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ABSTRACT
The world-wide aviation system is one of the most complex
dynamical systems ever developed and is generating data at
an extremely rapid rate. Most modern commercial aircraft
record several hundred flight parameters including informa-
tion from the guidance, navigation, and control systems, the
avionics and propulsion systems, and the pilot inputs into
the aircraft. These parameters may be continuous measure-
ments or binary or categorical measurements recorded in one
second intervals for the duration of the flight. Currently,
most approaches to aviation safety are reactive, meaning
that they are designed to react to an aviation safety inci-
dent or accident. In this paper, we discuss a novel approach
based on the theory of multiple kernel learning to detect po-
tential safety anomalies in very large data bases of discrete
and continuous data from world-wide operations of commer-
cial fleets. We pose a general anomaly detection problem
which includes both discrete and continuous data streams,
where we assume that the discrete streams have a causal
influence on the continuous streams. We also assume that
atypical sequences of events in the discrete streams can lead
to off-nominal system performance. We discuss the appli-
cation domain, novel algorithms, and also discuss results on
real-world data sets. Our algorithm uncovers operationally
significant events in high dimensional data streams in the
aviation industry which are not detectable using state of
the art methods.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
serviceability; H.2.5 [Heterogeneous Databases]: Data
Translation; H.2.8 [Database applications]: Data mining;
H.4.2 [Types of Systems]: Decision Support
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1. INTRODUCTION
On January 31, 2000, a McDonnell Douglas MD-83 was

enroute from Puerto Vallarta, Mexico to Seattle, Washing-
ton when it experienced a catastrophic failure resulting in
the death of 89 passengers and flight personnel as it dived
from about 18000 feet into the Pacific Ocean. Analysis of
data from the Flight Data Recorder (FDR) and the wreck-
age indicated that the probable cause of the accident was
“a loss of airplane pitch control resulting from the in-flight
failure of the horizontal stabilizer trim system jackscrew as-
sembly’s acme nut threads. The thread failure was caused
by excessive wear resulting from Alaska Airlines’ insufficient
lubrication of the jackscrew assembly.” [4] The precursors to
this accident and other accidents due to mechanical issues
and human factors are often evident in large data sets from
Flight Data Recorders as well as textual reports written by
the flight crew and other persons involved in flight opera-
tions. Indeed, an informal study at NASA of FDR data
from similar aircraft showed that a multivariate query on
certain parameters in the FDR could uncover aircraft with
similar mechanical problems.

Boeing recently completed a comprehensive statistical sur-
vey of commercial aircraft accidents worldwide [19] which
shows a dramatic drop in the accident rate, the fatal ac-
cident rate, and also the hull-loss accident rate as shown
in Figure 1. These advances have been due to a signifi-
cant investment in near-term technologies to improve air-
craft safety. However, assuming that air traffic continues to
grow at a modest rate of only 3% per year, over the next
two decades that will lead to nearly doubling the air traffic
within the U.S. The increased density of operations, com-
bined with increased demands on service and availability of
aircraft can lead to a significant number of aviation accidents
even with the current extremely low accident rate.

In 2007, NASA established an archive that contains data
from flight data recorders from most of the major carriers
in the U.S. The archive, known as the Distributed National



Figure 1: This figure from Boeing’s Statistical Sum-
mary of Commercial Jet Accidents in 2007 shows
that the fatality rate of accidents in the United
States has dropped significantly over the past five
decades.

FOQA (Flight Operations Quality Assurance) Archive (DNFA)
contains over two million flights today and covers over 10
major carriers. Typical FOQA parameters consist of both
continuous and discrete (categorical) data from the avionics,
propulsion system, control surfaces, landing gear, the cock-
pit switch positions, and other critical systems. These data
sets can have up to 500 parameters and are sampled at 1
Hz. For a moderate sized fleet that operates 1000 flights per
day, these FOQA data sets become very large. Due to pro-
prietary and legal issues, these data are not shared between
airlines or directly with the government. Thus, in the DNFA
architecture, each carrier has its own data repository, and
a primary requirement of the DNFA is that the data from
multiple carriers not be centralized. Data in the DNFA is
anonymized so that flight numbers and marks identifying
pilots and crew are removed. In this paper, we discuss the
problem of detecting anomalies in FOQA data that may be
indicative of safety issues due to mechanical or human fac-
tors issues. We present the results of our anomaly detection
algorithms on real FOQA data from a regional carrier. This
work is part of a comprehensive plan within the NASA Inte-
grated Vehicle Health Management (IVHM1) project to an-
alyze numerical data from DNFA and text reports from Dis-
tributed National ASAP (Aviation Safety Action Program)
Archive (DNAA) to assess the health of large commercial
fleets of aircraft.

