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ABSTRACT

This paper presents a model-driven methodology for predict-
ing the remaining useful life of electrolytic capacitors. This
methodology adopts a Kalman filter approach in conjunction
with an empirical state-based degradation model to predict
the degradation of capacitor parameters through the life of the
capacitor. Electrolytic capacitors are important components
of systems that range from power supplies on critical avion-
ics equipment to power drivers for electro-mechanical actu-
ators. These devices are known for their comparatively low
reliability and given their critical role in the system, they are
good candidates for component level prognostics and health
management. Prognostics provides a way to assess remain-
ing useful life of a capacitor based on its current state of
health and its anticipated future usage and operational condi-
tions. This paper proposes and empirical degradation model
and discusses experimental results for an accelerated aging
test performed on a set of identical capacitors subjected to
electrical stress. The data forms the basis for developing the
Kalman-filter based remaining life prediction algorithm.

1. INTRODUCTION

This paper proposes the use of a model based prognostics ap-
proach for electrolytic capacitors. Electrolytic capacitors are
critical components in electronic systems in aeronautics ap-
plications and in other domains. This type of capacitors are
known to have lower reliability than other electronic com-
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ponents that are used in power supplies of avionics equip-
ment and electrical drivers of electro-mechanical actuators of
aircraft control surfaces. The field of prognostics for elec-
tronics is concerned with the prediction of remaining useful
life (RUL) of the components and systems. This notion of
condition-based health assessment leverages the knowledge
of the device physics in order to model the degradation pro-
cess, which is then used to predict remaining useful life as a
function of current state of health and anticipated future op-
erational and environmental conditions.

The prognostics methodology presented here, is based on
the Bayesian tracking framework and a dynamic degradation
model developed empirically from electrical overstress accel-
erated aging tests. A validation methodology is presented to
assess the validity of the method using available run-to-failure
data. The novelty of the approach consists on its ability to
periodically estimate remaining useful life. This estimation
process is condition-based in the sense that periodic mea-
surements of the component under consideration are used in
the estimation process. The contributions of this work are a
dynamic degradation model and a model-based prognostics
methodology for electrolytic capacitors. We present results
for estimation of remaining useful life for five test cases. Pre-
dictions are made at several points in time during the life of
the capacitors. Performance metrics like median relative ac-
curacy and the α-λ metric demonstrate the effectiveness of
our approach.

1.1. Motivation

The development of prognostics methodologies for electronic
systems has become more important as more electrical sys-
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tems are being used to replace traditional systems in sev-
eral applications in the aeronautics, maritime, and automo-
tive fields. The development of prognostics methods for elec-
tronics presents several challenges due to the great variety of
components used in a system, the continual evolution of new
electronics technologies, and a general lack of understanding
of how electronics fail. Traditional reliability techniques in
electronics tend to focus on understanding the time to failure
for a batch of components of the same type, by running mul-
tiple experiments and making statistical estimates from the
accumulated time to failure data. Recently, there has been a
push to understand, in more depth, how faults progress as a
function of time, loading, and environmental conditions. Fur-
thermore, just until recently, it was believed that there were
no precursor to failure indications for electronic components
and systems. That is now understood to be incorrect, since
electronic systems, much like mechanical systems, undergo a
measurable wear process from which one can derive features
that can be used to provide early warnings to failure. The in-
dications of degradation caused by the wear can be detected
fairly early, and by modeling the process, one can potentially
predict the remaining useful life as a function of future use
and environmental conditions.

Avionic systems perform critical functions on aircraft, greatly
escalating the ramification of an in-flight malfunction (Bhatti
& Ochieng, 2007; Kulkarni et al., 2009). Avionic sys-
tems combine physical processes, computational hardware
and software. These elements present unique challenges for
fault detection and isolation. A systematic analysis of these
elements and their interaction is very important for the as-
sessment of aircraft safety and to avoid catastrophic failures
during flight.

Power supplies are critical components of modern avionic
systems. In navigation systems, for instance, degradation
and faults in the DC-DC converter power source unit prop-
agate to the global positioning system (GPS) and other navi-
gation subsystems, affecting the overall operations of the air-
craft. Capacitors and power metal oxide field effect transis-
tors (MOSFETs) are the two major components that cause
performance degradation and failures in DC-DC converters
(Kulkarni, Biswas, Bharadwaj, & Kim, 2010). Some of the
more prevalent fault effects, such as a ripple voltage surge at
the power supply output, can cause glitches in the GPS posi-
tion and velocity output, and this in turn, if not corrected, can
propagate and distort the navigation process.

Electrical motors are an essential element in electro-
mechanical actuators systems that are being used to replace
hydro-mechanical actuation in control surfaces of future gen-
eration aircrafts. Capacitors are used as filtering elements
on power electronic systems, particularly for motor drivers.
Electrical power drivers for motors require capacitors to filter
the rail voltage for the H-bridges that provide bidirectional

current flow to the windings of electrical motors. These ca-
pacitors help to ensure that the heavy dynamic loads gener-
ated by the motors do not perturb the upstream power distri-
bution system. A failure in a rail voltage filter capacitor will
have effects on the power distribution system and on perfor-
mance of the motor, which will have cascading effects on the
actuation process.

