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ABSTRACT

Health management systems that more accurately 
and  quickly  diagnose  faults  that  may  occur  in 
different technical systems on-board a vehicle will 
play  a  key  role  in  the  success  of  future  NASA 
missions.  We discuss in this paper the diagnosis of 
abrupt continuous (or parametric) faults within the 
context  of  probabilistic  graphical  models,  more 
specifically  Bayesian  networks that  are  compiled 
to  arithmetic  circuits.   This  paper  extends  our 
previous  research,  within  the  same  probabilistic 
setting, on diagnosis of abrupt discrete faults. Our 
approach  and  diagnostic  algorithm  ProDiagnose 
are  domain-independent;  however  we  use  an 
electrical power system testbed called ADAPT as a 
case  study.   In  one  set  of  ADAPT experiments, 
performed  as  part  of  the  2009  Diagnostic 
Challenge, our system turned out to have the best 
performance among all competitors.  In a second 
set of experiments, we show how we have recently 
further significantly improved the performance of 
the probabilistic model of ADAPT.  While these 
experiments  are  obtained  for  an  electrical  power 
system  testbed,  we  believe  they  can  easily  be 
transitioned to real-world systems, thus promising 
to increase the success of future NASA missions. 

1 INTRODUCTION

Due  to  inherent  uncertainties  in  systems  as  well  as  in 
sensors,  probabilistic  methods  are  starting  to  play  an 
important role in system health management.  In diagnostics, 
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there are different probabilities of failure for different types 
of components.  There may also be sensor noise.

Fortunately,  much progress  has  recently  been  made in  (i) 
modeling  systems,  under  conditions  of  uncertainty,  using 
probabilistic graphical models, and (ii) performing diagnosis 
by  means  of  such  models  (Pearl,  1988;  Lauritzen  and 
Spiegelhalter,  1988;  Olesen,  1993;  Darwiche,  2000). 
Roughly speaking, these models admit relatively sparse, and 
hence  computationally  efficient,  representation  of 
conditional  dependence  and  independence  relationships  of 
large multivariate probability distributions.  In this paper, we 
focus on graphical models in the form of Bayesian networks 
and  arithmetic  circuits,  and  illustrate  novel  methods  for 
failure diagnosis of hybrid systems using an electrical power 
system case study.  

Systems that we want to diagnose, including electrical power 
systems (EPSs), are often hybrid,  in that they exhibit both 
continuous and discrete behavior.  Examples of continuous 
behavior,  in  the  EPS  setting,  include  (measurements  of) 
voltage, current, and temperature, while discrete behavior is 
induced by protection and control  devices,  such as  relays, 
circuit breakers, and sensors for such devices. In addition to 
the  hybrid  nature  of  many  systems  that  are  in  need  of 
advanced system health monitoring, they may also be partly 
event-driven,  partly  periodic  and  have  non-trivial  and 
varying  system  dynamics,  including  transients,  associated 
with them. An example of events in the EPS context are user 
commands, while sampling of EPS sensors is an example of 
periodic behavior.  

There  is  an  urgent  need  for  methods  that  bridge  the  gap 
between complex systems (such as electrical power systems) 
that are hybrid and may also exhibit some of the other issues 
(event-driven/periodic  and  varying  dynamics)  discussed 
above.  Most existing diagnostic technologies typically have 
a  discrete  or  continuous  foundation,  and  diagnostics  in  a 
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hybrid,  complex setting is an important topic for on-going 
research.   In  this  paper,  we  develop  methods  for  hybrid 
diagnosis  by  means  of  discrete  probabilistic  models 
(Bayesian networks and arithmetic circuits), and specifically 
develop novel techniques for handling abrupt continuous (or 
parametric)  faults  such  as  continuous  stuck  faults  and 
continuous  offset  faults.   The  challenge  associated  with 
continuous stuck faults is that they may be easily confused 
with measurements that are normal but have a low level of 
noise.  In particular, this happens if the sensor discretization 
level  is of the same order of magnitude as the noise level 
from some sensors in a system.   The challenge associated 
with continuous offset faults is that they are associated with 
small and continuous anomalies that are hard to detect using 
a  discrete  model.   Specifically,  since  the  magnitude  of  a 
continuous  off-set  is  not  known  ahead  of  time,  it  is  in 
practice  impossible  to  discretize  according  to  all  possible 
off-set  faults.   The  challenge  associated  with  dynamics 
including transients is to avoid false positives.  

In this paper, we discuss our contributions in the context of 
the  ProDiagnose  algorithm.   ProDiagnose  processes  all 
incoming  environment  data  (observations  from  a  system 
being diagnosed),  and acts as a gateway to a probabilistic 
inference  engine.   The  inference  engine  analyzes  the 
observations  given  to  it  by  ProDiagnose,  and  computes 
diagnoses.   ProDiagnose  currently  uses  the  Arithmetic 
Circuit  Evaluator  (ACE).   ACE  uses  arithmetic  circuits 
(ACs), which are compiled from Bayesian network models 
(Chavira and Darwiche 2007; Darwiche 2003).  The primary 
advantage to using ACs is speed, which is key in resource-
bounded systems such as aircraft and spacecraft (Mengshoel 
2007).   Given  an  appropriate  probabilistic  model, 
ProDiagnose diagnoses different types of faults for sensors 
and  components  at  a  high  level  of  performance  and 
accuracy.   In this paper we focus on the introduction, in a 
Bayesian  network,  of discrete  Change nodes,  Delta nodes, 
and Stuck nodes, and how they are coupled with algorithms 
that  process  continuous  data,  and  how the  overall  system 
provides high-performance diagnosis in the context of abrupt 
continuous  faults,  specifically  continuous  stuck  faults  and 
continuous offset faults.

The rest of the paper is structured as follows.  In Section 2, 
we present work related to our research. Section 3 presents 
in  more  detail  faults  that  may  occur  in  EPSs  such  as 
ADAPT, and specifically discuss continuous faults that are 
non-trivial to handle in a discrete BN.   In Section 4, we give 
an overview of the diagnostic process, including terminology 
and  notations.   In  Section  5  we  present  the  ProDiagnose 
algorithm.   Section  6  is  devoted  to  a  discussion  of  the 
Bayesian  network  model  structures,  including  how  the 
ADAPT BN model is used for diagnosis of continuous stuck 
faults,  continuous offset  faults,  and handling of transients. 
Section 7 gives an electrical power system case study, diving 
more in-depth into the ADAPT EPS.  Section 8 presents the 
DXC  framework  and  discusses  experimental  results  from 
ProDiagnose,  including the DXC-09 competition and latest 
experimental results using a newer BN model.  In Section 9 
we conclude and sketch future research directions.

2  RELATED WORK

We use in this paper Bayesian networks (BNs) to represent 
probabilistic  multi-variate  models  (Lauritzen  and  
Spiegelhalter 1988; Pearl 1988).  A BN is a directed acyclic 
graph  (DAG),  combined  with  an  associated  set  of 
conditional  probability  tables  (CPTs).   Each  vertex  of  the 
graph  represents  a  discrete random  variable,  represented 
visually as  a  node.   Each  node has a  CPT of  size that  is 
dependent on the number of parent vertices, and the number 
of discrete  states that these vertices contain.  The directed 
edges  typically represent  the causal  dependencies  between 
variables.   By  clamping random  variables  (nodes),  it  is 
possible  to  compute  the  marginal  probability  of  other 
vertices in the BN.  The marginal probabilities can then be 
used to diagnose the system itself.

We  currently  use  arithmetic  circuit  evaluation  for 
probabilistic  inference  (and ACE as  the inference engine). 
Arithmetic  circuits  are  a  fast  way  to  evaluate  Bayesian 
networks.   An  arithmetic  circuit  derives  marginal 
probabilities  by  addition  and  multiplication  operations 
(Chavira & Darwiche 2007; Darwiche 2003).  During each 
ProDiagnose call to ACE, the partial derivatives of this AC 
are computed with respect to each discrete random variable. 
ProDiagnose  queries  the  arithmetic  circuit  to  return  the 
marginal probabilities in constant time.

We identify two areas  of related work on hybrid systems: 
research using Bayesian networks, and research using other 
techniques.  Of  particular  interest  is  fault  diagnosis  in 
terrestrial and vehicular electrical power systems.

Among research  using  other  techniques,  we  consider  first 
model-based fault diagnosis in hybrid systems (Narasimhan 
and  Biswas  2007;  Daigle  et  al.,  2008).   Narasimhan  and 
Biswas discuss a model-based diagnosis approach based on 
hybrid bond graphs (Narasimhan and Biswas,  2007).   The 
approach  integrates  tracking  (using  an  extended  Kalman 
filter, and fault detection), fault detection (which compares 
estimated  and  observed  signals),  fault  isolation,  and  fault 
identification.  Successful experimental results are shown for 
a  fuel-transfer  system  of  a  fighter  aircraft.  The  work  by 
Daigle et al. is also based on hybrid bond graphs (Daigle et 
al., 2008). This research is similar to ours in its emphasis on 
electrical  power  systems  and  ADAPT specifically;  it  also 
deals with abrupt continuous and discrete faults.  Unlike our 
research,  this  work  makes  the  single  fault  assumption 
(Daigle  et  al.,  2008).   RODON,  a  model-based  approach 
(Karin et al., 2006) based on the general diagnostic engine 
(de Kleer and Williams, 1987), also participated in DXC-09 
with good results (Bunus et al., 2009; Kurtoglu et al., 2009a; 
Kurtoglu et al., 2009b). 

