QR it follows

that Ã = Q

(
R̃
0

)
where the 0 here indicates m − i rows of zeros. Therefore if c = (the

first i elements of QT b) it then follows (Golub and Van Loan, 1996, p. 239) that we can
construct x̃ using

x̃ = R̃−1c. (47)

We can use (47) to construct predictions for y∗ for every low rank approximation of rank
less than or equal to m. To do this we let C be a m×m upper triangular matrix whose ith

column consists of the first i elements of QT b and is zero otherwise. Let Ỹ be the n∗ ×m
matrix whose ith columns consists of the prediction for y∗ using a rank i approximation.
Then, for the reasons described in the last paragraph,

Ỹ = K∗
1R−1C. (48)

If y∗ is known (48) can be used to calculate, for example, the root mean square error of the
prediction for y∗ for all low rank approximations of rank less than or equal to m.

After the rank m low rank prediction for y∗ is constructed, the above calculations require
O(m3 + n∗m2) floating point operations. If n∗ is less than n, this is less than the O(nm2)
operations required to construct the initial rank m prediction. Although we will not present
the details here similar efficiencies are possible when using the normal equations approach
or the V method.

If the true value y∗ for the test set are not known, one can use the subset of regressors
approach to estimate the known y values in the training set (by replacing K∗

1 with K1 in
(13), (15) or (19)). Again one can calculate the accuracies in estimating y for every low rank
approximation of rank less than a given rank m and this can be done relatively efficiently
after the initial rank m low rank approximation is constructed. These accuracies will give
some indication of the relative difference in using low rank approximations of different ranks.

Finally, we should note that our algorithms provide a limit on the largest rank that can
be used. For example in SR-NP, SR-VP and SR-QP Algorithm 1 is used to determine the
subset selection. Algorithm 1 returns a rank m where the factorization is stopped and m
can be used as the maximum possible rank. For the SR-V and SR-Q algorithms a Cholesky
factorization of K11 is required in (9). If Matlab’s Cholesky routine chol is used for this
factorization there is an option to stop the factorization when it is determined that K11 is
not positive definite (numerically). The size of the factor that successfully factors a positive
definite portion of K11 sets a limit on the rank that can be effectively used. Finally, SR-N
and SR-NP require solving a system of equations (6) involving the symmetric semidefinite
system λ2K11 + KT

1 K1. A good way to solve this system is to use Matlab’s chol, which
again has an option that can be used to determine a limit on the rank that can be effectively
used. As discussed in the next section if these rank limits are exceeded then the calculated
answers are often dominated by computer arithmetic errors and are not accurate.
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8. Practical Example

In the Sloan Digital Sky Survey (York et al., 2000) broadband u, g, r, i, z photometric
measurements will be made for 100s of million galaxies but only approximately 1 million
galaxies will have careful spectroscopic measurements of redshifts. Therefore the estimation
of redshift from broadband photometric measurements is important since it can lead to
much better constraints on the formation and evolution of large-scale structured element in
cosmological models (Way and Srivastava, 2006).

We illustrate our earlier remarks by using a training set of 180045 galaxies, each with
five measured u, g, r, i, z broadband mesurements. The training set consists of a 180045×5
matrix X of broadband measurements and the 180045× 1 vector y with the corresponding
redshifts. The testing set will consist of a 20229×5 matrix X∗ of broadband measurements
and the 20229 × 1 vector y∗ of redshifts. This data is from the SDSS GOOD data set
discussed in (Way and Srivastava, 2006).

To determine a good choice for a covariance function we calculated the root mean square
(RMS) error for the prediction ŷ∗ for y∗ using the Matern (with parameter ν = 3/2 and with
parameter ν = 5/2), squared exponential, rational quadratic, quadratic and neural network
covariance functions from (Rasmussen and Williams, 2006, Chap. 4). As mentioned earlier
we selected the hyperparameters for each covariance function using the Matlab routine
minimize from (Rasmussen and Williams, 2006, pp. 112-116, 221). The covariance function
which produced the smallest RMS error for the prediction of y∗ was the neural network
covariance function (Rasmussen and Williams, 2006, p. 91). For example, for low rank
approximations of rank 500 with bootstrap resampling runs (described below) of size 100
the neural network median RMS error was .0204. The next smallest median RMS error
was .0212 for the Matern covariance function with ν = 3/2 and the largest median RMS
error was .0248 for the quadratic covariance function. Therefore in the experiments below
we will use the neural network covariance function.