Low reliability and their criticality in avionics systems
make electrolytic capacitors important candidates for focused
health management solutions. In addition to this, degrada-
tion at component level could lead to cascading faults at sub-
system and system levels. In order to mitigate the effects
of capacitor failures in critical to safety systems, we intro-
duce here, a condition-based prognostics methodology. This
methodology develops the ability to identify degradation ef-
fects and to estimate the remaining life of the components
progressively in time. This method will further allow for
prognostics-based decision making for condition-based main-
tenance scheduling of the system or for implementation of
mitigation strategies in case of contingencies during opera-
tion. In the next section we discuss briefly earlier work on
capacitors at both component and system level.

1.2. Previous work

In earlier work, we studied the degradation of capacitors
under nominal operation (Kulkarni, Biswas, Koutsoukos,
Goebel, & Celaya, 2010b). The capacitors were components
in a DC-DC converter, and their degradation was monitored
every 100-120 hours of operation. Data was collected to de-
termine the change in equivalent series resistance (ESR) and
capacitance. An Arrhenius inspired ESR degradation model
for time to failure computation was presented in Kulkarni,
Biswas, Koutsoukos, Goebel, and Celaya (2010a). The data
collected during the monitoring steps were used to compute
the parameters of the model as well as for model validation.

In subsequent experimental work, we studied accelerated
degradation in capacitors subjected to high charge/discharge
cycles at a constant frequency (Kulkarni, Biswas, Kout-
soukos, Celaya, & Goebel, 2010). A preliminary approach
to computing RUL of electrolytic capacitors was presented in
Celaya et al. (2011b).

In Kulkarni, Celaya, Goebel, and Biswas (2012b) we studied
capacitor degradation under thermal overstress conditions.
A physics-based degradation model, based on physics’ first
principles, was derived for the electrolytic capacitors and
the derived model was employed in making RUL estima-
tions based on a Bayesian tracking methodology (Kulkarni,
Celaya, Goebel, & Biswas, 2012c, 2012a).

This paper here builds upon the initial studies presented in
Celaya et al. (2011a) and Celaya et al. (2012).
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1.3. Other related work and current art in capacitor prog-
nostics

The output filter capacitor has been identified as one of the el-
ements of a switched mode power supply that fails more fre-
quently and has a critical impact on performance (Goodman
et al., 2007; Judkins et al., 2007; Orsagh et al., 2005). A prog-
nostics and health management approach for power supplies
of avionics systems is presented in Orsagh et al. (2005). Re-
sults from accelerated aging of the complete supply have been
discussed in terms of output capacitor and power MOSFET
failures; but there is no modeling of the degradation process
or RUL prediction for the power supply. Other approaches
for prognostics for switched mode power supplies are pre-
sented in Goodman et al. (2007) and Judkins et al. (2007).
The output ripple voltage and leakage current are presented
as a function of time and degradation of the capacitor, but no
details of the degradation process modeling, fault detection,
and RUL prediction algorithms were presented.

A health management approach for multilayer ceramic capac-
itors is presented in Nie et al. (2007). This approach focuses
on the temperature-humidity bias accelerated test to replicate
failures. A method based on Mahalanobis distance is used
to detect abnormalities in the test data; there is no prediction
of RUL. A data driven prognostics algorithm for multilayer
ceramic capacitors is presented in Gu et al. (2008). This
method uses data from accelerated aging test to detect po-
tential failures and to make an estimation of time of failure
occurrence.

The approaches discussed above address fault detection and
diagnostics methods using data-driven approaches. Our work
focuses in prognostics, which is the natural progression from
diagnostics. In addition, our methodology is based on dy-
namic degradation models used as part of a model-based
prognostics framework.

2. PROGNOSTICS METHODOLOGY

A model-based prognostics methodology for electrolytic ca-
pacitors is presented in this section. This methodology relies
on accelerated aging experiments to identify degradation be-
havior and to create time dependent degradation models. The
process followed in the proposed methodology is presented
in the block diagram in Figure 1 and described next.

Accelerated Aging: The methodology is based on results
from an accelerated life test on real electrolytic capacitors.
This test applies electrical overstress to commercial, off the
shelf capacitors, in order to observe and record the degra-
dation process and identify performance conditions in the
neighborhood of the failure criteria in a considerably re-
duced time frame. A total of 6 test devices are used for this
accelerated aging study. Electrochemical-impedance spec-
troscopy (EIS) is used periodically during the accelerated ag-

ing test to characterize the frequency response of the capaci-
tor’s impedance. Several measurements are made through the
aging process, starting from measurements made under pris-
tine condition all the way through to complete failure.

