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Abstract—Multivariate Time-Series (MTS) are ubiquitous,  the database that correspond to a “go-around” situation in
and are generated in areas as disparate as sensor record- which a landing has been aborted and the aircraft has been
ings in aerospace systems, music and video streams, medical directed to circle back for another landing

monitoring, and financial systems. Domain experts are often . . . . .
interested in searching for interesting multivariate patterns ~ One can find such situations using a subset of the fields
from these MTS databases which can contain up to several in the time series database where the event “Landing Gear
gigabytes of data. Surprisingly, research on MTS search is Retracted” occurs just after altitude descends below 2000
very limited. Most existing work only supports queries with  feet, Another search for indicators of an “unstable appdac

the same length of data, or queries on a fixed set of variables. . jnc|ude searching on parameters such as speed, descent
In this paper, we propose an efficient and flexible subsequerc . . . . .
search framework for massive MTS databases, that, for the ~fate, vertical flight path, and several cockpit configuratio
first time, enables querying on any subset of variables with ~parameters. Again, this search would be done on about a
arbitrary time delays between them. We propose two provably  dozen parameters out of the 1000 parameters that may be

Ecgsrggtsjéggg't(gg;) 58@%"{198 etg"’a iﬁiﬁgﬁn;ojn é|1n)g ??”eﬁ;rt]galgs recorded on the aircraft. The events would be separated in
(MBR) to organize the subsequences, and (2) &ist Based tlmg and may or may not occur on a part!cu.lar flight.
Search (LBS) algorithm which uses sorted lists for indexing. Fig. 1 shows an MTS from a real aviation dataset of
We demonstrate the performance of these algorithms using tw ~ CarrierX *. Each MTS contains the data collected from
large MTS databases from the aviation domain, each containig multiple sensors of an aircraft during a flight. We plot only
several millions of observations. Both these tests show thaur six variables for clarity. In the figure, the-axis refers to

algorithms have very high prune rates (~95%) thus needing . . . .
actual disk access for only less than 5% of the observations. the different parameters while thg-axis refers to time.

To the best of our knowledge, this is the first flexible MTS  Typically, queries by the analyst may look like:
search algorithm capable of subsequence search on any subse 1. Return all flights where the altitude monotonically
of variables. Moreover, MTS subsequence search has never changes from 10000 ft to 5000 ft, speed decreases from
been attempted on datasets of the size we have used in this 300 knots to 200 knots, and landing gear is down. Such
Paper. a combination of parameter values may be precursors to
unstable approaches while landing.

2. Return all small-cap stocks whose daily price drops

Many data mining application domains generate largehy 10% over 3 days just before a strong sell-off (30% over
multivariate time series (MTS) databases. Examples of0 days) in at least: out of K stocks and then increases
such domains include earth sciences, music, video, medicaly at least 15% over the remaining 30 days. This could
monitoring, aerospace systems, and financial systems. Dge a signature indicative of insider-trading in an attenopt t
main experts are often interested in searching for pagicul unfairly control the share prices in the specific sector.
patterns—waveforms over subsets of variables with some None of the current research in MTS search [1][2][3][4]
delays between them. support the types of queries described here. Current algo-

The motivation for this research comes from applicationsithms in this area require that the query be of the same
in any domain where an entity can be described as a multtength as that of the entire MTS and that all queries be on a
variate sequence and one needs to search for entities havifiged set of variables (usually all the variables). Addititip,
specific characteristics defined by a particular combimatio current algorithms do not allow for any time lag between the
of some or all of those features. Suppose that an airline hagariables in the query.
a large database of one million flights of multivariate time | this paper we address the following problem: given a
series that show the settings of the control surfaces (iysual|arge database of multivariate time series data represgnti
discrete signals), the pilot inputs (discrete), as welll&s t entities, we wish to provide a search technology that allows

heading, speed, and readings from the propulsion systemgalysts taapidly identify entities with particular character-
(all usually continuous). In many such databases, the numbe

of recorded parameters from a mOder_n aircra_ft iS_ nea'_’ly IWe cannot release the name of the carrier due to the datanghari
1000. The safety analyst may want to find all situations inagreement.

I. INTRODUCTION



5000 II. RELATED WORK

In general, prior research on MTS is limited. Yang and
Shahabi [1] present a PCA-based similarity technique for
comparing two MTS. Given a database of MTS this tech-
nique first computes the covariance matrix between two
MTS. Then eigenvectors and eigenvalues of the covariance
matrix are used as a measure of similarity between the
MTS. This work is extended in [5] in which the authors
propose the use of kernel PCA instead of traditional PCA.
= Distance-based index structure for MTS has been discussed