An optimization-based approach to fault diagnosis has been 
applied to ADAPT as well (Gorinevsky et al., 2009).  This 
approach, which obtained good results in DXC-09, amounts 
to  developing  a  linear  model  of  the  EPS  circuit,  and 
diagnosis  is  then based on solving a convex  problem that 
includes faults and other hidden states.  

2



Annual Conference of the Prognostics and Health Management Society, 2009

We now turn to research using Bayesian networks.  Based on 
the types of random variables they contain, we can partition 
BNs into three classes: discrete BNs, which contain discrete 
random  variables  only,  continuous  BNs,  which  contain 
continuous random variables only,  and hybrid BNs, which 
contain both discrete and continuous random variables.  

Based  on  clique  tree  propagation  (Spiegelhalter  and 
Lauritzen, 1988), Olesen developed an approach to exactly 
compute  marginals  in  clique  trees  that  are  compiled  from 
hybrid BNs (Olesen, 1993). In order to maintain exactness, 
the  hybrid  BNs  were  restricted  to  ones  in  which  the 
continuous  nodes  are  Gaussian  and  do  not  have  discrete 
parents.  For a continuous node, each discrete configuration 
of  parents  gives  a  linear  Gaussian  distribution.  For  each 
configuration  of  all  discrete  nodes,  the  continuous 
distribution  is  multivariate  Gaussian,  and  this  approach 
therefore is a generalization of mixtures of Gaussians. 

Koller  and  Lerner  also  investigated  hybrid  BNs,  and 
introduced  an  inexact  particle  filtering  approach  for 
computing  marginals  (Koller  and  Lerner,  2000).   Each 
particle is an instantiation of non-evidence nodes X(t), and 
the  belief  state  at  time t  is  approximated  by all  particles. 
This particle filtering algorithm approximates marginals  at 
time t over all non-evidence continuous and discrete nodes. 

Even  though  it  is  natural  to  use  hybrid  BNs  in  hybrid 
domains such as EPSs, there are also limitations associated 
with doing so.  In particular, the mathematics of hybrid BNs 
is non-trivial, thus the need to introduce restrictions (Olesen, 
1993) or resort to approximations (Koller and Lerner, 2000). 
Arithmetic circuits, to which we compile our BNs, do not 
currently support continuous or hybrid BNs.  Consequently, 
we  discuss  in  this  work  hybrid  methods,  in  particular 
diagnosis of abrupt discrete and continuous (or parametric) 
faults,  which  use  discrete  BNs.   Discrete  BNs  have 
previously been used for fault diagnosis in terrestrial EPSs 
(Yongli et al., 2006; Chien et al., 2002), although not for the 
type of abrupt continuous faults that we stress here. 

In this discussion of diagnosis of abrupt continuous faults, 
our  main  emphasis  is  on  algorithms  that  discretize 
continuous  signals,  and  in  particular  create  from  them 
discrete outputs that are used as evidence in discrete BNs. 
This extends our previous work, where we considered abrupt 
discrete  faults  (Mengshoel  et  al.,  2008;  Mengshoel  et  al., 
2009);  we  also  go  into  more  technical  detail  than  our 
previous  paper  on  ProDiagnose  (Ricks  and  Mengshoel, 
2009).  For a more detailed comparison of ProDiagnose to 
other systems in the ADAPT setting, we refer to discussions 
of the benchmarking framework and its application in DXC-
09 (Kurtoglu et al., 2009a; Kurtoglu et al., 2009b).

3  BEHAVIORS AND FAULTS

There are many dimensions along which systems faults, such 
as faults in electrical power systems, may vary.  Diagnostic 
techniques and systems typically vary accordingly, since it is 
very difficult to develop approaches that are able to detect or 
isolate along all of these dimensions equally well and with 

equal computational efficiency.   We now discuss a few of 
these dimensions. 

One  dimension  is  speed  of  fault  progression,  where  we 
distinguish between faults that progress very quickly (abrupt 
faults)  versus  faults  that  progress  very  slowly  (incipient 
faults).  Another dimension is fault persistency, where one 
typically  distinguishes  between  persistent  and  intermittent 
faults.  A third dimension is the fault type, where it is fruitful 
to distinguish between continuous (or parametric)  faults and 
discrete  faults.   As an example,  "stuck high" is  a discrete 
fault, while "stuck at X", where X is a parameter that can 
vary over a real-valued interval, is considered a continuous 
fault.   A  fourth  dimension  is  independent  faults  versus 
dependent faults; common cause faults and cascading faults 
are examples of dependent faults.

In this paper, we are concerned with abrupt continuous (or 
parametric) faults that are independent and persistent.1  This 
contrasts  with  earlier  work  (Mengshoel  et  al.  2008; 
Mengshoel  et  al.  2009)   where  we  also  investigated 
independent and persistent faults, but they were abrupt and 
discrete.   In  this  section we will  use the ADAPT EPS to 
illustrate our approach. 

Figure  1:  Graph  showing  the  sensor  readings  of  a 
voltage sensor over time.  The voltage drop illustrates 
an offset sensor fault, a type of abrupt fault.  The grey 
area represents the nominal range considered normal 
or healthy for this sensor.

In  Figure 1, we see an example of sensor readings from a 
voltage sensor.  Assuming this part of the EPS has power, 
the grey box represents the nominal range that this sensor is 
allowed to be in (to be considered healthy).   This nominal 
range is dependent on other sensors within the EPS, meaning 
that other changes within the electrical power system itself 
may change what the nominal range for this sensor is at any 
time.    In this scenario, the sensor's value (voltage) suddenly 

1This is not to say that ProDiagnose cannot handle other fault types 
- we are currently investigating intermittent as well as cascading 
faults
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drops  downwards  out  of  this  range.    The  nominal  range 
itself is  still  deemed to be the same as before the voltage 
drop however, and the sensor is now considered to be offset. 
This example (Figure 1) illustrates an offset of about -12 V, 
which is enough to throw the sensor out of its nominal range.

Figure 2:  Graph showing the behavior of a degraded 
battery  according  to  the  closest  voltage  sensor 
downstream.  The grey area represents the region in 
which the voltage has dropped very slightly due to a 
short.

Figure 2 illustrates an abrupt continuous offset fault of very 
small  magnitude.   These  types  of  faults  often  cannot  be 
diagnosed  as  quickly  as  the  previous  example  (Figure  1). 
The graph shows a tenth of a volt drop of a power source, in 
this example a battery after a short circuit somewhere in the 
EPS.  When factoring in the sensor noise, detection of this 
drop would be very difficult by using a nominal range due to 
the  narrow scope  of  the  range  factored  in  with  the  noise 
spike both before and after degradation starts.

ProDiagnose handles this tiny abrupt fault by using weighted 
Cumulative  Sums,  or  CUSUMs,  to  monitor  the long term 
change in behavior of the sensor.  The difference between 
the weighted average of the sensor's readings and the current 
sensor  reading  is  added  to  the  current  CUSUM  (which 
initially  is  zero).    This  pattern  repeats  for  each  sensor 
reading received, and thus the CUSUM is keeping a record 
of  the  overall  trends  (long-term  behavior)  of  this  sensor. 
This technique can exploit even minute changes in a sensor's 
behavior over a given time period.

If we were to let this fault play out over time, the battery 
would slowly exhaust itself, and the voltage would start to 
drop very gradually as a result.  ProDiagnose would still use 
the same technique to catch it.  In fact, if this scenario were 
to happen, ProDiagnose would simply continue to diagnose 
the same abnormality both after the initial voltage drop and 
during the degradation itself.   If  there is no initial voltage 
drop,  this  would  be  an  incipient  fault,  but  ProDiagnose 
would  still  catch  it  using  CUSUMs.   The  detection  time 

would depend in  how gradual  the  degradation  was.   This 
technique would allow the fault to be diagnosed well before 
the degradation dropped below the nominal range.

Figure  3:   Graph  showing  the  sensor  readings  of  a 
voltage sensor over time.  The graph after the arrow 
indicates  the  area  in  which  this  sensor  has  become 
stuck at the same value (a stuck fault).

Figure 3 shows a very common abrupt continuous fault.  The 
noise associated with this sensor's readings are shown before 
the arrow.  The sensor in the figure is moderately noisy, but 
can have short periods in which it returns the same sensor 
reading in subsequent samples, which is evident from Figure 
3.  After the arrow, all noise ceases to exist in the sensor, 
which  is  not  characteristic  for  this  type  of  sensor. 
ProDiagnose  cannot  detect  the  fault  immediately  due  to 
ambiguity  between  the  initial  fault  and normal  periods  of 
equal-valued  sensor  readings.   However,  after  a  certain 
interval of time with no change in sensor readings, the sensor 
is then diagnosed as operating abnormally.  This span varies 
depending  on  nominal  characteristics  between  different 
sensor types.
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Figure 4:  Graph showing the behavior of a failed fan 
according to its RPM sensor and a current sensor in 
series with the fan itself.  The area between the arrows 
shows the difference in behavior between current and 
fan blade RPM immediately after the failure.

Figure 4 illustrates a fan failure in an EPS.  Power is applied 
throughout  this  time  interval,  but  the  fan  suddenly  stops 
working, and both the RPM of the fan blades and the current 
draw of the fan drop to zero.  If the sensors in the EPS that 
directly monitor the fan (RPM sensor) or indirectly (current 
sensors in series with the fan) are all deemed to be healthy, 
and there are no other component failures upstream from the 
fan itself, then this fan would be considered failed.