System Identification: A lumped-parameter model (M1)
of the non-ideal capacitor impedance is assumed. This
impedance model includes a capacitance element and a para-
sitic equivalent series resistance element. The EIS measure-
ments along with the impedance model structure are used in
a systems identification setting to estimate the model param-
eters. This is done for all the EIS measurements at different
points in time during the aging experiment, resulting in time-
dependent capacitance and ESR measurement trajectories re-
flecting capacitor degradation.

Accelerated 
Aging

System 
Identification

Impedance
Model

EIS

Degradation 
Modeling

Training 
Trajectories

Test 
Trajectory

Parameter 
Estimation

State-space 
Representation

Prognostics

Dynamic
System

Realization

Health State 
Estimation

RUL 
Estimation

{α̃i, β̃i}

ĈR(tk)
(M1)

(D1)

Figure 1. Methodology for the development of the capacitor
prognostics approach.

Degradation Modeling: We present here an empirical degra-
dation model that is based on the observed degradation pro-
cess during the accelerated life test (ĈR(tk)). The objective
of the modeling is to generate a parametrized model (D1) of
the time-dependent capacitance degradation as generated by
the system identification step. A similar degradation model
can be generated for ESR but it is not discussed in this work.

Parameter Estimation: A traditional training+test method is
used to derive and validate the capacitor degradation model.
The parameters of the degradation model are estimated using
nonlinear least-squares regression. The quality of the param-
eter estimation results is satisfactory as to assume the esti-
mated parameters (α̃i, β̃i) are static (not time-dependent) dur-
ing the prognostics process described next.
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Prognostics: A Bayesian framework is employed to estimate
(track) the state of health of the capacitor based on measure-
ment updates for key capacitor parameters. The Kalman filter
algorithm is used to track the state of health and the degrada-
tion model is used to make health state forecasts to be used
in computation of remaining useful life once no further mea-
surements are available.

3. ACCELERATED AGING EXPERIMENTS

Accelerated life test methods are often used in prognostics
research as a way to assess the effects of the degradation
process through time. It also allows for the identification
and study of different failure mechanisms and their relation-
ships with different observable signals and parameters. In
this section we present a brief description of the accelerated
electrical overstress experiment for studying capacitor degra-
dation. We provide insights into the physical interpretation
of the underlying degradation process under the electrical
stress condition. Finally, we present a discussion on how the
systems identification approach is used to compute the pre-
cursor to failure features based electrochemical impedance
spectroscopy measurements obtained during the aging exper-
iment.

3.1. Experimental Setup

Since the objective of this experiment is the study of the ef-
fects of high voltage on degradation of the capacitors, the ca-
pacitors were subjected to high voltage stress through an ex-
ternal power source using custom developed hardware. The
voltage overstress is applied to the capacitors as a square
waveform in order to subject the capacitor to continuous
charge and discharge cycles.

At the beginning of the accelerated aging, the capacitors
charge and discharge simultaneously; as time progresses and
the capacitors degrade at different rates, the charge and dis-
charge times vary for each capacitor. Even though all the ca-
pacitors under test are subjected to the same loading and op-
erating conditions, their ESR and capacitance values change
differently. We therefore monitor charging and discharging
of each capacitor under test and measure the input and output
voltages of the capacitor as well as the load current. Figure 2
illustrates the electrical overstress experiment’s electrical cir-
cuit. A function generator is used to generate a square wave-
form, which is then amplified to the desired amplitude to be
applied to the unit under test (UUT). A resistive load is used
in series with the capacitor in order to emulate the loading
side of a first order passive filter. Additional details on the
accelerated aging system are presented in (Kulkarni, Biswas,
Koutsoukos, Celaya, & Goebel, 2010).

For the experiment reported in this paper, a set of six ca-
pacitors was considered. Electrolytic capacitors of 2200µF
capacitance, with a maximum rated voltage of 10V , maxi-

mum current rating of 1A and maximum operating tempera-
ture of 105◦C were used for the study. The electrolytic ca-
pacitors under test were characterized by EIS measurements
before the start of the experiment and at different stages dur-
ing the experiment execution. The experiment was conducted
at room temperature.

Function 
Generator

Signal 
Amplifier

RL

Vo VL

UUT

Figure 2. Block diagram of the experimental setup.

The EIS measurements were recorded every 8-10 hours of the
total 180 plus hours of accelerated aging time in order to cap-
ture the degradation phenomenon in the ESR and capacitance
values. During each measurement, the voltage source was
shut down, the capacitors were discharged completely and
then the EIS characterization procedure was carried out. This
was done for all the six capacitors under test. A picture of the
actual experiment setup is presented in Figure 3. For further
details regarding the aging experiment, results and analysis
of the measured data refer to (Kulkarni, Biswas, Koutsoukos,
Celaya, & Goebel, 2010; Celaya et al., 2011b).

Figure 3. Electrical overstress aging experiment.