To compare, experimentally, the efficiency of our implementations of the subset of regres-
sors method we choose a training set size of 90023 (consistent with the bootstrap resampling
runs describe below) and low rank approximations of rank m = 150 and m = 1500. On a
computer with 2.2 GH Core Duo Intel processor we timed the SR-N, SR-V, SR-Q, SR-NP,
SR-VP and SR-QP methods. On all the calculations in this section that use Algorithm 1 we
set the stopping tolerance tol to 0. We ran each of the methods with the additional calcu-
lations required to determine the “history” of the accuracy of all low rank approximations
less than the specified rank (either 150 or 1500) and also without these extra calculations.
The results are summarized in Figure 1.

As can be seen in Figure 1, without pivoting the normal equations approach is the
fastest, the QR factorization the slowest and the V method in between. With pivoting all
the methods take similar amounts of time (the V method is slightly faster). The reason that
all the methods require about the same time when using pivoting is that the code for SR-N,
SR-V and SR-Q is written so that the key calculations are done almost entirely with Matlab
primitives whereas our implementation of the partial Cholesky factorization contains loops
written in Matlab code. The Matlab primitives make use of BLAS-3 (Anderson et al., 1999)
routines and will make effective use of cache memory. Therefore, even though the big-O
operation counts are similar, the partial Cholesky factorization takes longer to run than
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Figure 1: Comparison of run times for implementations of the subset of regressors method.

SR-N, SR-V or SR-Q and the partial Cholesky factorization dominates the run times in the
SR-NP, SR-VP and SR-QP code. We should add that the times for the partial Cholesky
factorization would be reduced if a partial Cholesky factorization with pivoting could be
implemented using BLAS-3 operations. We are not aware of such an implementation.
Finally, we should note that the calculations required to determine the accuracy of all
low-order approximations adds only a modest amount to the run times.

To determine the accuracy of the algorithms for different choices of the training set we
carried out bootstrap resampling (Efron and Tibshirani, 1993). For each of 100 samples
we randomly selected half or 90023 of the 180045 galaxies in the original training set and
used this smaller training set to predict the redshift for the 20229 galaxies in the testing
set. We considered such resampling with replacement as well as without replacement. For
SR-N, SR-V and SR-Q we selected the indices in the active set randomly. Following this
we selected the hyperparameters using the minimize routine in (Rasmussen and Williams,
2006, pp. 112-116, 221). For SR-NP, SR-VP and SR-QP the active set was determined by
the partial Cholesky factorization with pivoting. To illustrate the variation in the calculated
accuracies, after carrying out a bootstrap resampling run we sorted the 100 RMS errors in
increasing order and plotted these errors versus the sample number. The results for low
rank approximations of rank 1500, using resampling without replacement, are pictured in
Figure 2.

Note that mathematically (in exact arithmetic) SR-N, SR-V and SR-Q will produce
identical results; as will SR-NP, SR-VP and SR-QP. Therefore the differences illustrated in
Figure 2 between SR-N and SR-V or SR-Q and the differences between SR-NP and SR-VP
or SR-QP are due to computer arithmetic and, in particular, the numerical instabilities in
using a normal equations approach to solve the least squares problem (11). Also note that
although pivoting reduces the numerical instability in using the normal equations approach,
still in SR-NP the instability is evident for approximately half of the bootstrap resampling
runs. Also we should remark that the ŷ∗ predictions calculated using SR-V and SR-Q are
essentially identical – they agree to at least seven significant digits in this example – as
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Figure 2: Bootstrap resampling: Comparison of RMS errors for implementations of the
subset of regressors method.

are the ŷ∗ predictions calculated using SR-VP and SR-QP. Finally we should note that
for this example the methods that avoid normal equation and use pivoting – SR-VP and
SR-QP – are a small amount better than their counterparts, SR-V and SR-Q, that do not
use pivoting.

As mentioned earlier, the parameter λ in the Gaussian process computations was selected
while optimizing the hyperparameters using the routine minimize from (Rasmussen and
Williams, 2006, pp. 112-116, 221). The values of λ varied over a small range, .0176 ≤ λ ≤
.0214, for the 100 samples illustrated in Figure 2. For our stable algorithms these values of
λ were good values as can be seen by the accuracy of the results of SR-V, SR-VP, SR-Q
and SR-QP pictured in Figures 2, 3 and 4. For SR-N and SR-NP we experimented with
a variety of choices of λ but did not reliably achieve accurate predictions for any of our
choices.