Notice the area of the graph between the arrows. The current 
drops  immediately  to  zero  following  the  failure,  which 
indicates  an abrupt  fault.   However  the fan blades  do not 
immediately stop spinning, but rather spin down gradually. 
This  characteristic  indicates  dynamic  transient  behavior. 
During this time frame, if only taking into consideration the 
RPM values themselves,  it  would appear  that  perhaps this 
speed sensor is abnormal as it is not reading zero.  In fact, 
until this speed sensor hits the nominal range considered to 
be zero, the sensor will most likely be diagnosed incorrectly 
as offset.  To avert this type of problem, more evidence is 
introduced  to  specify  the  short-term  behavior  of  the  fan 
blades at a given RPM reading.  If the RPM is dropping over 
this period of time, then this evidence combined with what is 
known from the current sensor along with the RPM reading 
itself can lead to a more accurate diagnosis.

While this type of fault deviates from the main emphasis on 
abrupt  continuous  faults,  we  include  this  example  to 
illustrate  the  technique  used  to  diagnose  it.   ProDiagnose 
monitors  this  type  of  short  term  behavior  by  taking  the 
difference  of  the  current  and  previous  weighted  sensor 
averages.  We call this a  Delta.  Unlike with CUSUMs, no 
record of the sensor's long term behavior is recorded.   This 
technique is used to give a good picture of the short-term 
behavior of a sensor.  In the example above, the decreasing 

fan blade RPM would result in a consistent  negative delta 
until the fan blades stopped spinning.

4  OVERVIEW OF DIAGNOSTIC PROCESS

Figure 5: The ProDiagnose Architecture.  Two types of 
diagnosis-related  messages  can  be  received, 
commands, C(t) and sensor readings, S(t) (or sensor 
data).  Commands can be received any time, whereas 
sensor data comes in at  specific  times,  according to 
the sample cycle.  Diagnosis,  D(t),  is  sent  after  each 
sample cycle completes.

Figure  5  depicts  the  ProDiagnose  architecture.   The 
environment provides our sensor data and commands from 
the  system  we  are  diagnosing.   The  probabilistic  model 
provides  a  model  of  the  system  (to  diagnose,  such  as  a 
Bayesian network), which works with the inference engine 
to provide diagnoses  each time ProDiagnose  receives  data 
from the environment.

How the inference engine receives the sensor and command 
data is dependent on various  parameters  ProDiagnose uses 
during the diagnostic process.  These parameters, along with 
other notation and definitions, are introduced in Section 4.1

The  fault  examples  presented  in  this  paper  are  from  the 
ADAPT EPS, a physical EPS developed by NASA.  Sensor 
data obtained from experiments (scenarios) utilizing ADAPT 
are  converted  to  a  format  specified  by  the  evaluation 
framework ProDiagnose uses for scenario input (Kurtoglu et 
al., 2009a; Kurtoglu et al., 2009b). ProDiagnose uses these 
scenarios along with the ADAPT BN to diagnose faults in 
the system,  which consist  of abrupt  continuous faults  (see 
Section 3).

4.1  Notations and Definitions

The following is  a  list  of all  ProDiagnose  parameters  and 
their purpose:

Sample  Cycle, tSC:  The  amount  of  time,  measured  in 
milliseconds, between sample readings.
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Command Epsilon, tEP: A global threshold for determining if 
a  given  command  should  be  clamped  as  evidence 
immediately or queued in regard to the time stamp of the last 
sensor set. This is discussed in more detail in the Command 
Data section (Section 5.3).

Diagnosis  Delay,  tDD:  A  global  value,  measured  in 
milliseconds, that gives the delay to start diagnosis output. 
Diagnosis  delay  is  used  at  the  beginning  of  environment 
monitoring.   This variable is  useful  to filter  out  transients 
and  other  normal  behavior  that  may appear  abnormal  and 
thus have false positive diagnoses associated with them.

Command  Offset,  tCO:   A  global  value,  measured  in 
milliseconds, that gives the delay to output diagnosis when a 
command is received.  This variable is useful for situations 
in which, for some n millseconds after a command is issued 
to a component, transients from sensors cause ProDiagnose 
to  produce  false  diagnosis.  Depending  on  when  the 
command was issued in regard to the next sensor sample set, 
and also the length of the transient,  tEP may not in itself be 
able to prevent the false diagnosis.

Sensor Stuck Delay, tSSD: A value, measured in milliseconds, 
that  gives,  for  a sensor  with a reading that  is  the same, a 
maximum amount of time to wait before setting that sensor 
to a stuck state.

Other notation and definitions are described as follows:

PM (Probabilistic  Model):  The probabilistic  model 
represents the system that ProDiagnose will diagnose.  The 
probabilistic model that ProDiagnose uses is an Arithmetic 
Circuit compiled from a Bayesian Network.

e  (evidence):  e  represent  the  evidence  that  is  used  in  the 
diagnosis  process.   Evidence  comes  from  commands  and 
sensor readings (the environment, Figure 5).

4.2  Diagnostic Scenario using ProADAPT

Using a scenario from the DXC-09 Industrial Track Tier 2 as 
an example, we illustrate the importance of the ProDiagnose 
parameters  in  accurate  fault  detection.   We  will  cover 
specifics of the ADAPT EPS in Section 7.

The  example  scenario  follows  two  current  sensors  in  the 
ADAPT EPS, IT261 and IT281.  IT261 is located just before 
an inverter (Figure 18, 'it'  sensor closest  on left to bottom 
'INV')  and monitors current  flow into the inverter  and DC 
load bank.  IT281,  located just  before  the a  DC load bank 
(Figure 18, 'it' sensor closest to bottom load bank with 'DC' 
load) only monitors current flow into the DC load bank.  The 
following graphs show the current readings of these sensors 
over  a  specific  period  of  time.   The  arrows  indicate 
important areas of the graphs that will be discussed shortly.

Figure 6: The first 30 seconds of an example ADAPT 
scenario, following two current sensors.

Starting out the scenario, all relays are open, and no current 
is flowing through any of the sensors.  Relays start closing, 
powering up the EPS (18 relays close in this span of time), 
Looking  at  IT281  (Figure  6),  we  see  a  nice  near 
instantaneous  change  in  current  flow  at  the  grey  arrow. 
Looking closely, there is a tiny transient here as the rate of 
change of the current  flow is not instantaneous.   tCO or  tEP 

would work here to eliminate any false positives calculated. 
However, for IT261, the changes in flow of current are not 
nearly  as  quick or  linear  as  for  IT281,  as  indicate  by the 
arrows.  The inverter takes a bit of time to fully power up, 
and  during  this  time  the  current  flow changes  frequently. 
This  behavior  is  very  unpredictable  and  hard  to  monitor. 
Thus, ProDiagnose uses  tDD to suppress any false positives 
generated  during  this  time  until  after  the  EPS  reaches  a 
steady state.

Figure 7: A span of 30 seconds starting 110 seconds 
into the example ADAPT scenario.

At about 110 seconds into the scenario, a relay in the second 
AC load bank opens (represented by the arrow in Figure 7), 
cutting current to a light bulb connected to it.  This results in 
a current drop for sensor IT261.  IT281 however monitors 
the DC bank and is unaffected by the relay.  While the drop 
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in current for IT261 is near instantaneous, it is still possible 
for  false positives.  If the command to open the relay was 
given  right  before  the  next  sensor  sample  set,  it  is  very 
possible that the next sensor reading itself will still be in the 
same threshold range (as the current could still be dropping, 
notice that the drop in Figure 7 is not totally vertical).  This 
may be diagnosed as offset, depending on the magnitude of 
the current  drop.   Commands  given  farther  from the  next 
sample set will most likely not be affected, as by this time 
(say 100ms) the current drop should have completed easily. 
To  avoid  these  issues,  parameters  tEP or  tCO can  be  used, 
either by queuing the command and waiting for the transient 
to  pass  (tEP),  or  suppressing  diagnosis  until  the  transient 
passes (tCO)

5  DIAGNOSTIC ALGORITHM

Before we dive into the algorithms, we introduce notations 
and definitions:

5.1  Notations and Definitions

We  now  describe  the  data  structures  associated  with 
ProDiagnose.  These structures store information related to 
the  current  state  of  the  system being  diagnosed.   A node 
represents one specific instance in a set.

C (Command Set):  A Command node  C   ∈ C represents a 
command given to a component.  An example would be a 
command to open or close a relay.  This is shown visually as 
C(t), Figure 5.

S (Sensor Set): A Sensor node  S  ∈ S represents the current 
reading of a sensor.  This reading is discretized from real-
valued S(t) in Figure 5. which represents a range for real-
valued sensors, or the actual  state of 0 or 1 for a boolean 
position sensor.  The discretized sensor reading is clamped 
as evidence in the BN. 

H (Health Set): A Health node H  ∈ H represents the current 
health state of a component.  The set of states of a node H is 
partitioned  into  normal  and  abnormal  states.   Abnormal 
states indicate a fault in the component.  Any component or 
sensor that is not healthy is output by ProDiagnose as faulty 
(with the faulty state being the abnormal health state).   In 
Figure 5, D(t) represents health nodes with abnormal states.

ST (Stuck Set): A Stuck node ST  ∈ ST represents the stuck 
state of a sensor.  A sensor becomes stuck when its reading 
is  the same over  a  period of  time,  regardless  of  what  the 
underlying process state is.

D (Delta Set): A Delta node D  ∈ D represents the difference 
(delta)  between  the  current  sensor  reading  S(t)  and  its 
previous reading S(t – 1): 

∆S = S(t) – S(t – 1)

The discretization of D into three states corresponds to the 
following three cases:  ∆S < 0, ∆S = 0, and ∆S > 
0.   Note that D is not the same as D(t) in Figure 5.