3.2. Physical interpretation of the degradation process

There are several factors that cause electrolytic capacitors to
fail. Continuous degradation, in the form of gradual loss
of functionality over a period of time, eventually results in
the failure of the component. A complete loss of function is
termed a catastrophic failure. Typically, this results in a short
or open circuit in the capacitor.
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In this work, we study the degradation of electrolytic ca-
pacitors operating under electrical stress, where Vapplied ≥
Vrated. During the charge/discharge process, the capac-
itors degrade over time. A study of the literature indi-
cates that the degradation can be primarily attributed to
electrolyte evaporation, leakage current and increased inter-
nal pressure due to gas released during chemical reactions
(International Standard IEC 60384-4-1: Fixed capacitors for
use in electronic equipment, 2007; MIL-C-62F, 2008; Kulka-
rni, Biswas, Koutsoukos, Goebel, & Celaya, 2010a). Our pri-
mary focus in this work is the study of the degradation due to
electrolyte evaporation.

Figure 4 shows the structure of an electrolytic capacitor in
detail. An ideal capacitor, while charging, would offer no
resistance to the flow of current at its leads. However, the
electrolyte that fills the space between the plates and the elec-
trodes produces a small series resistance known as ESR. The
quantitative changes in the ESR and capacitance values typ-
ify the current health state of the device, and represent the
two primary precursors to failure. ESR and capacitance val-
ues were calculated after characterizing the capacitors at reg-
ular intervals. The heat generated due to current flow through
the capacitor’s internal resistance, ESR, during the operation
of the capacitor, causes an increase in the internal tempera-
ture which also increases the rate of electrolyte evaporation.
Decrease in electrolyte volume due to evaporation leads to
further increases in ESR and decrease in the effective oxide
surface area, resulting in capacitance decrease. The literature
on capacitor degradation shows a direct relationship between
electrolyte decrease with increase in ESR and decrease in
capacitance value of the capacitor (Kulkarni, Biswas, Kout-
soukos, Goebel, & Celaya, 2010b).

Anode Foil

Cathode Foil

Connecting Lead

Aluminum Tab

Separator
Paper

Figure 4. Electrolytic capacitor structure.

3.3. System identification for non-ideal capacitor model

ESR and capacitance values are estimated by using a system
identification approach over a lumped parameter model (M1)
consisting of the capacitance and the ESR in series as shown
in Figure 5. It should be noted that the lumped-parameter

model used to estimate ESR and capacitance offline, is not
the degradation evolution model to be used on the online el-
ements of the prognostics algorithm; it only allows us to es-
timate parameters, which provide indications of the degrada-
tion process through time. The impedance’s frequency re-
sponse is used for the system identification. Parameters such
as ESR and capacitance are more difficult to estimate from the
in-situ measurements of voltage and current partially avail-
able through the accelerated aging experiments. This can be
done with a recursive estimation approach but it is not dis-
cussed in this paper.

CI CR RE

Ideal
Capacitor

Non ideal Capacitor 
with parasitic series resistance

Figure 5. Lumped parameter model (M1) for a non-ideal
capacitor.

The ESR and capacitance values were estimated from the ca-
pacitor electrochemical impedance frequency response mea-
sured using an SP-150 Biologic instrument. The ideal capac-
itor has complex impedance ZI = 1/sCI , where CI is the
ideal capacitance value. The complex impedance of model
M1 is given by

M1 : Z = RE +
1

sCR
, (1)

where RE is the equivalent series resistance and CR is the
real capacitance.

Electrochemical impedance spectroscopy measurements are
available to characterize the electrical performance of the ca-
pacitor throughout the aging experiment. Figure 6 shows
Nyquist plots of the impedance measurements for capacitor
#1 at pristine condition and after accelerated aging times 71,
161 and 194 hours. The degradation can be observed as the
Nyquist plot shifts to the right as a function of aging time
due to increase in RE . These measurement are then used to
estimate the parameters of the impedance model M1 from
Eq. (1). The parameter estimation performed using the EIS
instrument software (EC-Lab R©). This is basically and opti-
mization approach using an objective function defined as the
aggregate of the squared error for all the frequencies where
there is an impedance measurement from EIS. The error is
computed based on the difference in magnitude of the model
and the measured impedance. The optimization is set up to
minimize the objective function by finding optimal values
CR

∗ and RE∗ for theM1 model.

This parameter estimation is performed every time an EIS
measurement is made, resulting in values of CR and RE at
different points in time through the aging of the components
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(CR(tk) and RE(tk)). The average pristine condition ESR
was measured to be 0.056 mΩ and the average pristine con-
dition capacitance was measured to be 2123 µF for the set of
capacitors under test.
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Figure 6. Electrochemical impedance measurements at dif-
ferent aging times.

Figure 7 shows the percentage increase in the ESR value for
all the six capacitors under test over the aging time. Simi-
larly, Figure 8 shows the percentage decrease in the value of
the capacitance as the capacitor degrades over the aging time.
Both parameters change through the aging experiment and
are good candidates to be considered as precursor to failure
features for the prognostics algorithm. As per standards MIL-
C-62F (2008), a capacitor is considered unhealthy, if under
electrical operation, its ESR increases by 280 − 300% of its
initial value; or the capacitance decreases by 20% below its
pristine condition value. This information is used to set a
crisp failure threshold for the RUL estimation process.
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Figure 7. Percentage ESR increase as a function of time.