by Yang and Shahabi [6]. The work by Lest al. [4]
. L Sample MTS dataset and « refers to different addresses the problem of searching in multi-dimensional
s el a0 U o el Lo e osequences. The mulidimensional sequence is partiioned
are also shown. into subsequences, packed into MBR and then indexed using
the R*-tree scheme. Vlachost al. [3] proposes an index
structure for multi-dimensional time series which can Hand
multiple distance functions such as LCSS and DTW.
istics such as the scenarios described above. We assume thatrpere exist a plethora of work on subsequence search for
the user supplies a query consisting of waveforms over seypjyariate datasets (UTS). Popular techniques for peifagm
eral variables — typically substantially fewer than theatot enijre length time series search include the ones propgsed b
number of variables present in the database. AdditionaIIyKeogh and Ratanamahatana [7] and the references therein.
the user may choose (at search time) how many and whichne of the early works of subsequence matching is by
variables to queryi.e, this need not be fixed in advance ggjoutsoset al. (FRM) [8] in which the authors have
(during index-building time). This requires tremenddles-  roposed a Discrete Fourier Transform (DRT)ree based
ibility of the search algorithm. Also the query may coveringexing scheme. In this algorithm, input time series i firs
any desired length of time up to the maximum length of they oken into overlapping window sequences of fixed length
available time series. The waveforms may have some timesng then 6 DFT coefficients are extracted from each se-
shifts between them. The user also supplies a threshold fQfuence. These 6-dimensional representations are theagack
each variable describing the maximum allowable differencgyig 3 minimum bounding rectangle (MBR) and indexed
between the query variable and the corresponding variab_le iusing anR*-tree data structure. On receiving a query, the
any matches that are returned. The MTS search algorithaame process is applied (extracting DFT coefficients) and
must return all matches with no false dismissals or fals§hen searched in thé*-tree. Candidate MBRs are then
positives. The specific contributions of this paper are agpecked with the actual database to remove false alarms.
follows: We compare this algorithm with our algorithms in the

(1) We propose two algorithms — afii*-tree based search eyperimental section. Mlual approach to this one, proposed
algorithm (RB5), and a list based search algorithia{S)  py Moon et al. [9], is to decompose the input time series

for efficient searching of massive MTS subsequences defingfio gisjoint sequences and the query sequence into sliding
on an arbitrary subset of variables with arbitrary time g&la  \yindows. However, as the size of the time series increases
(2) We have demonstrated the usefulness of our algorithm by, millions of points, storing all the points in the index

searching for this “go around” pattern in a real commercialmay become challenging. To alleviate this problem, Traina

aviation dataset. et al. [10] recently proposed a technique of using multiple
(3) To the best of our knowledge, the datasets that we havgsference points to speed up the search. Our algorithm is

used for testing the perform_ance o_f our algorithms are muchiiferent than theirs in the following sense: (1) [10] only
larger than those reported in the literature. talks about range queries whereas we can perform arbitrary
The rest of the paper is organized as follows. In Section llsubsequence matching and nearest neighbor search, and (2)
we discuss work related to this area of research. In Sectionnlike [10] which only works for univariate time series, we
ll, we describe the notation and give a precise definitioncan perform multivariate subsequence search on an asbitrar
of the MTS search problem. In Section IV we describe anumber of variables and arbitrary time delays among those
fast UTS subsequence search algorithm leading to the MT®ariables. Several other techniques exist for subsequence
search algorithm in Section V. We analyze the algorithms inmatching [11][12][13].
Section VI. In Section VII we demonstrate the performance At this point, we would like to mention that none of the
of our algorithm experimentally. We provide conclusiond an existing algorithms for multivariate search is applicalvle
descriptions of future work in Section VIII. our problem setting. This is primarily because most of them
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require that all the variables be used for the query. In our « time delays);, ds, ... between the sequencesGhvar

problem, we query over an arbitrary subset of variables angve are now in a position to defineNN for MTS search.
thus, to apply the existing algorithms, we need build and Definition 3.3 ¢-NN MTS search)Given M_DB,
store a separate index for all possible combinations oftinpua  multivariate query @, and user defined thresholds
features. For example, the re@harrierX dataset that we ¢ — {€1,€2,...} for each variable inQ, MTS e-NN returns
have used in our experiments has 16 variables, and therefoge taple {MTS_i, Begin_of fset,, Begin_of fsets, ..., }
to allow any subset of variables in the query, we need tasych that (1) UTS-NN is satisfied by every feature i@,
build and store2'® = 65536 indices which is impractical (2) the subsequences are found in the same MTS file, and
for storage and computational reasons. This motivates us {®) the Beginoffset's are delayed by, d,,... in which
provide a different solution to this problem which alleest Begin_of fset; denotes the starting time point for Q.seq
these issues by building a much smaller number of indices
(linear in the number of features). IV. FAST UTS SUBSEQUENCE SEARCH
When a query) defined in Section 11I-B contains only
one variable, it becomes a univariate time series search. Fo
In this section we define the notations that we have USQ@'arity and ease of exposition’ we will start with So|ving
in the rest of this paper and also present a formal problenis problem. We assume there is a minimal length for all
definition. queries and it is set te. Smaller choice ofv provides better
granularity of search while increasing both the indexing an

. . the search time. We first discuss tli&BS algorithm in
First, we define a UTS database. A UTS datalias® B detail and then discuss the salient differences withlaBiS

consists of| D| UTS. For ease of explanation, we :';1ssume<,i|gon,[hm
that each UTS is stored in a separate file; multiple UTS can
also be stored in the same file in other apphcatlons Theé\. Overview of algorithm

i-th file StOfeS a time serieg® = {y{", 45", ...}, where For a univariate query) on thew-th variable, the brute-
eachy,” € R or {0,1}. The superscript refers to the file id force method to find all its-NN is to compare it with
while the subscript refers to the sample point in that filet. Le all subsequences of length(Q) for every offset of time
y@ andy) be two UTS sequences in two different files seriesy® (vi = 1,2,...,|D|), which is time consuming
of U_DB. Then, (1)LS ) denotes the length (number and impractical.
of points) of 4, (2) Y, denotes the subsequence that A classic data mining solution to speed up this process
includes entries in posﬂmm;throughb for UTS in thei-th  is to find a lower bound of the distance measure and
file, and (3)dist(y1*:?) yI(J)a b]) denotes the Euclidean use this bound to prune irrelevant candidates. This lower
distance between two univariate subsequences. bound should be: (1) computationally more efficient than
It is natural to extend this definition to a multivariate computing the distances between all subsequences, and (2)
databasé/_D B in which each file contains a set of vectors. tight (very close) with respect to the original distance, so
Let d be the number of features or attributes across all théhat we can prune sufficiently.
files in M_DB. Denoting vectors of dimensiod in bold, One such technique for deriving a lower bound, also used
we can S|m|IarIy write the MTS stored in theth file as  in the literature [10][14], is using a reference subseqeenc
y® = {Y1Z)7YQ s h Wherey e R or {0,1}% Letw based on the triangle inequality. Fig. 2 illustrates thedas

denote the size ofashdlng window containimgonsecutive  idea of pruning. First, we randomly pick a subsequence

