
Embedding Temporal Constraints For Coordinated Execution

in Habitat Automation

Paul Morris, Mark Schwabacher, Michael Dalal*, and Charles Fry**
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

*Stinger Ghaffarian Technologies, Inc. **Dell Services Federal Government
Moffett Field, CA 94035, U.S.A.

Abstract
Future NASA plans call for long-duration deep space
missions with human crews. Because of light-time delay and
other considerations, increased autonomy will be needed.
This will necessitate integration of tools in such areas as
anomaly detection, diagnosis, planning, and execution. In
this paper we investigate an approach that integrates planning
and execution by embedding planner-derived temporal
constraints in an execution procedure. To avoid the need for
propagation, we convert the temporal constraints to
dispatchable form. We handle some uncertainty in the
durations without it affecting the execution; larger variations
may cause activities to be skipped.

 Introduction

Future NASA plans for the next decade call for long-
duration deep space missions with human crews. Because
of light-time delay and other considerations, it may not be
feasible to micro-manage the mission from the ground, as
was done for the Apollo missions to the Moon. Thus,
increased autonomy is needed. Also, the crews will likely
be small, perhaps with as few as four members. This poses
a problem because such a small crew is unlikely to possess
the expertise needed to deal with unexpected eventualities.
The solution may lie in increased automation to help fill
gaps in knowledge and relieve the crew of tedious
housekeeping activities.

Habitat Automation Project Element
The Autonomous Systems (AS) Project is developing
software, sensors, and other technology to automate the
operation of systems that will be needed for future NASA
missions, such as spacecraft, habitats, and propellant
loading systems. One of the two major Project Elements

 Copyright © 2013, All rights reserved.

within AS is called Habitat Automation (HA). HA is
focused on automating the operation of habitats that could
be used to house astronauts on the surface of a moon,
planet, or asteroid, or on the way there. HA is testing its
technology using the 2nd Generation Deep Space Habitat
(Figure 1), a prototype habitat at NASA Johnson Space
Center. Within HA, we are exploring the use of advanced
automation tools to support such tasks as planning, plan
execution, anomaly detection, diagnosis, and recovery.
Several such tools have been developed in recent years.
Our current focus is on integrating these tools so that they
work together to provide a smooth operational capability.

The existing standalone tools include the Advanced
Caution and Warning System (ACAWS), planning and
scheduling tools called Scheduling and Planning Interface
for Exploration (SPIFE) and Extendable Uniform Remote
Operations Planning Architecture (EUROPA), and an
execution system called Plan Execution Interchange
Language (PLEXIL). The following are brief descriptions

Figure 1: Deep Space Habitat, 2nd Generation

of the tools.

ACAWS
ACAWS is a comprehensive system health management
tool composed of components working in tandem to
support spacecraft operators in determining the health state
of a system, detecting anomalous health conditions,
determining the root cause of detected failures,
determining the effects of those failures on the system and
the mission timeline, and recovering from the failure or
mitigating its effects to accomplish as much of the planned
mission as possible (Colombano et al. 2013). For diagnosis
(determining the failed components and the failure modes),
ACAWS uses a commercial product known as TEAMS-
RDS (Testability, Engineering, and Maintenance System
Remote Diagnostic Server) from Qualtech Systems, Inc
(Qualtech 2013). For determining the effects of failures,
ACAWS uses a tool developed at NASA Ames Research
Center called the Failure Consequence Assessment System
(FCAS). For anomaly detection (detecting sensor data that
is significantly different from what has been seen in the
past), ACAWS uses the Inductive Monitoring System,
which was also developed at Ames (Iverson et al. 2012).

SPIFE-EUROPA
SPIFE-EUROPA is a combination of the SPIFE (Marquez
et al. 2010) plan editing tool and the EUROPA (Frank and
Jonsson 2003) automated planning tool (included with
SPIFE as a plug-in). The SPIFE tool includes a
sophisticated plan database and graphic user interface that
detects violations that can be fixed by the user. EUROPA
supports automatic planning with temporal, state, and
numeric constraints. SPIFE and EUROPA, separately and
in combination, have been used for ground planning in
several NASA missions.