We might also add that we tried other types of resampling. We obtained results similar
to those illustrated in Figure 2 when using bootstrap resampling with replacement and also
when we choose a number of galaxies in the sample size other than 90023.

We can also illustrate the ability to efficiently calculate the accuracy of low rank approx-
imations lower than a specified rank. For the same runs picture in Figure 2 we calculated
the mean RMS error of the 100 samples for each rank less than 1500 for each of the six
implementations of the subset of regressors method. This is pictured in Figure 3.

As one increases the rank of the low rank approximation the condition number of the
matrix A in (11) will tend to increase. This will increase the computer arithmetic errors
in the calculated results. The ranks where significant computer arithmetic errors arise are
illustrated in Figure 3 by the jumps in the mean errors calculated for the SR-N and SR-NP
methods. The ranks where this occurs and the magnitude of the jumps is dependent on the
particular data chosen for a bootstrap resampling run and will vary for different bootstrap
resampling runs. For the SR-N method the ranks where numerical difficulties were first
substantial varied between a rank of 46 to a rank of 839. For the SR-NP method the ranks
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Figure 3: Mean RMS errors versus rank for implementations of the subset of regressors
method.

where numerical difficulties were first substantial varied between ranks of 325 and 1479. For
the SR-V, SR-Q, SR-VP and SR-QP methods we did not encounter significant numerical
difficulties with these runs and the graphs for these methods smoothly decrease.

The SR-VP and SR-QP method, which use pivoting, are somewhat more accurate than
the corresponding methods without pivoting after a rank of approximately 200 but prior
to this SR-V and SR-Q are more accurate. Our motivation for subset selection using the
Cholesky factorization with pivoting is based on controlling the condition number and im-
proving numerical stability. For smaller ranks it appears that this choice of the active set is
good but not optimal. Finally, we should note that Figure 3 indicates for the stable methods
the mean RMS errors decrease rapidly for smaller ranks but are only slowly decreasing for
larger ranks.

As we mentioned earlier all of our algorithms may limit the rank so that the effective
rank can be less than the desired rank. This did not occur on the above runs for SR-V,
SR-Q, SR-VP or SR-QP but did occur for SR-N and SR-NP due to our use of the Cholesky
factorization to solve the linear system (6). It is possible to solve the linear system in (6)
using Gaussian elimination, rather than using a Cholesky factorization, for ranks up to
1500. However the Cholesky factorization in (6) will fail only if the matrix λ2K11 + KT

1 K1

is very ill conditioned. In this case solving the system of equations in (6) by any method will
be prone to large computer arithmetic errors. Indeed, for these runs, if we used Gaussian
elimination to solve (6) for large ranks the errors became larger than when we limited
the rank as we have described earlier. Also when the Cholesky factorization failed in the
solution to (6) we tried perturbing K11 a small amount following a suggestion in the code
provided with (Rasmussen and Williams, 2006). For our runs this did not improve the
calculated results in a significant manner.

In (Way and Srivastava, 2006) there is a comparison of a variety of methods for pre-
dicting redshift with data from the SLOAN digital sky survey. The methods compared in
(Way and Srivastava, 2006) include linear regression, quadratic regression, artificial neural
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networks (label ANNz in Figure 4), E-model and Gaussian processes using a quadratic co-
variance function (labeled GP in Figure 4). In Figure 4 we have compared these methods
with our predictions using the SR-VP and SR-QP implementations of the subset of regres-
sors Gaussian processes method with a neural network covariance function. Other than
the SR-VP and SR-QP predictions the results in Figure 4 are from (Way and Srivastava,
2006). As seen in Figure 4, in this example either SR-VP or SR-QP provides overall the
best predictions. The E-model approach is also quite good.

Figure 4: Bootstrap resampling: comparison of RMS errors for six methods of predicting
redshift.

We should add that in addition to the data set which was used to generate the results
in Figures 1 to 4 we have also carried out experiments using other data sets described in
(Way and Srivastava, 2006) (for example redshift prediction using photometry properties in
addition to broadband measurements) and using the SARCOS robot arm inverse dynamics
(Rasmussen and Williams, 2006; Vijayakumar et al., 2002). For the other redshift data sets
significant computer arithmetic errors in the predictions were common for the SR-N and
SR-NP algorithms. For some data sets, for example the SARCOS robot arm, computer
arithmetic errors were not significant and all the algorithms worked well. Also we might
note that although prediction using Gaussian processes was more accurate than alternatives
approaches in some cases, in other cases the E-model or artificial neural network approaches
provided better accuracy.