IIl. BACKGROUND

A. Notations

samples of a UTS. R (of the same lengthw), and calculate its distance to
o all the remaining subsequences. Then, we order them by
B. Problem definition their distance taR. Only S; and S, are shown for clarity
We first definee nearest neighborsNN of UTS. in the figure. Note that these two steps are done before

Definition 3.1 ¢€-NN UTS search)Given a user defined the query Q arrives and only need to be done once.
thresholde, U_DB, and a UTS subsequencg of length When a query@ is applied, we calculate the distance
w, (which we call the query), UTS-NN returns all the dist(Q, R). All candidates whose distances are not in the
subsequencess; of length w from U_DB, such that, range[dist(Q,R) — ¢,dist(Q, R) + €] (e.g. S in Fig. 2)
dist(S;, Q) < e. can be pruned. This is due to the triangle inequality:

Our next definition deals with multivariate quety. ) ) )

Definition 3.2 (Multivariate Query)): A  multivariate dist(Q, S2) 2 |dist(Q, R) — dist(S2, R)| > e.
query @ consists of the following components: Finally, for all candidates in this range.§.S; in Fig. 2),

 any (sub)set of variable®.var C {1,...,d} we do an exact calculation to remove the false positives. In

« a set of UTS subsequencé®).seq;} for each variable order to reduce the number of such false positives, we use

i € Q.var, and multiple reference points to build several indices and then



join the candidates from these indices to get the final set gprocessed, all the MBR’s are appended to filer, and the
candidates. We discuss this in detail in the next section. next UTS is processed. Finally, each of theskr;, files are
_ indexed using aRTreeBuild routine and the spatial indices
-€ dist(Q,R) +e .
| | | are saved on disk.
We would like to point out that while Faloutses$ al. [8]

O e @ also use MBR to combine subsequences to reduce the index

R S1Q Sz space, they map each subsequence into 6 DFT coefficients
E > candidate sub ¢85 S») ordered by their dist . while we map each subsequence into a single vaiae
ijgure 2. andiaate supsequen ,02) oraere Yy thelr distance to . . .
a reference subsequenée When a queny? is applied, a range based on Q|stance t9 the _referenc_e pOII‘]t._SO In our case, ea_c_h MBR
dist(Q, R) can be used to prune candidates. is a two dimensional point, leading to better scalability.

Algorithm 1: Build Index for RB.S

B. RBS algorithm details Input: U_DB, w
) Output: Indices Index1, ..., Index,
R*-tree based algorithmiBS) uses the concept of spa-  Initialization : Selectr reference pointsR1, ..., Ry;

tial indexing to store and retrieve time series subsequence begin
for k=1tordo

In order to make this indexing more efficient, we devise for uts i in UTS Databasedo
a novel technique of incorporating the triangular inequal- nMBR + 1; _
ity directly into this R*-tree scheme. We can control the Dist « dist(Ry, yfi's);
i i ; mbr(nM BR) < {uts_i, Dist, Dist,1,1};
amount of. pruning and thg correspondlng search.tlme by MazOf fset o (L(uts i) - w+ 1)
using multiple reference points against which the triaagul for j = 2 to MaxOffsetdo
inequality is applied. To the best of our knowledge, using Dist ¢ dist(Ry,yl“55, 1)
spatial indexing along with multiple global reference fsin [fud, newM BhR} < CheckMC(mbr, Dist);
; ; if ud == 0thennMBR =nMBR +1;
Loerfgrne]e series subsequence search has never been explored mbr(nMBR) < newMBR.
o . . - . Appendmbr to file mbry;

We first discuss the index building algorithm followed iy ppen R"; " BO _:de mbr" _
by the search algorithm. Alg. 1 presents the pseudo-code Szvgizd;k ;g; uild (mbry, )
of RBS build index. The inputs aré/_DB and length L -

of the sliding windoww. The output is a set of spatial
indices Indexy, ..., Index,. In the first step, we seleat . .
subsequences randomB, ..., R, of sizew from U_DB When a query@ of length w is provided, we use the
which we callreference pointsThen, for each subsequence search code shown in Alg. 2. The inputs in this case are
S of lengthw from thei-th UTS @(i)) in U_DB, we find the UTS queryQ, U_DB, the set Of. indices, the _set of
the Euclidean distance of from the k-th reference point '€férence pointsy, ande. The output ise-NN of Q. First,