CH (Change  Set):  A  Change  node  CH  ∈ CH  represents 
overall trends in sensor readings (long term behavior), using 
CUSUMs: 

CUSUM(t) = 
  (S(t) – {S(t)WEIGHTED+...+S(t –p)WEIGHTED}) 
  + CUSUM(t - 1)

S(t) represents  the  current  sensor  reading,  which  is 
subtracted  from the  weighted  average  of  a  contiguous 
subsequence  of  sensor  readings,  from the  current  reading 
(S(t)WEIGHTED) to the sensor reading p cycles back (S(t – 
p)WEIGHTED).   This difference  is  then added to the previous 
CUSUM value (CUSUM(t - 1)).  CH nodes are good for 
detecting small changes in sensor readings over a period of 
time.   This  change  is  clamped  as  evidence,  but  it  also 
depends  on  H,  as  certain  states  of  health  for  relevant 
components can play a role in how the change nodes affect 
the rest of the BN.

A (Attribute):  An Attribute  A  ∈ A  represents  a  subset  of 
nodes that describe various attributes of a component.  These 
attributes could be voltage  V and current  I for an electrical 
device.  A usually depends on A'  ∈ A upstream, where A' ≠ 
A.

CL (Component State): A Component State node CL  ∈ CL 
represents  a  generalized  state  of  operation  for  the 
component.

Base_Component: A  base_component represents a physical 
component  of  a  system  in  the  probabilistic  model. 
base_components are used as a common link for lookups of 
various parts that all share the same  base_component.  For 
example, in an EPS, a fan component may have a sensor that 
monitors blade RPM.  This sensor's  base_component would 
be the fan.

The ProDiagnose  algorithm can  be broken  down into two 
stages: The pre-processing and diagnosing stages.  The pre-
processing stage initializes ProDiagnose to a state in which it 
can start accepting data from an environment.  The diagnosis 
stage  is  executed  each  time data from the environment  is 
received.

5.2  Pre-Processing Stage

1  Algorithm ProDiagnose(tEP, tDD, tCO)
2  Begin:
3    initialize_DA(tEP, tDD, tCO, Init_Params : PDB)
4
5    Send_Message(Message : M = DA_Ready)
6
7    do
8    Begin:
9      receive Message : M from environment
10
11     Process_Message(M, tEP, tDD, tCO)
12   loop until M = Terminate
13 End

7
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The  pre-processing  stage  sets  up  ProDiagnose,  including 
parameters and all data structures that will be used during 
diagnosing.

5.3  Diagnosis Stage

The  diagnosing  stage  analyzes  each  message S(t)  or  C(t) 
when they come in and outputs diagnosis of abnormal health 
(H) states according to the sample cycle, tSC.  The first course 
of  action  is  to  determine  the  data  type  of  the  incoming 
message, which can be either a sensor message, command 
message,  or  termination  message.   ProDiagnose evaluates 
the  PM and computes diagnoses  only when sensor data is 
received.

1  Algorithm Process_Message(Message : M, tEP, tDD, tCO)
2  Begin:
3    if M = Scenario_Status : Terminate then Exit
4
5    if M = C(t) : (Command : C_Command, Value : V)
6    Begin:
7      C ← get_node(C_Command)
8      ti ← C.timestamp
9      tj ← S(t - 1).timestamp + tSC

10     if tj -  ti < tEP

11       command_queue ← C
12     else
13       C.command ← Discretize_For_PM(V)
14   End if
15
16   if M = S(t)
17   Begin:
18     for each S(t) : (Sensor : S_Sens, Value : V) ε S(t)
19     Begin:
20       S ← get_node(S_Sens)
21       S.value ← Discretize_For_PM(V)
22
23       if D ε Base_Component(S)
24         D.value ← Discretize_For_PM(Calc_Delta(D))
25
26       if ST ε Base_Component(S)
27         ST.value ← Discretize_For_PM(Calc_Stuck(ST))
28     End for
29
30     for each CH
31       CH.value ← Calc_Change(CH)
32
33   End if
34
35   Calculate_Marginals(PM)
36
37   Output_Diagnosis(H, tDD, tCO)
38
39   Update_Command_Queue(command_queue)
40 End

Scenario_Status (Line  3):  This  datatype  is  a  constant 
specifying any status updates that arrive to ProDiagnose as 
message  M.  If  M is  the  constant  specifying  termination, 
then ProDiagnose frees up its resources and exits gracefully.

C(t) (Line 5):  This datatype is a tuple, (C_Command, V), in 
which C_Command is a command given, and V is the value 
of the command.  ProDiagnose first fetches the appropriate 
C node  (line  7).   It  then  checks  the  timestamp  of  the 
command.  If  the command C(ti) has come in too close to 
S(tj), where j > i and tj  - ti < tEP, then we queue the command 
(line 11).   Otherwise we update the  C node with the new 
command (see Figure 11).  The queuing of commands is due 
to the following.  

In  a  physical  system,  such  as  an  EPS,  there  is  often  a 
significant delay between the time a command is issued and 
the time it is sensed to have taken effect.  In addition comes 
communication delays,  both to actuators and from sensors. 
ProDiagnose will queue commands to attempt to make sure 

that  commands  are  only  input  to  the  PM after  sensor 
readings  from  the  system  reflect  the  effects  of  these 
commands.  In ADAPT, keeping commands queued for one 
sample period usually achieves the desired effect. 

S(t) (Line 16): This datatype is a set, {(S_Sens, V) | S_Sens ∈ 
S}, in which  S_Sens is a sensor, and  V is the value for the 
sensor.  Each sample has a key/value pair for every sensor in 
the network.  The keys map to an S node, and the values (V) 
represent  the  current  sensor  reading  for  the  respective  S 
node.  For each S node, its new sensor reading is discretized 
(Line  21)  and value  updated to  the new reading.   During 
each iteration ProDiagnose also looks for any D or ST nodes 
that  share  the same  base_component as  the S node in  the 
network.  These operations consist of simple lookups using 
the base_component for the sensor. 

If  a  D or  ST node is found for a specific  base_component, 
then its value is updated using the current sensor value (lines 
24, 27).   This value is  further  discretized for  clamping as 
evidence in the network.

After  all  S nodes  are  processed,  ProDiagnose  updates  the 
values of any CH nodes that may be present in the Bayesian 
network.  Since the value of CH nodes can be derived from 
any sensor in the Bayesian network (as opposed to D and ST 
nodes in which the base_component's sensor value is always 
the one used), a reference to this bound S node is stored in 
the CH node.  Because of this, we can iterate through the CH 
nodes (updating their values) after all S nodes are updated, as 
opposed to doing CH node lookups for each S node (though 
it is worth mentioning that  CH nodes can be treated similar 
to  D  and  ST  nodes).  At this point all our input nodes are 
ready  for  clamping  to  the  network  and  evaluation  of  the 
network itself.

1  Algorithm Discretize_For_PM(Value : V, Thresholds : TH)
2  Begin:
3  A ← NEGATIVE_INFINITY
5
6    for each N ε TH
7    Begin:
8      B ← N
9      if V ≥ A and V < B
10       return TH.Index(N)
11     else
12     Begin:
13       A ← B
14     End else
15   End for
16
17   return TH.Index(TH.size + 1)
18 End

The Discretize_For_PM method (Process_Message, lines 21, 
24, 27) takes the current sensor value and returns an index 
value  that  is  used  in  network  nodes  as  states  (clamped 
evidence).   This  index  is  the  index  value  between  two 
thresholds.  A threshold has  TH.size +  1  different  Index 
values (line 6) that are possible, starting at  0, where TH.size 
is defined as the number of thresholds N in the set TH.  The 
discretized value is Index(N) for which V is [A, B) (lines 9, 
10), or Index(TH.size + 1) if V is above all thresholds (line 
17).  For example, a sample sensor has three discrete states 
in the  PM:  low, mid and high, which correspond to index 
values 0, 1 and 2 respectively.   Two sample thresholds are 
given: 50 and 100.  Any sensor reading below 50 is given an 

8
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index of 0, [50, 100) is given an index of 1, and above 100 is 
given index 2. 

The following algorithms perform dynamic processing in the 
Bayesian network:

1  Algorithm Calc_Delta(D)
2  Begin:
3    I ← Sensor_Average(Base_Component(D).S)
4    Iprev ← Sensor_Average(Base_Component(ST).S(t-1))
5    D.value ← I – Iprev

6
7    return D
8  End

1  Algorithm Sensor_Average(S)
2  Begin:
3    Sum ← 0
4
5    for each S  ε {S(t), ..., S(t – p)}
6    Begin:
7      Sum ← Sum + S.value * S.weight
8   End for
9
10   return A

The Calc_Delta method (Process_Message, line 24) returns 
the  difference  between  the  current  and  previous  weighted 
averaged  sensor  values  of  the  delta  D node's 
base_component (lines  3,  4:  Calc_Delta,  Figure  9,  see 
Section 5.1, D).  The average is defined as the summation of 
any  contiguous  subsequence  of  sensor  readings  and  their 
corresponding  weights  (line  7:  Sensor_Average)  from  the 
current S(t) sample cycle to S(t – p), defined as the p sample 
cycles back in the timeline.