PLEXIL/PRL
PLEXIL (Verma et al. 2005) is a language for specifying
plans for automation. The open-source PLEXIL
distribution (http://plexil.sourceforge.net) provides tools
for executing PLEXIL plans, interfacing with external
systems to command, and monitoring plan execution
graphically. It also provides tools for constructing
simulators useful for standalone development. The
Procedure Representation Language (PRL) is a language
for specifying higher-level human procedures, in which
information needed for automation may also be embedded
(Kortenkamp et al. 2008). PRL is used with a graphical
tool called Procedure Integrated Development
Environment (PRIDE) to author procedures, which then
can be automatically translated into PLEXIL (Figure 2,
left-side) for automated execution under varying levels of
automation (Dalal and Frank 2010). These technologies
provided an integrated system for authoring and executing
Deep Space Habitat procedures.
 The complete integration of these tools is work in

progress. In the past year, we investigated interactions
between ACAWS and PLEXIL, and between SPIFE-
EUROPA and PLEXIL. The latter combination that
integrates planning and scheduling with execution is the
primary topic of this paper.

One of the goals behind the integration of these tools is
to enable the automated or semi-automated replanning of
crew activities and habitat operations in response to system
failures. For example, after a component of the habitat
fails, ACAWS will detect the failure, determine which
component has failed, and determine the consequences of
the failure. ACAWS will communicate this information to
SPIFE-EUROPA, which will then replan the remainder of
the mission to either repair the failed component or replan
activities to avoid using the failed component. Finally,
PLEXIL will execute the revised plan. This final step
requires the integration of SPIFE-EUROPA with PLEXIL,
an early version of which is described in this paper.

 Plan/Execution Experiment

In this paper we describe an experiment that involves a
loose coupling (Figure 2, right-side) between EUROPA
and PLEXIL. In this approach, the SPIFE-EUROPA tool
is used offline to produce a plan that includes temporal
constraints to coordinate high-level activities. A separate
PRL tool called PRIDE is used to author lower-level
PLEXIL procedures that produce commands to implement
the high-level activities (Figure 2, left-side).

The experiment involves a routine survey task where the
outside of the habitat is scanned for micro-meteorite
impacts. The survey is repeated every day and can be
skipped or truncated if need be. In the experiment, the
survey is interrupted by a high-priority task involving a
fluid transfer. Depending on how long the fluid transfer
takes, the remainder of the survey may be resumed or
skipped.

The PLEXIL tool executes (Figure 3) the plan obtained
from EUROPA. It automatically sends commands to
simulators of the relevant parts of the Deep Space Habitat
(DSH), including the photo-survey and fluid transfer.
Manual commands can also be sent along a separate route

Figure 2: Plan Transfer Process

from a web browser. Displays showing the execution are
available on both routes.

 EUROPA/PLEXIL Comparison

Before describing the integration of EUROPA and
PLEXIL, we first compare and contrast their relevant
features.

For this task, we use a specialized version of EUROPA,
called DynamicEuropa, that is connected to a plan editor
front end, called SPIFE. This combination provides for a
Mixed-Initiative Planning framework (Bresina and Morris
2007) where a human operator collaborates with the
EUROPA suite of automated tools to create a plan.

The EUROPA database provides for a plan consisting of
a set of activities that are interrelated via a rich set of
temporal, state, and resource properties. In particular, it

includes a Simple Temporal Network (STN) (Dechter,
Meiri, and Pearl 1991) to support planning and ensure
consistency of the temporal constraints. The STN
determines a plan that has temporal flexibility. That is, it
corresponds to a set of related schedules rather than a
single schedule. The temporal flexibility is intended to
provide scope for adjusting to temporal deviations during
execution. Instead of having a single time, the events in
the plan have a lower and upper bound on when they can
occur.