Ry,. Therefore, each subsequence of lengtigets mapped for each ref_erence poirik,, we find the distancé; of the

to a 1-D point (its distance t&;). Next, we arrange several 9duery from it. Then we perform a range query searth —
such 1-D points into a minimum bounding rectangle or MBR®: Dy, + €} using theRTreeSearchroutine. We call this step

as follows. Each entry of the MBR consists of thes_id thefirst level of pruning. The output of the search code are
min, maz, Begin_Of fset, End_Of fset wheremz‘n;m’j a set of candidate MBR’s which intersect the query MBR.
maz are the minimum and maximum values (here distanced? the second levebf pruning, we intersect the candidate
to Ry) of all points included in that MBRBegin_Of fset MBRs found using different reference points. This reduces

and End_Of fset are the beginning and end time points of the nL_meer of fals_e alarms drqmatically as we show in our
all the elements in this MBR. For any UTS, the first point XPeriments, leading to very high prune rate and very low
included in the MBR is trivially {uts_i, Dist, Dist, 1,1} search time. Once a compact candidate set is found, we do

where Dist is the distance of the first sequence . disk access to retrieve those candidates and remove false

For all other subsequences, we first compitet, and then ~ &larms. _ _

check if adding this point to the existing MBR will increase e now discuss how?BS handles queries longer than
its marginal cost a heuristic proposed by Faloutsesal. @ in the following two cases:

[8]. Due to shortage of space we do not describe it here. « L(Q)=nw (n > 1): We first divideQ into n disjoint

If the new marginal cost (after adding the new point) is subsequences of length and search the indices set for
greater than the old cost (without the point), a new MBR each of them with the threshokj/ﬂn). Finally, we

is started with this new point as the sole entry, else the old  do an exact calculation of full length candidates (over
MBR is updated. Th&€heckMC routine in the pseudo code all n parts) to remove false alarms. The correctness of
performs this task. Once all the subsequencestsfi are this approach relies on the following Theorem [8].



Algorithm 2: RBS ¢-NN Search on UTS V. FLEXIBLE MTS SUBSEQUENCE SEARCH

Input: U_DB, Q, Index,...,Index,, Ri,..., Ry, w, €
Output: e-NN of @

We now describe our algorithm for MTS query search. In

begin our problem setting, we have substantially more varialdes t
eNN + 0; index compared to the number of variables given in a typical
for sz 1—2@2&% ceqr, Ru): query. Moreover, the query variables are not known apriori

CZ,;lk = RT,éeg’ggrc’;(,’ndW{Dk — e, Dy +€)); which severely restricts the use of existing MTS search
CandAll <+ {(5_, Candy}; algorithms. The algorithm we propose here has excellent
forall the {uts_i,b,e} € CandAll do performance for the multivariate queries that we want to

Fetchyfl’ffz’-” from uts_i file on disk; execute.

Dist:dzst(y[‘;;"—i),Q.seql); As before, we split the discussion into two parts. The

| if Dist <ethen eNN < NN ({uts_i,b,e}; index building algorithm is very similar to the one presehnte

for UTS search. Alg. 3 presents the pseudo code. The first

step is to decompose the MTS databageD B into a series

of univariate time series databagésDB®), ... U_DB@,
Theorem 4.1:1f dist(Q,S) < ¢, then for at least one one for each feature in the MTS. Then we selectference
pair of disjoint sequence®; and S; of lengthw, we  points for each UTS independently, and use Alg. 1 to build
havedist(Qi, Si) < //(n). indices for each of thé UTS'’s. Thus ford features, we will

e L(Q) =nw+v (0 <wv < w): We can ignore the haved x » number of sorted lists fol.BS algorithm and

last subsequence of lengthand perform search on g x  number of R*-trees forRBS. We store these indices
the nw disjoint subsequences as described before. Wgjong with the reference points on disk.

only consider the last subsequence when we perform

the exact calculation. Algorithm 3: MTS Build Index usingRBS

C. LBS algorithm details Input: M_DB, w

In RBS the smallest unit of search is an MBR. Now, bogéf’nm: Indea for MTS search
for one reference pointRBS has a prune rate directly ConvertM_DB into U_DBW ... U_DB@:;
proportional to the number of MBR’s searched times the for f=1toddo /1 each feature
number of points in that MBR. Although the search time for L selectrl),..., R for U_DB();
RBScan be very low, large sizes of candidate set increase the Index eachl/_DB/) using Alg. 1.

overall search time to fetch all the potential candidatemfr
the disk. To alleviate this problem, we present another hove
algorithm LBS in which the search unit is a subsequence Given a search quely havingv sequences far variables
in the input space. This algorithm directly exploits the andv—1 time delays between them, the goal of MTS search
triangular inequality to effectively prune bad candidabys algorithm (Alg. 4) is to return all matching multivariate
choosing a random subsequence as a reference subsequemedterns fromA/_DB. To solve this, we first take the first
Moreover, to increase the prune rate further, we have usedariable (call itQ.var(1)) of Q and do a search on the index
multiple reference points. corresponding to featur€).var(1). The FindCandidates
As before, the inputs t&.BS are U_DB and length of function in Alg. 4 performs this search by first finding a
the sliding windoww. The output is a set of sorted lists candidate set from each index file ¢f.var(1) and then
as indices. In the first step, similar ®BS we compute joining them over multiple reference points. This routine
the distances of all the subsequences from a few referendg similar to Alg. 2 (except the disk access part). This
points Ry, ..., R.. We store these distances (as the key)generates an MTS table a§MTS_id, Begin_of fset;}.
along with the offset an&@7'S—id into a list calledIndex,,  Similarly, the next variablel.var(2) is searched on the
for reference poinfZ;. In the next step we simply sort these relevant index. These two searches on the indices cor-
k lists and store them along with the reference points. respond to thefirst level of pruning. At this point we
During searching, when a query of lengthw is pro-  prune the candidates further by joining these candidate set
vided, for each reference poimR;, we find the distance (Cand;2) and noting that (1) all candidates in candidate
Disty, of the query fromRy. Then we collect those candi- 1 and candidate 2 must have the savé@'S_id, and (2)
dates from/ndex; whose key (distance) lies in the range the begin offsets between any two candidates from the two
Dist, + e. This is a direct application of the triangle sets must be delayed by an amodnt The JoinCandidate
inequality. As before, we intersect the candidate sets foroutine performs this join. By thisecond levebf pruning,
all the reference points finally do a disk access to removeve add another column to the table for the second vari-
false alarms. We do not present the pseudo-code here dable {MTS_id, Begin_of fset1, Begin_of fseta}. Note
to shortage of space. that until this point, we have not performed any actual disk