1  Algorithm Calc_Stuck(ST, Counter : I, Sensitivity : K)
2  Begin:
3    current_value ← Base_Component(ST).S.value
4    previous_value ← Base_Component(ST).S(t-1).value
5    J ← current_value – previous_value
6
7    if J = 0 and I ≥ K
8      return 0
9    else if J ≠ 0
10     I ← 0
11   else
12     I ← I + 1
13
14   return J
15 End

The Calc_Stuck method (Process_Message, line 27) analyses 
a component's sensor values for readings that are repeatedly 
identical, defined if J = 0, by subtracting the current S(t) and 
previous  S(t  -  1) values of the  ST nodes'  base_component 
sensor (line 5, Figures 8-10).  Each time J = 0 a counter I is 
incremented.  If this pattern continues past a given sensitivity 
threshold  K so I  ≥  K (line 7), the  ST node is  considered 
stuck.  The pattern is broken if J ≠ 0 during a sample cycle 
(line 5), at which point I is reset to 0 (line 9).  A stuck node 
ST has  three  discretized  states,  0,  1,  and  2,  where  1 
represents stuck, and 0, 2 represent non-stuck states.

1  Algorithm Calc_Change(CH, CUSUM : U)
2  Begin:
3    S ←  CH.Bound_Sensor
4    I ← Sensor_Average(S)
5    Uprev ← U
6    U ← (S.value – I) + Uprev

7
8    if U < CH.Lower_Threshold
9      return 0
10   else if U > CH.Upper_Threshold
11     return 2
12
13   return 1
14 End

The  Calc_Change  method  (Process_Message,  line  31) 
calculates a continuous CUSUM, or cumulative sum, which 
is used to detect slight changes, or trends, in a sensor reading 
over time.  The current CUSUM U is calculated by taking 
the  current  sensor  reading  S from  the  CH  nodes'  bound 
sensor (Figure 10, see Section 5.1,  CH) and subtracting it 
from an averaged sensor reading I (lines 4, 6), in the same 
way as for  D nodes (see Sensor_Average algorithm).  This 
difference  is  then  added  to  the  previous  CUSUM,  and 
updated as the new current CUSUM U (line 6).  Very slight 
changes  that  form  a  trend  will  over  time  will  cause  the 
CUSUM to consistently increase or decrease. If this change 
accumulates to the point where the CUSUM's value to drop 
below a lower threshold (line 8) or above an upper threshold 
(line 10), the index of the CH node will change in the PM to 
0 or 2, respectively.

1  Algorithm Calculate_Marginals(PM)
2  Begin:
3    for each Node : N ε {S,C,D,ST,CH}
4      e ← fetch_current_evidence(PM, N)  
5
6    for each H ε H
7      H.state ← argmax(P(H | E = e))
8
9    return H
10 End

In  the Calculate_Marginals method (Process_Message, line 
35), ProDiagnose clamps as evidence all of the input nodes 
(lines 3,  4).   Our probabilistic  models  will  always  have  S 
nodes,  but  not  necessarily  C,  D,  ST,  or  CH nodes. 
ProDiagnose then calculates the marginals, P(H | E = e), for 
all  H  (lines  6,  7).   The  output  from the inference  engine 
gives the DA the states of H.  For each H ∈ H, ProDiagnose 
takes the most likely value for that node and assigns it as the 
new health state (line 7).

1  Algorithm Output_Diagnosis(H, tDD, tCO)
2  Begin:
3    Candidate Set : CS
4
5    if first execution of Algorithm
6      dd ← tDD

7    if received C(t) within last sample cycle
8      co ← tCO

9    
10   if dd = 0 and co = 0
11   Begin:
12     for each H ε H
13     Begin:
14       if H.state = abnormal
15         CS ← H
16     End for
17   End if
18
19   if dd > 0
20     dd ← dd – 1
21   if co > 0
22     co ← co - 1
23 
24   return CS
25 End

If  the diagnosis  delay has  reached  0,  dd = 0 (initially set 
during the first iteration of this algorithm), and there is no 
current command offset,  co = 0 (line 10), ProDiagnose will 
output  a  four-tuple  (t,  CS,  DS,  IS)  as  D(t)  (Figure  5, 
Process_Message, line 37) if any abnormal health states are 
detected.  t is the current time, CS is a candidate set, DS is a 
boolean  detection  signal,  and  IS  is  a  boolean  isolation 
signal.  A candidate set CS is a set containing zero or more 
candidates.  DS and IS are simply: DS = IS = (|CS| > 0).  If 
CS is non-empty, we have CS = {C1, ..., Cn}, where n ≥ 1, 
with each candidate C in CS consisting of two-tuples like 

9
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this:  C  =  {(H1,  a1),  ...,  (Hm,  am)},  for  m  ≥ 1.    For 
ProDiagnose, a health node Hi is included in a candidate C, 
along with a most likely state ai, if and only if that state is 
abnormal.  ProDiagnose always outputs exactly one (Hi, ai) 
tuple per candidate, and thus candidate weights do not play a 
role (and have for simplicity been kept out of the discussion 
above).   If  dd > 0, then it decrements by 1 (line 20).  This 
also happens  with  co > 0  (line 22).   co will  be set  to  its 
original  value  tCO each  time  ProDiagnose  receives  a 
command within the last sample cycle of S(t).

1  Algorithm Update_Command_Queue(command_queue)
2  Begin:
3    for each C ε command_queue
4    Begin:
5      C ← get_node(C_Command)
6      ti ← C.timestamp
7      tj+ 1 ← S(t).timestamp + tSC

8
9      if tj + 1 - ti < tEP

10       keep command in queue
11     else
12     Begin:
13       pop command from queue
14       C ← V
15     End else
16   End for
17 End

The last step taken by ProDiagnose after diagnosis output is 
updating  the  command queue  (Process_Message,  line  39), 
pulling any commands C(ti) whose timestamp is considered 
to  be  out  of  range  of  the  next  sample  timestamp  S(tj  +  1) 
according to the command epsilon, tj + 1 - ti < tEP (lines 8, 9).

6  BAYESIAN NETWORK (BN) STRUCTURES

The Bayesian networks ProDiagnose employs for EPSs have 
two types of  parts: components and sensors.  A component 
models a physical device in the EPS, such as a fan, circuit 
breaker,  relay,  or  light  bulb.   A sensor models  a  physical 
sensor  in  the  EPS.   Sensors  can  take  measurements  of 
components or  wires.   In  the ADAPT EPS for example,  e 
(voltage) and it  (current) sensors are wire sensors.

6.1  Component/Sensor structures

Components and sensors have specific structures within the 
Bayesian network.  Figure 19 (Section 7.2) shows how these 
structures interconnect to form the entire system.

Figure  8:  The  Bayesian  network  representation  of  a 
basic sensor, such as a voltage, current, or frequency 
sensor.  These types of sensors utilize stuck ST nodes 
for stuck fault diagnosis.

Figure 8 shows our BN representation of a sensor such as a 
voltage or current  sensor.   In  the Bayesian network,  these 
sensors  are  connected  on  wires  from  one  component  to 
another.  The wire connection in the figure is represented as 
an Attribute node A (refer to section 5.1, data structures, for 
notations  and  definitions).   These  sensors  are  usually 
continuous-valued  sensors,  as  indicated  by  the  Stuck  ST 
node  present  to  provide  stuck  fault  diagnosis  within  the 
Bayesian network (Section 5.3, Calc_Stuck method).  This 
represents a basic structure for sensors in general, and many 
sensors take this form.

Figure  9:  The  Bayesian  network  representation  of  a 
component type with sensor such as a fan, pump or 
light bulb.  These types of components utilize delta  D 
and stuck ST nodes for their sensors.

Figure 9 takes our sensor representation from Figure 8 and 
adds to it a component to form our BN representation of a 
component plus sensor structure.  This resulting structure is 
used for a component that has a sensor directly monitoring it. 
A physical  example  would  be  the  fan  and  attached  RPM 
sensor in the ADAPT EPS.  The RPM sensor is represented 
in  the Bayesian  network  as  Figure  8 (the right  section  of 
Figure 9), and the fan itself (the component) is represented 
by the rest of Figure 9.  These components may also utilize 
the Delta  D node to provide the short term behavior of the 
component as evidence.  This short term behavior is derived 
from the sensor  S node's readings (Section 5.3, Calc_Delta 
method).

Figure 10: The Bayesian Network Representation of a 
bound sensor (source sensor) S to a change node CH. 
CH depends on both A and H.

Figure 10 represents the basic sensor structure from Figure 8 
with one extra node added: a Change node  CH to provide 
long term sensor behavior  to components that  have at  the 
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very least an indirect relationship to the sensor itself.  Using 
Figure 2 (Section 3) as an example, we would implement the 
CH node  to  provide  long  term  behavior  of  the  battery's 
voltage.   The  CH node  would  obtain  its  values  from the 
CUSUM (Section  5.3,  Calc_Change  method)  of  a  voltage 
sensor downstream of the battery (any voltage sensor who's 
readings  are  directly  influenced  by  the  battery  could  be 
used).  This would be the CH node's bound sensor.  In Figure 
10,  the  sensor  structure  to  the  right  would  represent  the 
voltage sensor, and the  A  node would represent part of the 
battery component's structure.  Note that the battery does not 
have to be directly connected to the voltage sensor.  In the 
ADAPT BN (Figure  18),  for  example,  there  are  currently 
two nodes separating the battery component's structure from 
the closest in-line voltage sensor.