Despite this, the human operator of SPIFE sees a single
nominal schedule, which is easier to grasp. When
adjusting the plan to satisfy constraints, EUROPA restricts
the flexible plan to exclude constraint violations. This may
also exclude the existing nominal schedule. In that case
EUROPA computes a new nominal schedule that satisfies
the constraints, while minimizing the changes from the
previous one, and communicates it to SPIFE. This

Figure 3: Plan Execution Process

approach serves to maintain general plan stability and
allows the human operator to express simple timing
preferences. The nominal schedule can also provide
heuristic guidance to an automated planner (Morris et al.
2011) through the ordering of events.

EUROPA can eliminate certain resource and state
violations in the nominal plan by inserting temporal
constraints that prevent the violations. These make the
plan “safe” from such violations as long as the constraints
are satisfied.

In contrast to EUROPA, which is a constraint-based
declarative language, PLEXIL is a procedural1 language
similar in many ways to an ordinary programming
language. It can start and stop “activities” that are further
decomposed by PLEXIL into specific commands to
external systems. It does not include a specialized
representation of temporal constraints or a temporal
network that can propagate their effects. However, a
PLEXIL plan can specify conditions for when and how
activities execute. These include start-conditions,
preconditions and skip-conditions. An activity is delayed
until its start-condition becomes true. If a skip-condition
tests true, an activity will be skipped. Failure of a
precondition will cause an activity to fail and be
terminated; thus, it resembles an error condition. The
activity end events can have similar conditions. All the
condition forms allow inequality tests of computed values
and Boolean combinations of those tests.

The PLEXIL tool also has an ability to determine the
current clock time (and date). In conjunction with the
activity conditions, this provides a low-level ability to
observe temporal requirements.

This paper focuses on temporal constraint issues in the
offline integration of a declarative planner and a procedural
execution system. There is extensive work on integration
of planning and execution in other contexts (e.g., Rajan,
Py, and Barreiro 2012; Cash and Young 2009).

EUROPA/PLEXIL Integration

As discussed earlier, the SPIFE-EUROPA tool allows the
user to specify nominal times for activities. For our
experiment, we wanted activities to execute at their
nominal times unless they were compelled to do otherwise
by temporal constraints. However, the durations of actions
corresponding to external processes are generally uncertain
to some degree. Thus, the start times of later activities can
be pulled earlier or pushed later than the nominal time in
order to satisfy temporal constraints. An example of this is

1In its pure form, called Core PLEXIL, the behavior of a plan, including its
actual control flow, is completely determined by conditions defined on each
node of the plan. In this sense PLEXIL has a strong underlying declarative
property, though for practical purposes, and to the reader of plans authored
in its standard syntax, PLEXIL is a procedural language.

where the later activity is constrained to immediately
follow the completion of an external process.

As mentioned, PLEXIL does not have a capability to
perform temporal propagation as in an STN. This raises
the issue of how to do any pushing and pulling required by
the temporal constraints. The solution we adopted is to
convert the temporal plan to minimum dispatchable form
(Tsamardinos, Muscettola, and Morris 1998). In a
dispatchable plan, propagation can be restricted to
immediate neighbors, and can be done in a lazy way when
a neighboring activity is considered for execution. The
minimum dispatchable plan has the minimum number of
neighbors needed to accomplish this.

 This means that the requirement to start at the nominal
time, or earlier or later as needed, can be embedded in the
PLEXIL start condition. The general form of the start
condition is

time ≥ max[lb, lb1, lb2, ..., min[nom, ub, ub1, ub2, ...]]

where time is the current clock time. Here lb and ub are the
original lower and upper bounds in the flexible plan. The
lb1, lb2, etc. values are additional lower bounds derived
from local constraints with neighboring events in the
dispatchable plan and the actual execution times of those
events. Similarly, the ub1, ub2, etc. values are derived
upper bounds, while nom is the nominal start-time of the
activity. Note that the min operator permits the activity to
start in order to satisfy an upper bound constraint even if
the nominal start time has not yet been reached.