access, and searched only on the indices. We could continlg2 Storage complexity ot BS and RBS
joining the candidate sets and create a compact set foreall th £ 1 Bs we need to insert every subsequence in the

variables in@Q. However, in our experiments (not reported gqteqd |ist for every UTS. Lefl; be the length (number

here), we notice that the size of the candidate set after thgf time points) of any MTS in the-th file. The number of

first two joins is very small and does not reduce further ONgyhsequences for theh MTS is, thereforel} —w-1. Given

joining other candidate sets. We validated this for severajhare ared variables in each of the MTS files, the number

variables in the candidate sets; in most cases, the size gf subsequences to process for ik MTS file is d(T; —
the candidate set was less than 5% of the total number qf + 1). For |D| total MTS files, we get the total number

subsequences. Thus, heuristically it becomes redundant i subsequences adz|.D| (T; — w + 1). For r reference

search for the remaining variables in the index. Instead, we . =l ; |D|

do a disk access to retrieve all candidates fr@mmd;» to points, the overall storage complexity @3(rd ., (T; —
12 B |D| :

remove the false alarms. The resulting subseque@eesl +1)) - _O(Td Zi‘:[l)‘Ti)' For RBS, the index storage

are the true nearest neighbors ©f considering the first Complexity isO(rd >_;~; M;), where)M; are the number of

two variables. We continue to search the remaining variableMBR'S created from the-th MTS. Since in generali/; <

Q.var(3 : v) by retrieving them directly from the disk after 1i» RBS has a much lower index storage complexity.

noting that they must come from the same MTS and satisf)t. Running time of.BS and RBS

the specified time delays. ] S )
For LBS, the index building time is proportional to the

number of distances computed for each subsequer(d@e:-
w—+1). Ford variablesy reference points and| MTS files,

Algorithm 4: MTS ¢-NN Search usingRBS
Input: M_DB, Q, Index, R1,...,Ry, w, €

Output: e-NN of Q f[he ovgrall runnin [y‘me for inserting all the elem‘%Tts ie th
begin index is O(wrd) .1 (T; —w + 1)) = O(wrd ), Z; T;).
e-NN <« 0; i IDI rp
for i — 1 to Qvar do /] each feature Moreover, smcefrdzi:l(ﬂ w + 1.) elementg need to
| Cand; « FindCandidates(Q.var(i)); be sorted, the overall running time is the maximum of the
Cand « N%?*"~ JoinCandidates{Cand;, Cand; 1, 5:) sorting time and the m_sertlon time. FBfBS, we ne_ed to do
for ¢ € Cand do /1 remove fal se positives some extra computation for checking the marginal cost of
Fetchc from i-th MTS Disty = dist(c.seq1, Q-seq1); each point. Let the time required for it be Therefore, the

Distz = dist(c.seqz, Q-seq2); overall time complexity isQ((w+\)rd |2} (T, —w-+1)),

: where we have ignored the time to inséft MBRs in the
if Dist; < e; and Dista < e2 and ...then R*-tree.

L NN« eNN Ufed, 7 The query time for both the algorithms is bounded by:
O(max; |Cand;|) + O(w|Cand|), where the max is taken
over all the candidate sets and the second term reflects the
time for actual disk access and exact computation.

VI. ANALYSIS OF ALGORITHMS

In this section analyze the properties of the algorithms. D- Choice of reference points

A. Correctness of.BS and RBS The choice of the reference points is crucial to the
. performance of our algorithms. From Th. 6.1, a padhts
Theorem 6.1:Both LBS and RBS algorithms are cor- ot 4 potential candidate to be the nearest neighbgp f
recti.e. they guarantee no false dismissals. - _ |dist(Q, R)—dist(S, R)| > ¢, whereR is an arbitrarily cho-
Proof: The proofis based on the triangle inequality. For sep, reference point. This is because, by triangular inétgual
a reference p_omR, qgeryQ anq any a_rb|trary.subsequence dist(Q, S) > |dist(Q, R) — dist(S, R)| > e too. Therefore,
S, we can write by virtue of triangle inequality: such anS cannot belong to the set of nearest neighbors of
\dist(Q, R) — dist(S, R)| < dist(Q, S). Q. If, on the other handl-dist(Q,R) — dist(S,R)| < e,
then we cannot pruné since dist(Q,S) can be greater
Now for any query@ which belongs toe-NN of S,  or less thare. Therefore, thegoodnesf R can be eval-
dist(Q,S) < e. Combining, we get uated based on the size of the following s8t:= {S :
. i . |dist(Q, R) — dist(S, R)| < e}. Minimizing the size ofS
[dist(Q, ) = dist(S, R)| < dist(Q, 5) < ¢ gives a goodR. However, in the above formulatior is
i.e. dist(Q,S) < e = |dist(Q, R) — dist(S,R)| < e =  typically unknown until query time, making the optimizatio
dist(Q,R) — e < dist(S,R) < dist(Q,R) + €. Since in  problem unsolvable. Our heuristic is to choose multiple
both LBS and RBS, we retrieve all sequences from the reference points randomly from the database with the hope
index in the rangelist(Q, R) + ¢, both these algorithms that each such point will prune many candidates and we can
guarantee no false dismissals. m  only work with the intersection of these sets. Our extensive
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Figure 3. Variation ofp and¢ (mean and std dev) for differemt, averaged  Figure 4. Variation ofp and¢ (both mean and std dev) with the number of