From the plots in Figure 7 we observe that for total experi-

ment time, the ESR value increased by 54% − 55% for all
the capacitors; while over the same period of time, the capac-
itance decreased by more than 20% (the threshold mark for a
healthy capacitor) (see Figure 8). As a result, the percentage
capacitance loss is selected as a precursor to failure variable
to be used in the degradation model development presented
next.
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Figure 8. Percentage capacitance loss as a function of time.

4. DEGRADATION MODELING FOR PROGNOSTICS

This section presents the details of the degradation model de-
velopment. A degradation model is an essential part of a
model-based prognostics algorithm and it is typically appli-
cation dependent. A model is formulated based on the empir-
ical evidence of the time evolution of the degradation process
from experiments presented in the previous section, particu-
larly, capacitance loss as illustrated by Figure 8.

4.1. Nominal operation model

The non-ideal capacitor model M1 can be used as part of
electronics circuits that make use of capacitors. An example
is the low-pass filter implementation in Figure 9. In this cir-
cuit, input voltage Vi is considered as the voltage to be filtered
and the voltage across the capacitor (this includesRE as well)
is the output voltage Vo that is filtered. Let v(t) = Vo(t) and
u(t) = Vi(t) in the low-pass system circuit with non-ideal
capacitor shown in Figure 9. A state-space realization model
(M2) of the dynamic system is given by

M2 :


ż(t) =

−1

CR(R+RE)
z +

1

CR(R+RE)
u(t),

v(t) =

[
1− RE

R+RE

]
z +

RE
R+RE

,

(2)

where z(t) = VC(t) is the state variable representing the
capacitor voltage, CR, RE and R are system parameters.
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Furthermore, CR and RE are parameters that will change
through time as the capacitor degrades, but are considered as
static (constant) for the nominal operation modelM2. Model
M2 describes the nominal dynamics of a low-pass filter with
a non-ideal capacitor. This model by itself is not sufficient
to implement a model-based prognostics algorithm since the
degradation process as reflected on model parameters is not
modeled. Degradation models describing the time evolution
of RE(t) or CR(t) are needed in order to enhance M1 or
M2 for model-based prognostics. Nevertheless,M1 orM2

are useful in this form for model-based fault detection and
isolation, which is not covered in this work.

Vi(t) V0(t)

R

RE

CR

Figure 9. Circuit schematic for a low pass filter with non-
ideal capacitor (modelM2).

4.2. Degradation model

The percentage loss in capacitance is used as a precursor of
failure variable and it is used to build a model of the degra-
dation process. This model relates aging time to the percent-
age loss in capacitance. Let Cl(t) be the percentage loss of
capacitance due to degradation as shown by Figure 8. The
following equation represents a dynamic first-order degrada-
tion model (D1) of the capacitance parameter in the non-ideal
capacitor modelM1.

D1 : Cl(t) = eαt + β, (3)

Here, α and β are degradation model parameters that will
be estimated from the experimental data of accelerated aging
experiments (degradation trajectories from Figure 8).

In order to estimate the model parameters, five capacitors are
used for estimation, and the remaining capacitor is used to
test the prognostics algorithm. This results in five leave-one-
out cases for validation of the prognostics algorithm results.
A nonlinear least-squares regression algorithm is used to es-
timate the model parameters α and β. Table 1 presents the
definition of the test cases and the parameter estimation re-
sults. The parameter estimates (α̃, β̃) and corresponding 95%
confidence intervals are presented for parameters α and β. In
addition, the error variance (σ2

v) is included as a way to assess
the quality of the estimation.

Figure 10 shows the estimation results for test case T6. The
experimental data are presented together with results from the
exponential fit function. It can be observed from the residuals

that the estimation error increases with time. This is to be ex-
pected since the last data point measured for all the capacitors
fall slightly off the exponential model. It should be noted that
this degradation model with static parameters would be used
in a Bayesian tracking framework as an online recursive esti-
mation of Cl(t). This will help to overcome the degradation
model limitation to represent the behavior close to the failure
threshold given the tracking framework ability to compensate
the estimation as measurements become available.
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Figure 10. Estimation results for the empirical degradation
model.
4.3. State-space realization for tracking

The estimated degradation model is used as part of a Bayesian
tracking framework to be implemented using the Kalman fil-
ter technique. This method requires a state-space dynamic
model relating the degradation level at time tk to the degrada-
tion level at time tk−1. The procedure to obtain a state-space
model forD1 is as follows. The non-linear (in time evolution)
exponential behavior described in the model is represented
as a first order differential equation, which can represent the
time evolution ofCl(t). Then, the model is discretized in time
in order to obtain a discrete-time state-space modelD2. From
Eq. (3) we have that Cl(t) = eαt + β, taking the first deriva-
tive with respect to time and substituting eαt = Cl(t) − β
from Eq. (3) we have

Ċl =
dCl(t)

dt
= αCl(t)− αβ. (4)

Taking the finite difference approximation for Ċl with time
interval ∆t we have

Cl(t)− Cl(t−∆t)

∆t
= αCl(t−∆t)− αβ, and

Cl(t) = (1 + α∆t)Cl(t−∆t)− αβ∆t.