Another example is the new load bank monitoring model in 
the  ADAPT Bayesian  network.   In  this  example,  the  CH 
node  provides  long  term  behavior  of  the  current  sensor 
monitoring the load bank to all the components within the 
load  bank  itself  (in  Figure  10,  the  load  bank  can  be 
represented as the A node for simplicity).  The CUSUM for 
this  CH node  is  discretized  into  many states  representing 
combinations  of  component  failures  within the  load bank. 
This  long  term  behavior  is  then  used  to  pinpoint  abrupt 
continuous  faults  within  the  load  bank,  based  on  this 
behavior along with other evidence from sensors within the 
bank.

Figure 11: The BN representation of a component such 
as a relay or circuit breaker and its sensor.  This type 
of component can be commandable via the C node.

Figure  11  shows  the  BN representation  for  a  component, 
such  as  a  relay  or  circuit  breaker,  and  its  corresponding 
sensor.  Notice how the sensor does not incorporate a Stuck 
ST node.  This is due to these sensors not giving real-valued 
readings.  In the case of relays and circuit breakers, they can 
only be open or closed (so only two readings can be obtained 
from  the  sensors,  either  open  or  closed).   Since  circuit 
breakers tend to remain closed until tripped, it would appear 
over time that these circuit breakers were stuck in the closed 
state.  In fact, if a circuit breaker or relay were to become 
stuck, it would mean here that the component or sensor was 
stuck in a state not considered healthy (closed if a relay was 
supposed to be open for example).

The  Command  C node  introduces  commands  as  evidence 
into the BN.  For a relay, these commands will tell the relay 
to either open or close.

Associated with each node in a Bayesian network model is a 
Conditional Probability  Table (CPT).   The CPT gives  the 
conditional  probability  that  a  specific  node  will  be  in  a 
specific state given the state values of its parent nodes.

H
healthy 0.85
offsetToZero 0.02
offsetToLow, offsetToMid, or offsetToHigh 0.04
stuck 0.01

Table  1:  The  CPT  for  a  health  node  H.  This  CPT 
represents the health of a fan RPM sensor.  States with 
the same conditional probability are grouped together 
for easier reading of the tables.

S
H A zero low mid high

healthy

zero 0.997 0.001 0.001 0.001
low 0.001 0.997 0.001 0.001
mid 0.001 0.001 0.997 0.001
high 0.001 0.001 0.001 0.997

offsetToZero zero, low, mid, or 
high

0.997 0.001 0.001 0.001

offsetToLow zero, low, mid, or 
high

0.001 0.997 0.001 0.001

offsetToMid zero, low, mid, or 
high

0.001 0.001 0.997 0.001

offsetToHigh zero, low, mid, or 
high

0.001 0.001 0.001 0.997

stuck zero, low, mid or 
high

0.001 0.333 0.333 0.333

Table  2:  The CPT for  a  sensor  node  S.  This  CPT 
represents  a  fan sensor.   Sensor  readings  are  after 
discretization clamped to S nodes.

As mentioned in the notation in Section 5.1, a health node H 
gives  the  health  state  of  a  component  or  sensor  in  the 
Bayesian network.   Most  H nodes follow the CPT pattern 
shown in Table 1.  Sensor S nodes represent sensors, and are 
evidence nodes in the Bayesian network.  Sensor readings 
are clamped to S nodes as evidence.  Evidence nodes are the 
way  in  which  ProDiagnose  inputs  information  to  the 
Bayesian network.

ST
H negDelta zeroDelta posDelta

healthy 0.499 0.002 0.499
offsetToZero, offsetToLow, 
offsetToMid, or offsetToHigh 0.499 0.002 0.499

stuck 0.001 0.998 0.001

Table 3:  The CPT for a stuck node ST.  Stuck nodes 
tend  to  have  the  same  CPT  pattern.   This  CPT 
represents the stuck state of a fan sensor.
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Stuck nodes ST are used to make a stuck state more probable 
within the same sensor's health node  H.  The two ST states 
negDelta and  posDelta refer  to  a  negative  or  positive 
change, respectively, in the sensor  S node's sensor reading. 
The zeroDelta state represents a stuck state.  After the SSD 
(tSSD) has been reached, this state will be clamped in the ST 
node.   When an  ST node  is  clamped to  zeroDelta,  the  H 
node's state has a very high probability (99.8%, Table 3) of 
being stuck, and since the ST node is directly connected to it, 
it yields great influence over the most likely value of the H 
node.  We have equal conditional probabilities for the stuck 
state in the  S node, Table 2, to make sure that the  S node 
itself cannot yield any considerable influence on the H node 
being stuck.  The one exception is when the sensor state is 
zero (Table 2).  The very low conditional probability here for 
the stuck state prevents false stuck faults for sensors that can 
be  nominally  reading  zero  continuously,  such  as  RPM 
sensors (the example CPT shown in Table 2).

CH
H A low nominal high

healthy

zero 0.998 0.001 0.001
low 0.998 0.001 0.001
mid 0.001 0.998 0.001
high 0.001 0.001 0.998

OffsetToLo, 
offsetToHi, or 
offsetToMax

zero, low, mid, or 
high

0.333 0.333 0.333

stuck zero, low, mid or 
high

0.333 0.333 0.333

Table 4:  The CPT for a change node CH.  This CPT 
represents  the  general  layout  of  CH nodes.   The 
conditional probabilities for all non-healthy states of the 
H node will always be equal.

Change  nodes  CH are  used  to  provide  extra  evidence  for 
components  in  the  BN  that  have  states  which  cannot  be 
properly  determined  by  other  evidence  alone  (similar  to 
Delta  D  nodes).   An  example  is  trying  to  pinpoint  a 
component  failure  in  a  bank of  components,  using only a 
single current sensor that monitors the current flow entering 
the  entire  bank.   A  CH  node can  give  us  extra  evidence 
related  to  how much the  current  sensor  changes  during a 
component failure in the bank using CUSUMs.

A  CH node  will  always  be  in  a  nominal state  when  it's 
CUSUM  is  near  zero,  implying  no  distinct  long-term 
behavioral changes.  In Table 4, the CH node has two other 
states,  low  and  high.  It is worth noting that  CH nodes can 
have as many states  as needed (in the load bank example 
stated above,  the  CH  node would need one state  for  each 
component in the bank).

6.2  The Bayesian Network in Action

Figure  12:   The  marginal  distributions  for  health  H 
nodes  health_fan_component  and  health_fan_sensor 
as  well  as  the  actual_fan_speed   attribute  A  node 
(same  representation  as  in  Figure  9,  a  fan  and  its 
sensor).  The actual_fan_speed A node represents the 
actual state of the fan's blades.

Figure 12 represents the current states for select nodes of a 
fan component and sensor (same structure as Figure 9) in an 
example  scenario.  We see  the  most  likely  values  for  the 
health H nodes of a fan component and sensor, based on the 
evidence shown (Figure 12).  Despite being suppressed here 
to  save  space,  the  rest  of  the  Bayesian  network  also 
influences  these  outcomes.   Notice  how  the 
actual_fan_speed A node agrees with the evidence of the S 
node.

Figure  13:   The  marginal  distributions  for  health  H 
nodes  health_fan_component  and  health_fan_sensor 
as  well  as  the  actual_fan_speed   attribute  A  node, 
when  the  fan  sensor's  evidence  (sensor  reading  - 
state) is changed to low.

Suppose  now  that  the  sensor  readings  for  the  same  fan 
sensor  dip  downward  so  that  the  discretized  state  for  the 
sensor  S node  is  now  low (Figure  13).   Assuming  the 
evidence clamped to the rest of the Bayesian network is the 
same as in Figure 12, we see that the most likely value for 
the  sensor's  health  is  now  offsetToLow,  based  on  the 
marginal  distribution for that node (Figure 13).  However, 
there  is  still  enough  evidence  to  suggest  that  the  sensor's 
health  could  be  healthy,  but  with  a  lower  probability. 
Therefore, we say that the sensor's health is offsetToLow.  A 
similar logic applies to the fan component's  health state as 
being healthy.
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Figure  14:   The  marginal  distributions  for  health  H 
nodes  health_fan_component  and  health_fan_sensor 
as  well  as  the  actual_fan_speed   attribute  A  node, 
when the stuck ST node is clamped to the stuck state.

Now we show what happens when ProDiagnose determines 
that a sensor is  stuck.   In  Figure 14, the stuck  ST node is 
clamped  to  zeroDelta,  the  Bayesian  network  name  for  a 
stuck state. Again assuming the evidence in the rest of the 
Bayesian network is the same as in Figures 12 and 13, we 
see that the most likely value for the sensor's health is stuck, 
with  high  probability,  based  on  the  marginal  distribution 
(Figure 14).

Next  we  show  another  example,  this  time  illustrating  a 
Change node CH in a configuration with a battery.

Figure  15:   The  marginal  distributions  for  health  H 
nodes  health_battery  and  health_voltage_sensor  as 
well  as  the  voltage_battery  attribute  A  node,  for 
nominal ADAPT battery behavior.

Figure  15 represents  the  current  states  of  a  battery and  a 
voltage  sensor  downstream from the  battery.   The battery 
component is represented by the H node and three A nodes in 
the left  side  of  Figure  15,  to  the  left  of  the  'Rest  of  BN' 
cloud.   The  Change  CH node  derives  its  state  from 
discretizing  the  CUSUM  from  the  Sensor  S  node 
(sensor_voltage_sensor).   This relationship is illustrated by 
the  source  sensor  arrow  in  Figure  15.   The  S node  is 
considered to be the bounded sensor to the  CH node.  This 
example starts off in a nominal state, with both the battery 
and voltage sensor in a healthy state.