over ten queries for random walk dataset. Left column shews. p and reference points, averaged over ten queries for random dathset. Left

right column shows vs. p for w = 128, 256, 1024 from top to bottom column showse vs. p and right column shows vs. p for |r| = 1,2,3

respectively. In most case$,BS shows higher prune rate while prune from top to bottom respectively. In most casés3.S shows higher prune

rates of RBS are comparable td&'RM . Also the running time of all the  rate while prune rates dRBS are comparable té&"R)M . Also the running

algorithms are comparable; in most case£3S has the least search time. time of all the algorithms are comparable; in most cageB,S has the
least search time.

experimental results show the effectiveness of this simple
heuristic by choosing 3-5 reference points (see Fig. 6 an§12 and 3 respectively. For each choicewfand ¢, we
Fig. 4). have experimented with five differeat The choice of each
€ is such that the selectivityi.€. actual number of nearest
neighborsT) ranges between0=6 ~ 107! [8]. p and t

To validate the performance of thé BS and RBS  at each measurement point is an average over ten randomly
algorithms, we have run a variety of tests using both uni-generated queries. We present the results in the nextsectio
variate and multivariate datasets. All algorithms havenbee 2) Results: We summarize the results dfRM, LBS

implemented in Matlab and run on a 64-bit 2.33 GHz quadand RBS in Figures 3 — 6. Fig. 3 shows the average and
core dell precision 690 desktop running Red Hat Enterprisgtandard deviation of andt for eache, over ten queries
Linux version 5.4 having 2GB of physical memory. We havefor the random walk dataset for different valueswof For
measured the following quantities: most of the thresholds, we see that the prune raté B
o p — the prune rate (e— |C|/T), whereC andT are is the highest. Also, the prune rates 8B5S tend to be
sizes of the candidate set and the number of slidingrery close to theFRM algorithm for smaller number of

VIl. EXPERIMENTS

windows reference points. One significant advantage of bbihS
e t —running time and RBS over FRM is that the prune rates for the former
two algorithms can easily be controlled by increasing the
A. Univariate dataset experiments number of reference points; however this increases the

1) Dataset description and experimental setiyge have running time as well. Also, the prune rates for all these
used 2 univariate datasets for testing our algorithms whiclalgorithms increase with increasing due to lesser number
have been used in the literature [8][9] for UTS subsequencef windows to index. Fig. 4 demonstrates the performance of
search. The first dataset is a random walk dataset generattite algorithms for varying number of reference points. As
synthetically (500,000 points). The second dataset iscksto expected, the prune rate increases with increasing number
market dataset having 329,112 entries. We have tested & reference points. We have similar results for the random
algorithms on these datasets: (1) the FRM algorithm usingvalk dataset shown in the Figures 5 and 6. In this case,
the adaptive MBR approach [8], (2BS and (3)RBS RBS has a higher prune rate comparedit8S or FRM.

We have measured andt¢ at varying window sizesuv To sum up, both thd.B.S and theRB.S algorithms offer
(128, 256, 512, 1024) and the number of reference pointan excellent prune rate for UTS seardlB.S offers the best
(1~5). The default values of these parameters are fixed girune rate of all the 3 algorithms compared here, but as
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Figure 5. Variation ofp andt¢ (both mean and std dev) for different, Figure 6. Variation ofp andt¢ (both mean and std dev) with the number
averaged over ten queries for stock market dataset. Lefimoolshowse of reference points, averaged over ten queries for stockehdataset. Left

vs. p and right column shows vs. p for w = 128,256, 1024 from top to column showse vs. p and right column shows vs. p for |r| = 1,2,3

bottom respectively. For this datasét,B.S shows higher prune rate than from top to bottom respectively. In most casés3S shows higher prune

FRM or LBS. Also the running time of all the algorithms are comparable; rate while prune rates dRBS are comparable té&"RM . Also the running

in most cases[.BS has the least search time. time of all the algorithms are comparable; in most cageB,S has the
least search time.