Letting tk = t and tk−1 = t − ∆t we get the state-space
degradation model

D2 : Cl(tk) = (1 + α∆k)Cl(tk−1)− αβ∆k. (5)
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Validation Test Training α̃ β̃
σ2
vtest capacitor capacitors (95% CI) (95% CI)

T2 #2 #1, #3–#6 0.0162 -0.8398 1.8778(0.0160, 0.0164) (-1.1373, -0.5423)

T3 #3 #1, #2, #4–#6 0.0162 -0.8287 1.9654(0.0160, 0.0164) (-1.1211, -0.5363)

T4 #4 #1–#3, #5, #6 0.0161 -0.8217 1.8860(0.0159, 0.0162) (-1.1125, -0.5308)

T5 #5 #1–#4, #6 0.0162 -0.7847 2.1041(0.0161, 0.0164) (-1.1134, -0.4560)

T6 #6 #1–#5 0.0169 -1.0049 2.9812(0.0167, 0.0170) (-1.2646, -0.7453)

Table 1. Degradation model (D1) parameter estimation results.

This model can be used in a Bayesian tracking framework in
order to continuously estimate the value of the loss in capac-
itance through time as measurement become available.

5. MODEL-BASED PROGNOSTICS FRAMEWORK

A model-based prognostics algorithm based on Kalman filter
and a physics inspired empirical degradation model is pre-
sented. The methodology consists of the following three main
steps and it is depicted in Figure 11.

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{α̃, β̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

Figure 11. Model-based prognostics methodology

1. State tracking (Kalman Filter): The capacitance loss
Cl(t) is defined as the state variable to be estimated and
the degradation model is expressed as a discrete time dy-
namic model (D2) in order to estimate capacitance loss
as new measurements become available. Direct measure-
ments of the capacitance are available for the filtering
process.

2. Health state forecasting: It is necessary to forecast the
state variable once there are no more measurements
available at time of RUL prediction tp. This is done by
evaluating the degradation model through time using the
state estimate at time tp (x̂(tp)) as initial value.

3. Remaining life computation: RUL(tp) is computed as
the time difference between time of prediction tp and the
end-of-life (EOL) time. End of life is defined as the time
at which the forecasted state crosses the failure threshold
value.

This process is repeated for different values of tp through the
life of the component under consideration.

5.1. Kalman filter for state estimation

A state-space dynamic model is needed for the state estima-
tion. The state variable xk at time tk is defined as the percent-
age capacitance loss Cl(k). Since the system measurements
are percentage loss in capacitance as well, the output equation
is given by yk = hxk, where the value of h is equal to one.
The following system structure is used in the implementation
of the state estimation using the Kalman filter.

xk = Akxk−1 +Bku+ v,
yk = hxk + w,

(6)

where,

Ak = (1 + ∆k),
Bk = −αβ∆k,
h = 1,
u = 1.

(7)

The time increment between measurements ∆k is not con-
stant since measurements were taken at non-uniform sam-
pling rate. This implies that some of the parameters of the
model in Eq. (6) will change through time. Furthermore, v
and w are normal random variables with zero mean and Q
and R variance respectively. The description of the Kalman
filtering algorithm is omitted from this article. A thorough
description of the algorithm can be found in Stengel (1994),
a description of how the algorithm is used for forecasting can
be found in Chatfield (2003) and an example of its usage for
prognostics can be found in (Saha et al., 2009).

5.2. Future state forecasting

The use of the dynamic degradation model for health-state
forecasting requires the time evolution of the state without
updating the error covariance matrix and the posterior distri-
bution of the state vector. Basically, the infrastructure pro-
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vided by the Kalman filter for updating the state given new
measurements on the system is not required in this step. The
state equation from the discrete-time system in Eq. (6) is eval-
uated recursively n times ensuring the forecasted state x̂p+n
crosses the failure threshold. The noise variable v is also
omitted. The n step ahead forecasting equation is given be-
low by Eq. (8). The last update is done at the time of the last
measurement tl. Note that tl = tp for this particular prog-
nostics implementation. This is due to the authors’ decision
to make RUL predictions at each time a new measurement is
available.

x̂p+n = Anxp +

n−1∑
i=0

AiB (8)

The subscripts from parameters A and B are omitted since a
constant ∆t is used in the forecasting mode (one prediction
every hour).