Figure  16:   The  marginal  distributions  for  health  H 
nodes  health_battery  and  health_voltage_sensor  as 
well  as the voltage_battery attribute  A  node, when a 
battery's voltage has dropped enough for the battery to 
be considered degraded.

Figure  16  illustrates  what  happens  in  the  BN  after  the 
battery's voltage starts to drop slightly.  The voltage sensor 
downstream from the battery (right side of Figure 16) is still 
showing a state of 'mid' because the drop in voltage is not 
enough  to  cross  the  threshold  to  a  lower  voltage  state. 
However  the  CUSUM  from  this  sensor  is  showing  a 
decreasing voltage long-term trend (and the CH node's state 
changes from 'nominal' to 'low'), which is interpreted in the 
BN as a degrading battery.   Therefore,  the battery's  health 
state changes from 'healthy'  to 'degraded'.   Notice how the 
voltage  sensor's  health  is  still  'healthy'.   The  next  figure 
shows why this is important.

Figure  17:   The  marginal  distributions  for  health  H 
nodes  health_battery  and  health_voltage_sensor  as 
well as the voltage_battery attribute A node, when the 
voltage sensor is offset.

Figure 17 shows what happens if the bounded sensor to a 
CH node is in an unhealthy state.  In this example, the sensor 
becomes  offset  at  a  much  lower  voltage  reading  than  it 
should be at, and its state changes to 'low' (even though it 
should be at 'mid').  This offset results in the health of the 
sensor changing to the 'offsetToLo'  state.   This offset  also 
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causes a downward trend in the CUSUM being derived from 
the sensor's readings, and this changes the  CH node's state 
from  'nominal'  to  'low'.   However,  because  the  sensor  is 
deemed to be unhealthy,  the  CH node's  state, having been 
derived from the unhealthy sensor's readings, can no longer 
be  considered  accurate.   We  give  equal  conditional 
probability to all states in the  CH node (Table 4) when the 
sensor's  H node  is  showing  an  unhealthy  state  (sensor  is 
unhealthy).  This ensures that the battery component (Figure 
17) is not affected by any one CH node state over another.

7  ELECTRICAL POWER SYSTEM CASE STUDY

Figure 18: The ADAPT Tier 2 Electrical Power System. 
Tier 2 represents the full EPS, which we will refer to as 
simply ADAPT.

7.1  The ADAPT EPS

ADAPT EPS
ADAPT Bayesian 

Network
Name Sym Description Qty per 

EPS
Qty per sensor
Nodes Evidence 

nodes

DC Current 
Sensor it Measures DC 

current in amps 7 3 2

AC Current 
Sensor it Measures AC 

current in amps 2 3 2

DC Voltage 
Sensor e Measures DC 

voltage in volts 12 3 2

AC Voltage 
Sensor e Measures AC 

voltage in volts 4 3 2

Circuit 
Breaker 
Position 
Sensor

ish

Senses whether 
a circuit 
breaker is 
opened or 
closed

9 2 1

Relay 
Position 
Sensor esh

Senses whether 
a relay is 
opened or 
closed

24 2 1

Temperature 
Sensor

te

Measures 
temperature in 
Fahrenheit of 
batteries, 
battery cabinet, 
and light bulbs

15 5 3

Speed 
Transmitter st

Measures RPM 
of the large 
fans

2 5 3

Phase Angle 
Transducer

xt

Measures the 
phase shift in 
degrees 
between the 
sine waves of 
AC current and 
voltage

2 6 2

AC 
Frequency 
Transmitter

st
Measures the 
AC frequency 
in Hertz

2 3 2

Flow 
Transmitter

ft

Measures the 
flow rate in 
gallons per 
hour through a 
pump

2 5 3

Light Sensor

lt

Measures the 
intensity in 
millivolts of 
incoming light

2 3 2

TOTAL 83 43 25

Table 5:  ADAPT EPS sensors, with their quantity in 
the ADAPT Tier 2 EPS.  Also listed are the node and 
evidence node quantities for each sensor.
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The  Advanced  Diagnostics  and  Prognostics  Testbed,  or 
ADAPT,  is  a  real-world  Electrical  Power  System  (EPS) 
located  at  NASA  Ames  Research  Center.   Its  physical 
structure is illustrated in Figure 18.  This EPS is similar to 
electrical power systems found aboard NASA spacecraft and 
aircraft (Mengshoel et al., 2008).   Since Tier 2 represents 
the ADAPT EPS in its entirety, we will refer to it simply as 
ADAPT.

ADAPT Tier 2 (ADAPT) consists of 3 batteries connected in 
parallel through 2 DC → AC inverters to 2 load banks (Poll 
et al., 2007, see Figure 18).  Each load bank has a DC loads 
section that bypasses the inverter.  Reference Table 5 for a 
breakdown of sensor quantity.

7.2  Bayesian Network for ADAPT

Figure 19 shows the ADAPT EPS as a Bayesian network.  It 
currently employs 671 nodes, 789 edges and has a domain 
cardinality of [2, 16],  with an average  cardinality of 2.86. 
The general structure of the BN model is laid out to visually 
mimic the structure of the ADAPT EPS (Figure 18).

8  ELECTRICAL POWER SYSTEM EXPERIMENTS

We first describe the framework, developed at NASA Ames 
Research  Center,  used  in  the  experimental  process  for 
collecting our results.

8.1  The DXC Framework

Figure  20:  The DXC Framework  used for  evaluating 
ProADAPT's  experimental  results.   The  Diagnosis 
Algorithm would be ProADAPT in our case.
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Figure 19: The Bayesian network representation of the ADAPT EPS.  The layout visually is similar to the physical 
system itself.
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The DXC (or DCC as Diagnostic Challenge Competition is 
sometimes  abbreviated)  framework  provides  a  method  of 
interfacing  ProADAPT  with  a  scenario  evaluator  using  a 
common protocol  (Kurtoglu et  al.,  2009a;  Kurtoglu  et  al., 
2009b; Figure 20).

ProADAPT incorporates  the  framework's  API  to  interface 
with the scenario data source, which acts as the environment 
(see  Figure 5).  It also allows ProADAPT to connect to the 
scenario  recorder  for  diagnostic  output.   This  output 
(scenario  results) is  then  processed  using  the  evaluator  
(Kurtoglu et al., 2009a; Kurtoglu et al., 2009b).

For the experiments in this paper we used all 120 scenarios 
from  the  DXC-09  Tier  2  competition  set  for 
experimentation.  Each scenario simulates an actual fault(s) 
of components and/or sensors in the ADAPT EPS.  These 
scenarios  are either nominal,  single,  double or triple fault, 
with various relay and circuit breaker open/close commands 
(Kurtoglu  et  al.,  2009a;  Kurtoglu  et  al.,  2009b).   The 
ADAPT  EPS  starts  in  a  powered  down  state,  in  that  all 
commandable  relays  are  open.   Then  various  relays  are 
closed (and some possibly opened again), depending on the 
scenario.

These scenarios  were  run on ProDiagnose using the latest 
BN  model2.  ProDiagnose  also  competed  in  the  DXC-09 
Competition  under  the  name  ProADAPT3,  and  we  will 
compare our newest results to the ProADAPT results from 
the  competition,  along  with  results  from  other  diagnostic 
algorithms.

For notational simplicity, in this section we will refer to the 
version  of  ProADAPT  that  competed  in  DXC-09  as 
ProADAPT1, and the newest version as ProADAPT2.

8.2  Notation and Definitions

The competition results are based on multiple metrics, which 
we will now briefly summarize.

A false positive refers to detecting a fault when a fault is not 
present.  A false negative refers to not detecting a fault when 
a fault is present.  Reporting a fault many seconds after the 
fault  injection occurs  is acceptable,  so long as the fault  is 
reported before the scenario ends.

Detection  accuracy  is  the  percentage  of  correct  fault 
detections when taking into account the total percentage of 
false positives and false negatives.  A detection accuracy of 
100% would imply a 0% false positives and false negatives 
rate (but may not necessarily imply 0  classification errors,  
see below).

2The BN file used was the latest as of August 8th, 2009, and is 
named adapt10f3_v5c.net.  Discretization and other relevant 
information is kept in the file v5cT2.plog.
3The BN file used for the DX 09 Competition in this paper is named 
DXCT2.net (April 6th, 2009).  Discretization and other relevant 
information is kept in the file DXCT2.plog.

Mean  time  to  detect  refers  to  the  time  elapsed  between 
specific fault injection and first detection of  a fault.  Mean 
time to isolate is similar to the mean detection time, except 
that an  isolation refers to identification of the  correct fault. 
Diagnosing the wrong fault will result in an isolation time 
equal to the difference between the initial fault injection time 
and the end of scenario time, which is usually a very high 
number.

Classification errors  refer to the number of  misdiagnoses 
made during an  entire  scenario  run (all  120 in  this  case). 
Misdiagnoses  include  both  false  positives  and  false 
negatives.  It is possible to have multiple classification errors 
per  scenario.   Classification errors  that  occur  after a  fault 
injection,  such as  diagnosis  of  an incorrect  fault,  will  not 
result  in  a  false  negative  or  positive,  as  these  types  of 
classification errors  still  count as a  correct  detection  (of  a 
fault).   An example  is  a  fault  in  which  a  voltage  sensor 
becomes stuck at 0.  If the diagnosis is that INV1 (inverter) 
failed, then we get hit with 2 classification errors, one for not 
isolating the correct fault (voltage sensor being stuck), and 
another  for  isolating  a  fault  that  didn't  exist  (the  inverter 
failing).  Another instance in which classification errors can 
occur is in multiple-fault  scenarios,  in which all faults  are 
initially  isolated  correctly,  but  then  one  of  the  faults  is 
retracted.  Because the other faults are still being correctly 
diagnosed,  the  retracted  fault  is  “forgotten”,  as  the  last 
diagnosis output before the end of the scenario is the one 
used for accuracy (so if all these faults were retracted at the 
same  time,  the  last  diagnosis  would  show  all  correct 
isolations).