discussed before, suffers from large storage cost. On the
other hand,RBS uses MBRs to group similar points and US Regional carrier dataset (CarrierX): The second
hence can reduce the Storage cost dramatica”y_ In mar@ataset is a real life commercial aviation dataset of a US
cases, this reduces the search time as well. However, sinéegional carrier consisting of 3,573|@|) flights. Each flight
the unit of search is an MBR (containing several points)contains 46 variables. Domain experts identified a subs@t of
and not individual points (as i BS), the prune rate of Vvariables which are important. There are 22,207,852 tuples
RBS is lower thanLBS. It also needs to be mentioned For all the multivariate experiments, we have used-
that if the variables are not normalized, the MBR creationL(Q) = 256 and 3 reference points for bofh3S andRBS.
heuristic (-adaptive in [8]) decides on the density of each 2) Results:We have tested 5 randomly chosen queries,
MBR based or. Too high a value of packs more points per each with three different thresholds. For each query and
MBR, reducing the number of MBRs. This, in turn, reducesthreshold combination, the selectivities of each ranges fr
the prune rate. Lower values effragments the MBRs to  10~7 ~ 1075, We do not present the thresholds for each
only a few points in each. This increases the prune rate butariable here due to shortage of space.
increases the index search time. We test with differentegalu  The performance results @fBS and RBS on CMAPSS
of e during building indices and always choose @m the  and CarrierX are presented in Table |. The second column
middle range of those reported here. refers to the five different queries we have run along with
the variables for each query. The next three columns show
the number of candidates generated for the first variable
1) Dataset description:We have used two large multi- (Cand;), the second variableClands), and after joining
variate datasets for demonstrating the search capabitifie these two candidate sef$und,» both for LBS and RBS.
LBS and RBS in the multivariate domain. To the best of Column C....: is the actual number of these candidates
our knowledge, these multivariate datasets are much largevhich are found to be less than the threshold after doing
than the datasets used in the literature for multi-dimeradio the exact calculation. The smaller the size(dfnd, 2, the
time series search. The datasets are described next. fewer the number of actual disk accesses necessd\iN
C-MAPSS dataset The first dataset is simulated commer- column refers to the actual number of nearest neighbors of
cial aircraft engine data. The dataset contains 6,87P|}= the query after taking all the variables and time delays into
full flight recordings sampled at 1 Hz with 29 engine andconsideration. The last two columns show the prune rate
flight condition parameters. This dataset has 32,640,964 = Cand;2/T and the query time fol.BS. Since the
tuples. We have tested our algorithm with 16 variables onlyquery times forRBS are very similar, we do not report

B. Multivariate dataset experiments



240, 5000,

them here. For this experimental setup, the index building |

time for LBS and RBS on theCarrierX dataset are 7 hrs 2 o0

and 9 hrs respectively. 180 3000
These results show that for the two large multivariate 2009

datasets, for different queries and thresholds, the prun i
rates are very high~ 95%). Also, we notice that the
sizes of the candidate sets are smaller foBS than  Figure 7. Typical pattern for “go around” iGarrierX dataset. Left plot
RBS for all the queries thereby generating fewer falseshows airspeed (knots) vs time while right plot shows alttufeet) vs.
positives. However, the storage requirement laBS is
non-trivial. For example, for CarrierX, we need to index
approximately 22 million distances using each reference
point per UTS. The total storage requirement for the
index will be (22,000,000 (4+4+4)/(10241024) =~
250 MBytes, for each UTS, assuming we store
{Dist, MTS_id, Begin_of fset} for each window o
sequence as a float of (4+4+4) bytes. RS, let's assume Figure 8. Examples of “go arounds” detected by our multiatarsearch
that (1) we havelM MBRs on average for each reference aigorithm onCarrierX dataset. The matching regions are highlighted.
point, and (2) we store {min_M BR,max_MBR,
MTS_id, Begin_of fset, End_of fset} for each MBR. In
our experiments we hav®/ = 5,174,619. Then the total returned 10 hits. Fig. 8 shows 2 such flight profiles. We have
storage requirements (assuming 4 bytes for each) will b@lotted the altitude and airspeed on the same graph with the
(5,174,61% (4+4+4+4+4)/(10241024) ~ 98 MBytes, left axis as the airspeed and the right axis as the altitude. A
lower than that ofLBS. Also note that the query time for visual inspection of each of these flights demonstrates the
most of the queries are extremely small considering theisefulness of the algorithm in finding all the “go around”
large sizes of the datasets. patterns (no false positives). The highlighted portionveho
From these results we conclude that: (1) query executiothe matched time series for each of these plots which shows
time of LBS is expected to be much lower thaRBS  that the algorithm is accurate at findisgmilar, not exact,
due to higher prune rate, (28BS has relatively higher motifs, i.e, it has good noise tolerance. The average time
rate of false positives compared fdBS, and (3) the index taken for running the query is approx. 12 secs.
storage requirements dfBS may be significantly higher
compared taRBS. However, the choice oRBS vs. LBS VIII. CONCLUSION
is application dependent. In this paper we present two algorithmsBS and
RBS for finding multivariate subsequences from large
MTS datasets. Both these algorithms guarantee no false
We have used the MTS search algorithm to find flightdismissals.RBS algorithm is novel in the sense that it
landing patterns which result in go around/aborted landingorganizes subsequences into MBRs and uses multiple ref-
In many cases, an aircraft on approach to landing needs terence points to reduce false positives. To the best of our
abort the landing, climb back on full throttle and try the knowledge, using spatial indexing along with multiple gibb
landing again. This can happen due to improper landingeference points for time series subsequence search has
configuration. Currently, most safety analysts study thesaever been explored before. Experiments on two massive
events based on only one variable at a time which geneommercial aviation related MTS datasets show that both
erates a large number of false positives. These so-calletthese algorithms offer excellent prune rates (greater than
exceedences or anomalies can be indicators of safety issu€s95). The CMAPSS and CarrierX datasets that we have
The frequency of such events are tracked as a measure tgsted are much bigger than any of the MTS datasets used
safety of operations. These events can aid significantly irin the literature for multivariate subsequence search. i\s a
understanding the underlying causal factors. application of the proposed method, we have shown how it
We have searched for such incidents in BarrierX can be used for finding a critical safety pattern from real
dataset using two variables: airspeed (in knots) and détitu aviation dataset, that of aborted landings. For future work
(in feet). A domain expert (a retired commercial pilot) haswe plan to implement this algorithm on Map-Reduce and
helped us sketch a typical go around pattern as shown in Figxplore other distance measures such as time warping.
7. The left figure shows the variation in airspeed while the
right one shows the variation in altitude. Using such a query
as the input and thresholds 100, 4000 for the two variables, This work was supported by the NASA Integrated Vehicle
we have searched th€arrierX dataset. The algorithm Health Management Project and a NASA-Google Annex.
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C. Application: finding anomalous flights
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Table |