Finally, we should note that Matlab code which implements the SR-N, SR-NP, SR-
V,SR-VP, SR-Q and SR-QP methods and can produce graphs such as those in Figures 2
and 3 is available at dashlink.arc.nasa.gov/algorithm/stableGP. Our code makes use of the
code from (Rasmussen and Williams, 2006, p. 221) and the syntax is modelled on that
code. We should also note that (Foster et al., 2008) and (Cayco et al., 2006) discuss
additional results related to redshift prediction.
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9. Conclusions

An important conclusion of our results is that with the subset of regressors approach to
Gaussian process calculations use of normal equations can be unstable and should, in some
important practical examples, be avoided. We expect that this principle is also applicable to
other approaches to Gaussian process calculations. For example when using approximations
based on sparse Gaussian processes with psuedo-inputs (Snelson and Ghahramani, 2006)
which is called the FITC approximation in the framework of (Quinonero-Candela and
Rasmussen, 2005) the predicted values are calculated using

ŷ∗FITC = K∗
1 (λ2K11 + KT

1 (Λ + I)−1K1)−1KT
1 (Λ + I)−1y. (49)

where
Λ = diag(K −K1K

−1
11 KT

1 )/λ2. (50)

Our results suggest that it may be more accurate to carry out these calculations using a QR

factorization of
(

DK1

λV T
11

)
where D = (Λ+ I)−1/2 rather than, for example, using a Cholesky

factorization of λ2K11 + KT
1 (Λ + I)−1K1.

To summarize our results, we have presented different implementations of the subset of
regressors method for solving, approximately, the Gaussian process equations for prediction.
An implementation of the subset of regressors method which uses the normal equations is
the fastest approach but also can have poor numerical stability and unacceptable large
growth of computer arithmetic errors. An implementation using orthogonal factorization
is somewhat slower but in principle has better numerical stability properties. A third
approach, which we call the V method, is intermediate between these other two approaches
in terms of accuracy and stability. We can use the partial Cholesky factorization to select
the active set prior to implementation of any of the above methods. This also will tend
to reduce the growth of computer arithmetic errors and can, in some cases, improve the
accuracy of the predictions. All of these implementations require 0(nm2) operations where
n is the number of data points in the training set and m is the size of the active set or
the rank of the low rank approximation used. In this sense all these implementations are
efficient and can be much faster than implementation of the full Gaussian process equations.
Finally, we have illustrated these result with an important practical application – redshift
prediction from broadband spectral measurements. Code implementing our algorithms is
available at dashlink.arc.nasa.gov/algorithm/stableGP.

Appendix A. Numerical Stability of SR-VP

Here we explain why, even though there is a potential numerical instability in SR-V, as
illustrated in Example 2, this difficulty cannot occur with the SR-VP method for small
problems and is very unlikely to occur for larger problems from real world applications.

Let P be the n×n permutation matrix determined by the partial Cholesky factorization
with pivoting applied to K, let K̃ = P T KP and let K̃1 be the first m columns of K̃. In
the SR-VP method we apply equations (17)-(19) to K̃ and K̃1 rather than K and K1.

We will begin by considering the special case where λ = 0 and later consider the more
general case. In the case that λ = 0 the least square problem (11), with K1 replaced by K̃1
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since we are incorporating pivoting, is equivalent to

min
x
||K̃1x− y||. (51)

and, by (18), we have
x = V −T

11 (V T V )−1V T y. (52)

where K̃1 = V V T
11. There is a potential concern in using (52) since to construct x the linear

system of equations
(V T V )z = V T y (53)

must be solved. Forming V T V squares the condition number of V which, potentially could
lead to the introduction of undesirable computer arithmetic errors. However we will argue
that the matrix B = V T V is diagonally equivalent to a matrix that is guaranteed to be
well conditioned for small problems and, in practice, is almost always well conditioned for
larger problems. This will limit the growth of computer arithmetic errors. We should add
that without pivoting one cannot prove such results, as is illustrated by Example 2.