Another issue is what to do if an activity start misses its
deadline (upper-bound in the temporal network). In our
experiment, the appropriate response for a delayed part of
the survey was to simply skip it, since the survey was
envisaged as being non-critical and repeated every day.
Thus, the skip condition is used to enforce missed upper
bounds. Similarly to the start conditions, embedded tests
derived from the minimum dispatchable plan can be
evaluated when the activity is considered for execution.
The general form of the skip condition is

time ≥ min[ub, ub1, ub2, ...]

where time is the current clock time. In the actual
implementation, we include a “slop factor” in the upper
bound values to allow for execution latency.

We also deal with the issue of uncertainty in the
execution times. Small or localized amounts of temporal
uncertainty can be planned for in advance by using
algorithms based on Dynamic Controllability (DC) (Morris
2006). (Large amounts of uncertainty may cause the plan
to not be Dynamically Controllable, which necessitates
execution-time repair of the plan in adverse cases.) The
DC algorithm essentially trades planning-time flexibility

for execution-time flexibility that covers the uncertainty.
That is, it tightens earlier temporal constraints in order to
provide slack for a later uncertain interval. For example,
suppose an activity A has an uncertain duration of between
1 and 2 hours and another activity B is required to start at
least 1 hour before A ends. If the uncertainty were treated
as ordinary STN slack then B could start up to 1 hour after
A starts because the end of A could be then delayed until 1
hour after that. However, if the plan is to robustly cope
with the uncertainty, then B needs to start no later than the
time A starts. From the point of view of the planning
process, temporal uncertainty may be viewed as negative
flexibility, and the DC algorithm may be regarded as
transferring slack from one event to another to compensate
for the negative flexibility. In the example, the range of
start times for B is trimmed, which expands the range of
end times for A to contain the interval of uncertainty.

The DC algorithm may add disjunctive wait conditions
to some events; these can be folded into the PLEXIL start
conditions. For example, suppose A is as above, but
activity B is instead required to start at most 1 hour before
A ends. Then to be safe, B must wait until either A has
finished or 1 hour has elapsed since A started. This
introduces an additional wait term into the start condition
maximization

time ≥ max[..., wait (A,w), ...]

where wait(A,w) = min[AE, AS+w] and AE, AS, and w are
the end time of A, start time of A, and wait time (1 hour in
this example), respectively.

For the purposes of the experiment, we assumed 1%
uncertainty for all the durations and applied the DC
algorithm. Besides exercising the uncertainty methods, it
is desirable in any case to introduce some slack in the
durations in order to counteract an idiosyncratic feature of
the dispatchability algorithm: When a duration is fixed, the
algorithm may reformulate temporal constraints on the
end-time as functionally equivalent constraints on the start-
time. This reformulation tends to obscure the activity
precedences in the plan and discards the potential for
event-driven execution.

Discussion and Closing Remarks

The loose-integration approach of embedding temporal
constraints in the PLEXIL start and skip conditions worked
well for the purpose of the experiment. However, it
pointed to certain issues that would need to be addressed in
more general contexts.

Even where skipping is an acceptable means of dealing
with a failing execution, there is the issue of where and
how much to skip. If an activity is skipped, or if it is

predicted that an activity will be skipped, then clearly any
other activity that “depends on it” should also be skipped.
However, in general the temporal information, especially
in minimum dispatchable form, is not enough to determine
that. For example, one activity may be constrained to
precede another because it establishes a precondition for it.
In that case, if the preceding activity is skipped, the
following activity should also be skipped. (Conversely, if
it is predicted that the following activity will be skipped,
and if there is no other reason for the precondition, the
establishing activity, now useless, may as well be skipped
also.) However, another reason that one activity precedes
another may be because they contend for some resource,
and so are mutually exclusive. In this case, the precedence
is merely a constraint imposed by the planner to prevent
overlap, and there is no reason to skip the following
activity just because the preceding one is skipped.

One approach to dealing with the issue of “skippable
chunks” has been used in planning for Mars rovers. The
activities are grouped into “observations” and the whole
observation is skipped if any essential part of it is
unfeasible. A more general approach would require the
explicit modeling of “support” relationships that are
distinct from the temporal ones.

Skipping is a simple expedient for dealing with failed
activities but plan repair in general requires more
sophisticated approaches. For example, there may be other
useful activities that we can substitute for the failed ones,
or there may be alternate ways of achieving our objectives.