RESULTS OFLBS AND RBS CMAPSSAND CARRIERX DATASET FOR FIVE DIFFERENT QUERIES AND THREE DIFFERENT THREHOLDS PER QUERY
FOR BOTHLBS AND RBS, THE PRUNE RATES ARE ALWAYS GREATER THAND.95,SIGNIFYING THAT LESS THAN5% OF THE CANDIDATES NEED TO
BE RETRIEVED FROM THEMTS DATABASE FOR EXACT CALCULATIONS.

. [Cand;| [Cands] [Cands] Prune ratep .
Queryid I IBS | RBS H IBS | RBS H IBS | RBS H Ceaact H | NN ‘ TBS [ RBS || '™ (Secs)‘
| CMAPSS |
18400 | 3007504 || 738 | 2477549]] 52 801400 6 6 0.9999 | 0.9741 263
1:(25,27,4) || 81409 | 3263815|| 7567 | 2565309 || 2668 | 1003839 17 10 0.9999 | 0.9675 || 10291
251981 | 3841664 || 81330 | 2702600 || 23694 | 1454776 || 540 297 || 0.9992 | 0.9529 291.8
53585 | 870835 || 14969 | 2390063 || 1411 | 266022 252 6 0.9999 | 0.9914 6.91
2:(20,29,5) || 179850 | 1295644 || 50502 | 2454707 || 13862 | 481096 || 1187 17 0.9995 | 0.9844 || 13091
317793 | 1587719 || 141444 | 2633060 || 58905 | 633137 || 20124 259 || 0.9981 | 09795 || 71012
528470 | 4753958 || 14725 | 306706 || 6171 | 290593 453 8 0.9998 | 0.9906 || 20113
3:(5, 15, 28) || 1137522 | 4861533 || 87236 | 425813 || 63690 | 399972 || 16289 121 || 0.9979 | 0.9871 || 770.18
2115094 | 5101127 || 177992 | 550198 || 174391 | 536022 || 79332 || 1445 || 0.9944 | 0.9826 945.1
T311 | 2013861 || 57144 | 3655449 || 344 | 86193 5 3 0.9999 | 0.9972 231
4:(26,5,27) || 34492 | 2143905 || 193974 | 3894274 || 8034 | 194616 || 2060 337 || 0.9997 | 0.9937 411
115350 | 2317163 || 501207 | 4634240 || 38648 | 609697 || 22034 || 6471 || 0.9987 | 0.9803 99.13
101344 | 4010042 || 74609 | 878140 || 12945 | 114419 18 9 0.9996 | 0.9963 || 14198
5:(5,23,2) || 316085 | 4101886 || 164881 | 1160134 || 49908 | 203004 332 49 0.9983 | 0.9934 121.9
771259 | 4356479 || 337201 | 1521911 || 150020 | 375037 || 4925 479 || 0.9951 | 0.9879 821.1
[ CarrierX |
26235 | 469928 || 55610 | 530788 96 10226 3 3 0.9999 | 0.9995 369
1:(29,23,28) || 79606 | 523225 || 204310 | 716418 || 952 | 14391 15 15 0.9999 | 0.9993 9.41
133451 | 583050 || 374437 | 896063 || 2640 | 20771 27 27 0.9998 | 0.999 15.58
17338 | 1120516 || 16541 | 74930 450 | 26361 3 i 0.9999 | 0.9987 28.56
2:(8,28,27) || 48149 | 1174920 || 62316 | 267710 || 3595 | 92246 7 3 0.9998 | 09957 ||  119.32
83177 | 1218440 || 1577348 | 3028623 || 54214 | 754404 885 9 0.9974 | 0.9645 ||  694.94
935844 | 870535 || 223138 | 391564 || 71342 | 94594 || 12318 7 0.9966 | 0.9955 69.4
3:(38,8,29) || 1500995 | 1369274 || 379346 | 555599 || 175800 | 213822 || 48395 64 0.9917 | 0.9899 ||  147.69
1760160 | 1564834 || 527712 | 705614 || 277017 | 313020 || 102401 || 269 || 0.9869 | 0.9853 || 197.97
22039 | 2164753 || 13866 | 901583 71 402047 10 10 0.9999 | 0.9811 3.01
4:(6,27,30) || 103096 | 2289089 || 156448 | 1033504 || 2204 | 477704 30 30 0.9998 | 0.9775 17.7
213954 | 2429383 || 351061 | 1196446 | 9408 | 568003 48 48 0.9995 | 0.9733 44.01
1298247 | 2671533 || 184660 | 1649628 || 76445 | 476399 || 47559 2 0.9964 | 0.9776 64.63
5:(28, 8,29) || 1947774 | 3368141 || 205164 | 129643 || 105286 | 29617 || 78467 125 || 0.9951 | 0.9986 92.95
5161965 | 6417365 || 227501 | 1735525 || 168155 | 972349 || 136137 || 882 || 0.9921 | 0.9543 ||  197.27
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