Mean CPU Time is a measure of mean CPU resources used 
by ProDiagnose over all scenarios run, and Mean Peak RAM 
Usage measures the maximum amount of memory needed 
by ProDiagnose averaged over all run scenarios.

8.3  Results for the DXC-09 Competition - ProADAPT1

The table on the next page shows the results from the DXC-
09 Competition:
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Looking  at  Table  6  from  the  DXC-09  Competition, 
ProADAPT1 did very well in all  categories.   ProADAPT1 
had the lowest number of classification errors with 76, along 
with the mean fastest mean isolation times at just under 12 
seconds.   It  also  had  the  highest  detection  accuracy  at 
88.33% (Ricks and Mengshoel, 2009).

ProADAPT1 is characterized by very low CPU and RAM 
usage, which makes it ideal for systems with tight resource 
constraints, such as those found on various types of aircraft 
and spacecraft.

It may seem that an 11 second mean isolation time is high 
(despite being the fastest time), but this is in large part due to 
stuck  faults,  as  ProADAPT1  waits  to  ensure  with  high 
confidence that a sensor is indeed stuck before submitting a 
diagnosis for it.  Faults involving components such as fans 
and pumps usually will have high isolation times also, due to 
a similar principle of waiting (Ricks and Mengshoel, 2009). 
In this case, ProADAPT1 waits until the component's sensor 
readings trip a certain  threshold,  and the diagnosis is then 
made based on other  node influences  within the Bayesian 
network (The delta D node in Figure 9 aids the accuracy of 
this process).   Another cause of higher isolation times are 
transients caused by the fault injection itself.

Please reference (Kurtoglu et al., 2009a) and (Kurtoglu et al., 
2009b) for more information on these metrics.

8.4  Results for updated BN - ProADAPT2

The results in this section use the same scenarios as those 
from the  DXC-09 Competition.   ProDiagnose  is  using an 
updated  BN  model  and  Prolog  definitions  file,  giving 
ProADAPT2.

ProDiagnose: Latest ADAPT Tier 2 Results
Using DXC-09 Industrial Track Tier 2 Scenarios

ProADAPT1 ProADAPT2

False Positives 7.32% 0.00 %

False Negatives 13.92% 1.25 %

Classification Errors 76 20

Detection Accuracy 88.33% 99.17 %

Mean Time to Detect 5973 ms 2096 ms

Mean Time to Isolate 11988 ms 10961 ms

Table  7:  ProDiagnose experimental  results  using the 
updated ADAPT BN Model.

A large weakness with the ADAPT model used during the 
DXC-09 Competition had  to  do with a  restricted  physical 
loads model.  Components in the ADAPT testbed such as 
light bulbs were not accurately represented, and thus did not 
give accurate  states.   The new physical  loads model fixed 
these problems, and also added new evidence in the form of 
a change  CH node for  each bank that  monitors change in 
current  leading  into  the  bank  itself.   This  node  aids  in 
accurate  detection  of  faults  within  the  banks,  especially 
multiple  fault  scenarios  in  which  before  there  sometimes 
wasn't enough evidence to avoid ambiguity.

This new BN also fixed a flaw in stuck detection having to 
do with sensors monitoring components that were either off 
or  failed.   Fan  sensors  for  example  will  show  0  RPM 
consistently when the fan blades are not spinning, but this is 
not stuck behavior.   The new BN model allows for more 
accurate  stuck detection.  The older BN often would miss 
stuck  faults  completely,  decreasing  our detection  accuracy 
but also decreasing our average isolation times, due to the 
missed  diagnoses  not  contributing  to  our  isolation. 
However,  the  new  BN  model  combined  with  generally 
higher  diagnostic  accuracy  actually  resulted  in  an average 
isolation  time  that  is  a  second  lower  than  the  DXC-09 
results. The DXC-09 results factored in many false negatives 
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DXC-09 ADAPT Industrial Track Tier 2

ProDiagnose
(ProADAPT1)

FaultBuster HyDE RODON Stanford Wizards Of
Oz

False Positives 7.32% 81.43% 0.00% 54.17% 32.16% 51.06%

False Negatives 13.92% 24.00% 30.00% 9.72% 5.19% 9.59%

Classification Errors 76 130 121.57 84.01 110.55 159.25

Detection Accuracy 88.33% 42.50% 80.00% 72.50% 85.00% 74.17%

Mean Time to Detect 5973 ms 14099 ms 17610 ms 3490 ms 3946 ms 30742 ms

Mean Time to Isolate 11988 ms 37808 ms 21982 ms 36331 ms 14103 ms 47625 ms

Mean CPU Time 2922 ms 5798 ms 29612 ms 80261 ms 963 ms 23387 ms

Mean Peak RAM 
Usage

6539 KB 10261 KB 20515 KB 29878 KB 5912 KB 7498 KB

Table 6: Results of the DXC-09 Industrial Track Tier 2 Competition.
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from  missed  stuck  faults  that  the  new  model  picked  up 
correctly.

The new BN model also incorporates a more generalized XT 
sensor  model.   The  phase  angle  measured  using  these 
sensors  are  not  always  behaviorally  consistent  across 
scenarios,  and  thus  this  sensor  was  at  times  coming  up 
incorrectly as faulty, increasing our false positive rate.  This 
fix (combined with the new loads model) decreased our false 
positive rate to 0%.  This helped push our detection accuracy 
past 99%.

Our mean detection times dropped by over 50%, in part due 
to the wider range of faults ProADAPT2 was now able to 
properly detect.  The component faults in the load banks can 
usually  be  properly  detected  within  500ms  (faster  if  no 
transients are present).   Our >99% detection accuracy is a 
testament  to  the  new  loads  model  and  updated  stuck 
detection (Table 7).

8.5  Raw Detection Performance (Inference)

Stuck detection and other  factors  that  pop up during fault 
diagnoses  can  often lead  to  longer  detection and  isolation 
times.   In  disregarding  these  factors,  we  can  get  a  good 
indication of ProDiagnose's inference times.

We  ran  ProDiagnose  through  Tier  2  scenarios  from  the 
DXC-09  Competition,  including  only  those  that  involve 
faults  that  a  DA can catch immediately without any other 
factors involved.  ProDiagnose will calculate and report the 
same fault each time sensor readings come in after the fault 
injection (not including fault withholding due to parameters 
like  tCO,  and  providing  all  evidence  remains  the  same). 
Because of this, we were able to take the detection times as 
being the diagnosis after the second sensor sample from the 
fault injection.

Raw Fault Detection Times
Fault Type Isolation Time

ISH236=stuck 1 ms

ESH272=stuck 1 ms

ST516=offset 1 ms

ESH284=stuck 1 ms

E281=Offset 1 ms

Average 1 ms

Table  8:  Fault  detection times for  faults  that  are  not 
influenced by stuck detection.

ProDiagnose consistently had detection times at 1 ms.  This 
though  is  the  smallest  unit  of  time that  can  be  measured 
before  Java starts  to  break  down in accuracy.   Also ACE 
inference times increase as the BN model increases in size. 
However,  when  factoring  in  any  CPU  time  used  by  all 
ProDiagnose functions outside of the inference engine, it is 

very probable that ProDiagnose's inference times are in fact 
< 1 ms on average.

9  CONCLUSION AND FUTURE WORK

There  is  need  for  methods  that  bridge  the  gap  between 
complex  systems,  including  electrical  power  systems,  that 
are hybrid and may also exhibit other challenging behaviors. 
Most  existing  diagnostic  technologies  typically  have  a 
discrete  or  continuous  foundation,  and  diagnostics  in  a 
hybrid,  complex setting is an important  topic for on-going 
research.   In  this  paper,  we  have  presented  methods  for 
hybrid diagnosis by means of discrete probabilistic models 
(Bayesian networks and arithmetic circuits), and specifically 
discussed  novel  techniques  for  handling  continuous  stuck 
faults  and  continuous  offset  faults.   These  techniques  are 
embedded in the ProDiagnose algorithm. 

In experiments with the ADAPT EPS, ProDiagnose turns out 
to  compute  highly  accurate  diagnoses  by  means  of 
probabilistic models.  It  is characterized by quick detection 
and  isolation  times,  with  a  high  degree  of  accuracy  for 
detecting faults.  Part of this success was due to the presence 
of certain BN nodes (Delta nodes, Stuck nodes, and Change 
nodes)  that  address  the  challenges  discussed  above  and 
which are additions compared  to  an earlier  version of  the 
ADAPT BN (Mengshoel et al. 2008). These novel BN nodes 
are  coupled  with  dynamic  processing  in  ProDiagnose  to 
calculate  their  discrete  states  from  continuous  sensor 
measurements.   An improved physical  loads model  in the 
ADAPT BN also helped to greatly improve performance and 
accuracy in the most recent results reported here. 

Future  work  includes  adding  dynamic  Bayesian  network 
(DBN)  capabilities  to  ProDiagnose  in  order  to  improve 
detection accuracy,  especially for fault types not discussed 
here.   Much  of  this  research  will  be  focused  on 
implementing reliable DBN models from the static models 
currently used, as well as possible computational challenges 
associated with DBNs.
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