We can identify a spectrum of potential plan repair
techniques that involve increasingly drastic modifications
to the existing plan. These are:

 Reordering, postponing, abandoning
 Resource switching, alternate methods
 Novel combinations of primitives
 Creating new operators and models

The full capabilities of the planner will be needed for more
complex plan repairs. In the future, we will investigate an
“online” integration where EUROPA and PLEXIL are
running at the same time and communicating.

 The last category in the repair spectrum goes beyond
current planner technology. As the repair solutions become
more “creative,” issues of predictability and trust arise. In
the foreseeable future, it is unlikely that a computer system
will have the comprehensive background and experience
needed to fully evaluate the consequences of creative
solutions. Thus, caution would dictate that such solutions
should be presented as suggestions rather than being
subject to execution by a fully-automated system.

References

Bresina, J., and Morris, P. 2007. Mixed-Initiative Planning in
Space Mission Operations. AI Magazine 20:2.

Cash S. and Young, R. 2009. Bowyer: A Planning Tool for
Bridging the gap between Declarative and Procedural Domains. In
Proceedings of the 5th Artificial Intelligence for Interactive Digital
Entertainment Conference (AIIDE-2009). Palo Alto, CA.

Colombano, S., Spirkovska, L., Aaseng, G., Schwabacher, M.,
Baskaran, V., Ossenfort, J., and Smith, I. 2013. A System for Fault
Management, Including Fault Consequence. In 43rd International
Conference on Environmental Systems (ICES). Reston, Virginia:
American Institute of Aeronautics and Astronautics. To appear.

Dalal, K. M., Frank, J. 2010. Bridging the Gap between Human
and Automated Procedure Execution. In IEEE Aerospace
Conference, 2010.

Dechter, R., Meiri, I., and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49:1-3.

Frank, J. and Jonsson, A. 2003. Constraint-Based Interval and
Attribute Planning. Journal of Constraints 8:4 Special Issue on
Constraints and Planning.

Iverson, D.L., Martin, R., Schwabacher, M., Spirkovska, L.,
Taylor, W., Mackey, R., Castle, J.P., and Baskaran, V. 2012.
General Purpose Data-Driven System Monitoring for Space
Operations. Journal of Aerospace Computing, Information, and
Communication 9:2.

Kortenkamp, D., Bonasso, R. P., Schreckenghost, D., Dalal, K.
M., Verma, V., and Wang, L. 2008, A Procedure Representation
Language for Human Spaceflight Operations. In Proceedings of
the 9th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS-2008).

Marquez, J. J., Ludowise, M., McCurdy, M., & Li, J. 2010.
Evolving from Planning and Scheduling to Real-Time Operations
Support: Design Challenges. In Proceedings of 40th International
Conference on Environmental Systems. Barcelona, Spain.

Morris, P. 2006. A Structural Characterization of Temporal
Dynamic Controllability. In Proceedings of the 12th International
Conference on Principles and Practices of Constraint
Programming (CP-2006).

Morris P., Bresina J., Barreiro J., Iatauro, M., and Smith T. 2011.
State-Based Scheduling via Active Resource Solving. In
Proceedings of the 4th IEEE International Conference on Space
Mission Challenges for Information Systems (SMC-IT 2011).

Qualtech Systems Inc. 2013. Web site, http://teamqsi.com

Rajan K., Py F., and Barreiro J. 2012. Towards Deliberative
Control in Marine Robotics. In Marine Robot Autonomy, M. Seto
Ed.: Springer Verlag.

Tsamardinos, I., Muscettola, N., and Morris, P. 1998. Fast
Transformation of Temporal Networks for Efficient Execution. In
Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98).

Verma, V., Estlin, T., Jónsson, A., Pasareanu, C., Simmons, R.,
and Tso, K. 2005. Plan execution interchange language (PLEXIL)
for executable plans and command sequences. In Proceedings of
the 8th International Symposium on Artificial Intelligence, Robotics
and Automation in Space (iSAIRAS2005), Munich, Germany.