5.3. Remaining useful life computation

Computing the RUL based on the forecasting of the health
states requires the identification of the EOL time based on the
failure threshold. Defining RUL(tp) as the remaining useful
life,

RUL(tp) = tEOL − tp. (9)

The time at end-of-life (tEOL) is a continuous variable which
is computed from the forecast x̂p+n. Let x̂p+j be the first
forecast value to cross the failure threshold. A linear interpo-
lation between x̂p+j and x̂p+j−1 is used to compute tEOL.

5.4. Noise models

The model noise variance Q was estimated from the model
regression residuals for each test case presented in Table 1.
The variance is listed in the last column Table 1. This vari-
ance was used for the model noise in the Kalman filter im-
plementation. The measurement noise variance R is also re-
quired in the filter implementation. This variance was com-
puted from the direct measurements of the capacitance with
the EIS equipment, the observed variance is 4.99× 10−7.

6. PREDICTION OF REMAINING USEFUL LIFE RESULTS

State estimation and RUL prediction results are discussed for
test case T6. Figure 12 shows the result of the filter tracking
the degradation signal. The residuals show an increased error
with aging time. This is to be expected given the results ob-
served from the model estimation process. It should be noted
that the scale of the magnitude of the residuals is 10−7. This
is to be expected given the capability of the Bayesian track-
ing methods to make corrections to the state estimates based
on direct or indirect measurements of the state variable be-
ing estimated. Even though the empirical degradation model
with static parametersD1 does not perfectly represent the ob-
served degradation data (Figure 10), the Kalman filter is able

to make the appropriate corrections resulting on a good online
state estimation performance.
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Figure 12. Tracking results for the Kalman filter implemen-
tation applied to test case T6.

Figure 13 presents results from the remaining useful life pre-
diction algorithm at time tp = 161 (hr), which is the time
at which ESR and C measurements are taken. The failure
threshold is considered to be a crisp value of 20% decrease
in capacitance. End of life is defined as the time at which
the forecasted percentage capacity loss trajectory crosses the
failure threshold. Therefore, RUL is tEOL minus 161 hours.
Figures 14 and 15 present the tracking and forecasting results
for test case T6. Appendix A presents the prediction plots for
the remaining of the validation cases.
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Figure 13. RUL prediction at time 161 (hr) for test case T6.
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Figure 14. T6: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 14 illustrates the health-state estimation
process and forecasting for the capacitance loss
at different points during the aging time (tp =
[0, 24, 47, 71, 94, 116, 139, 149, 161, 171] hours). The
star symbol depicts the final state update (Kalman filter
output) and the bold continuous line represents the state
forecasted until the failure threshold is crossed. The fail-
ure threshold is depicted with a dotted horizontal line at
20%. RUL estimations are made after each point in which
measurements are available. It can be observed that the
predictions become better as the prediction is made closer
to the actual EOL. This is possible because the estimation
process has more information to update the estimates as
it nears EOL. Figure 15 presents a zoomed-in version of
Figure 14 focusing in the area close to the failure threshold.

An α-λ prognostics performance metric is presented in Fig-
ure 16 for validation test T6. The continuous black line
(RUL∗) represents ground truth and the shaded region cor-
responds to a 30% (α = 0.3) error bound in the RUL predic-
tion. This metric specifies that the prediction be within the
error bound halfway between the first prediction and EOL
(λ = 0.5). In addition, this metric allows us to visualize how
the RUL prediction performance changes as data closer to
EOL becomes available. Appendix B presents the α-λ metric
plots for the remaining validation cases. Details on the prog-
nostics performance metrics used in this work are available in
Saxena, Celaya, Saha, Saha, and Goebel (2010).
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Figure 16. Performance based on α-λ performance metric.

6.1. Validation tests

Since the total number of capacitors used for the experiment
was small (six), a leave-one out validation approach was used
to assess the validity of the methodology. In this approach,
the prognostics algorithm was executed in a single capacitor
out of the set of six available. The remaining five capaci-
tors are used for the parameter estimation of the degradation

model. Only five of the six available capacitors crossed the
20% capacitance loss failure threshold, as a result, only five
validation cases were considered.

Table 2 shows performance based on the relative accuracy
(RA) metric in Eq. (10). The RA metric allows for an assess-
ment of the percentage accuracy relative to the ground-truth
value. RA values of 100 represent perfect accuracy. The RA
is presented for all the test cases for different prediction times.
The last column of Table 2 represents the median RA of all
the test cases for a particular prediction time. It is observed
that the RA values decrease considerably for tp = 171. This
is consistent with previous observations indicating that the
algorithm with a fixed-parameter model is not able to cope
with the sudden jump in exponential behavior present around
the 171 hour. This is a limitation that could be overcome by
either an enhanced degradation model or a an online estima-
tion of degradation model parameters using a more sophisti-
cated Bayesian tracking method like extended Kalman filter
or particle filter. It should be noted that the tracking algorithm
has only ten measurement available to update the estimates,
this has also an impact on the algorithm’s ability to converge
quickly to a small state estimation error. Having more mea-
surements available through the aging experiments will have
a positive impact on the prognostics performance.