Now V is formed by a partial Cholesky factorization with pivoting of the symmetric pos-
itive semidefinite matrix K. Since pivoting is included in the partial Cholesky factorization
of the SPS matrix it follows, for each i = 1, . . . ,m, that the ith diagonal entry of K̃1 is at
least as large in magnitude as any off diagonal entry in row i or column i of K̃1 (Trefethen
and Bau III, 1997, p. 176) and that the lower trapezoidal matrix V has the property that,
for each i = 1, . . . ,m, the ith diagonal entry in V is at least as large in magnitude as any
entry in column i (Higham, 2002, p. 202). Therefore we can write V as V = LD where D
is an m ×m diagonal matrix and L is an n ×m lower trapezoidal matrix with all entries
one or less in magnitude and with ones on the diagonal. Indeed this matrix L is identical
to the lower trapezoidal matrix produced if Gaussian elimination with complete pivoting is
applied to K̃1 (Higham, 2002, p. 202). Also since the pivoting has already been applied in
forming K̃1 Gaussian elimination with complete pivoting will not pivot any entries in K̃1

and this implies that Gaussian with partial pivoting will not pivot any entries in K̃1 and
will produce the same lower trapezoidal factor L. Now it follows from (Higham, 2002, p.
148) that

cond(L) ≤
√

nm 2m−1 (54)

and therefore for n and m small, as in Example 2, L is well conditioned. More generally,
according to (Björck, 1996, p. 73), if partial pivoting is used in the factorization of K̃1

then L is usually well conditioned and, indeed, the discussion in (Trefethen and Bau III,
1997, p. 169) indicates that, for matrices from applications and for random matrices K̃1,
the matrix L is almost always well conditioned, in the sense, for example, that cond(L) is
far from being exponentially large.

Thus V is a diagonal rescaling of a matrix L that is well conditioned in practice. Now
define U = DV T

11. It then follows from (52) that

x = U−1(LT L)−1LT y. (55)

Equation (55) is precisely the Peters-Wilkinson method (Peters and Wilkinson, 1970),
(Björck, 1996, p. 73) to the least square problem (52). Since L is usually well conditioned
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then the calculation of (LT L)−1LT y can be computed without substantial loss of accuracy
and the calculation of x using (55) is more stable than using the normal equation solution
to (52) (Björck, 1996, p. 73).

The SR-VP method uses (52) rather that (55). However, since V is a diagonal rescaling
of L and U is a diagonal rescaling of V T

11 the SR-VP method will also have good numerical
stability properties in practice. To demonstrate this we can write V = LD1D2 where the
entries of the diagonal matrix D1 are between 1 and 2 and where entries in D2 are exact
powers of 2. Since L will be well conditioned in practice then so is W = LD1 (since
cond(LD1) ≤ cond(L)cond(D1) ≤ 2 cond(L)). Now, by (52), we have

x = (D2V11)−T (W T W )−1W T y. (56)

Since W is well conditioned in practice it follows, for the same reasons that (55) has good
numerical stability, that (56) will have good numerical stability properties.

To finish the analysis of numerical stability of the SR-VP method in the case that λ = 0
note that since D2 has entries that are exact powers of 2, it follows by the discussion in
(Higham, 2002, p. 200) and (Forsythe and Moler, 1967, 37-39), for any computer using
base 2 computer arithmetic, that the x calculated by (56) will be precisely the same, even in
floating point arithmetic (as long as there is no overflow or underflow), as the x calculated
by (52). Therefore we may conclude that in practice x calculated when using the SR-VP
method will have good numerical stability properties and the SR-VP method will usually
have smaller computer arithmetic errors than will the SR-N or SR-NP methods.

To consider the case that λ 6= 0 we note that in this case the condition number of
B = (λ2I + V T V ) will be important in solving

(λ2I + V T V )z = V T y.

However we have

Theorem 3 For any λ ≥ 0, cond(λ2I + V T V ) ≤ cond(V T V ).

Proof If V T V has eigenvalues α1 ≥ α2 ≥ . . . ≥ αm ≥ 0 then the eigenvalues of (λ2I+V T V )
are (λ2 + αi), i = 1, . . . ,m. Therefore cond(V T V ) = α1/αm and cond(λ2I + V T V ) =
(α1 + λ2)/(αm + λ2). However it follows easily that α1/αm ≥ (α1 + λ2)/(αm + λ2).

Since cond(λ2I + V T V ) ≤ cond(V T V ) we expect that solving (λ2I + V T V )z = V T y
with λ 6= 0 will be more accurate than solving this equation with λ = 0. Since we have
argued that the error growth in solving this equation for λ = 0 should be limited we expect
that this should also be true when λ 6= 0.
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