RA = 100

1−

∣∣∣RUL∗ −RUL′
∣∣∣

RUL∗

 (10)

tp RAT2 RAT3 RAT4 RAT5 RAT6 R̃A
24 94.8 95.5 91.9 96.9 99.7 95.5
47 97.4 99.3 96.4 96.7 91.7 96.7
71 87.5 91.9 84.5 94.1 97.1 91.9
94 85.6 90 78.9 94.8 94.2 90

116 86 99.1 76.5 98 96.2 96.2
139 77.8 95.8 53.1 96.7 81.1 81.1
149 82.1 98.4 46.9 94.8 86.6 86.6
161 77.2 87.3 16.6 87.5 89.8 87.3
171 26.6 26.4 N/A 34.8 63.7 30.7

Table 2. Validation based on relative accuracy (RA) metric.

Table 3 summarizes results for the remaining life predic-
tion (RUL

′
) for all the test cases. The predictions at all

points in time where measurements are available are included.
The second column (RUL∗) indicates the RUL ground-truth
use for computation of prediction errors. The results of the
methodology are presented visually with the tracking and
forecasting plots, the α−λ metric. The tabular results are in-
cluded to provide needed information to compute other prog-
nostics performance metrics and for algorithm performance
comparison under the same run to failure dataset.
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tp RUL∗ RUL
′

T2 RUL
′

T3 RUL
′

T4 RUL
′

T5 RUL
′

T6

24 151.04 158.84 164.88 158.76 167.76 159.89
47 128.04 131.32 134.08 128.35 135.32 125.91
71 104.04 117.01 119.88 115.37 122.63 116.41
94 81.04 92.69 96.64 93.09 97.6 95.42

116 59.04 67.28 65.39 67.77 69.5 65.71
139 36.04 44.01 44.72 46.88 49.4 53.75
149 26.04 30.67 32.41 33.55 35.92 39.95
161 14.04 17.23 18.28 18.2 22.64 25.6
171 4.04 1.07 2.89 N/A 5.52 8.45

Table 3. Summary of RUL forecasting results for all test cases.

7. CONCLUSION

This paper presents a RUL prediction algorithm based on ac-
celerated life test data and an empirical degradation model.
The main contributions of this work are:

1. the identification of the lumped-parameter model (Fig-
ure 5) for a real capacitor as a viable reduced-order
model for prognostics-algorithm development;

2. the identification of the ESR and C model parameters as
precursor of failure features;

3. the development of an empirical degradation model
based on accelerated life test data which accounts for
shifts in capacitance as a function of time;

4. the implementation of a Bayesian based health state
tracking and remaining useful life prediction algorithm
based on the Kalman filtering framework.

One major contribution of this work is the prediction of re-
maining useful life for capacitors as new measurements be-
come available. This capability increases the technology
readiness level of prognostics applied to electrolytic capac-
itors.

7.1. Ongoing and future work

The results presented here are based on accelerated life test
data and on the accelerated life timescale. Further research
will focus on development of functional mappings that will
translate the accelerated life timescale into real usage con-
ditions time-scale, where the degradation process dynamics
will be slower, and subject to several types of stresses.

The performance of the proposed exponential-based degrada-
tion model is satisfactory for this study based on the quality of
the model fit to the experimental data and the RUL prediction
performance as compared to ground truth. As part of future
work we will also focus on the exploration of additional mod-
els based on the physics of the degradation process and larger
sample size for aged devices.

Additional experiments are currently underway to increase
the number of test samples. This will greatly enhance the
quality of the model, and guide the exploration of additional

degradation-models, where the loading conditions and the en-
vironmental conditions are also accounted for towards degra-
dation dynamics.
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NOMENCLATURE

CI Ideal capacitance value for an ideal capacitor
CR Real capacitor value for a non-ideal capacitor

model
RE Equivalent series resistance of the capacitor
Cl(k) Capacitance percentage loss at time tk

(state variable)
Ti Validation test on capacitor i
Mi Nominal model for a component or system
Di Degradation model for a capacitor
RL Load resistance on electrical overstress system
VL Load voltage on electrical overstress system
Vo Electrical overstress voltage in aging system
ZI Ideal capacitor impedance
Z Capacitor impedance for non-ideal capacitor

modelM1
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A. PROGNOSTICS VALIDATION RESULTS
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Figure 17. T2: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 18. T2: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 19. T3: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 20. T3: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 21. T4: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 22. T4: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 23. T5: Health state estimation and forecasting of ca-
pacitance loss (%) at different times tp during the aging time;
tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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Figure 24. T5: Detail of the health state estimation and fore-
casting of capacitance loss (%) at different times tp during the
aging time; tp = [0, 24, 47, 71, 94, 116, 139, 149, 161, 171].
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A. PROGNOSTICS ALPHA-LAMBDA PERFORMANCE
METRIC
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Figure 25. T2: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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Figure 26. T3: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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Figure 27. T5: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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Figure 28. T5: Alpha-Lambda Prognostics Metric (λ = 0.5
and α = 0.3).
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