2. BACKGROUND
This paper addresses the problem of detecting anomalies

in high-dimensional, multivariate data streams containing
both discrete and continuous channels. We assume that we
are given data from a data generating process that can be

1http://aeronautics.nasa.gov/programs avsafe.htm/

Figure 2: This figure shows our overall approach
to addressing safety issues in the aviation system.
The automatic identification and causal analysis of
hazards from continuous and discrete data streams
is the subject of this paper [1].

functionally described by the following equations:

ht = Γ(h∗
t−1) (1)

xt = Ψ(x∗
t−1,h

∗
t , ut) (2)

yt = Ω(xt) (3)

We assume that the function Γ determining the evolution of
the hidden system state ht is unknown. We also assume that
the function Ψ, which governs the evolution of the continu-
ous state vector is also unknown. We assume that the vector
x is an N dimensional state vector, and x∗

t−1 is its history
for the last D time steps: x∗

t−1 = [xt−D,xt−D+1, ...,xt−1].
The quantity ut is the observed system input, and yt is the
observed system output which can contain discrete, cate-
gorical, and continuous features. We assume that the entire
data that is available, covering both inputs and outputs, is
given by the set (U ,Y).

In real-world flight operations, the pilot inputs U are de-
termined by standard-operating procedure: for a given air-
port, aircraft, weather conditions, instructions from air traf-
fic control, and other contextual elements of the flight, the
flight procedures are well determined. However, while we
can assume that all pilots are attempting to follow the stan-
dard operating procedures, some may deviate from these
procedures which could lead to a different input sequence U ′,
resulting in a different set of observed flight characteristics
Y ′. The evolution of Y ′ over time will necessarily be differ-
ent than that of the nominal case. This does not imply that
the pair U ′,Y ′ is an unsafe flight– it is simply not typically
observed. Our goal in this paper is to develop algorithms
that can detect if the discrete pilot inputs U , combined with
the observation vector Y are nominal or off nominal and to
diagnose the reason why such a potential anomalous event
was so designated.



2.1 Current State-Of-The-Art Algorithms on
Anomaly Detection

Data-driven anomaly detection is an active area of re-
search (see [7] for details). For example, there are many
anomaly detection methods that identify anomalies in the
vector space. However to the best of authors’ knowledge,
SequenceMiner [5] is the only algorithm that can analyze dis-
crete sequences. Preliminary experiments with SequenceM-
iner on data from commercial aviation indicate that it is
able to find examples of mode confusion, in which a pilot
loses track of autopilot mode changes and therefore initi-
ates anomalous switching behavior in order to determine the
autopilot mode. Because cockpit switch behavior is repre-
sented mostly by sequences of discrete switches, SequenceM-
iner is a natural algorithm for finding anomalies in such se-
quences. Some details on SequenceMiner will be provided
in Section 3.3. Other anomaly detection methods, such as
Orca [3] and the Inductive Monitoring System (IMS) [12],
find anomalies in multivariate continuous data. Both Orca
and IMS are distance-based anomaly detection methods, in
that they use a metric related to distance, such as the aver-
age Euclidean distance to its k-nearest neighbors, to assess
the anomalousness of a point. Clearly, the value of this
metric is greater for a data point that is more anomalous.
In principle, one could use Orca and IMS with heteroge-
neous data—data containing both discrete and continuous
variables. However, in IMS the discrete variables’ contribu-
tions to the Euclidean distance may not reflect their true
importance, and finding the appropriate way to incorporate
distances in the discrete and continuous spaces into a com-
mon metric is a problem with no clear solution. Addition-
ally, Orca and IMS do not learn the sequential dependencies
between points in the training data. Here we would like
to identify an anomaly detection method that incorporates
both continuous and discrete sequences and is able to iden-
tify anomalies within each separately but also across the two
types of data.
Kernel methods [17] have been used for many different

types of data with various types of features such as graphs [13]
and multiple feature types in computer vision such as color [8],
shape, texture [20], and graphs based on image segmenta-
tions [10]. Kernel functions map pairs of objects to the
similarity between those objects, with a value of 1 indi-
cating maximum similarity and 0 indicating no similarity.
Therefore, subject to Mercer’s conditions [6], one can de-
vise a kernel function measuring similarity among objects
of any type and incorporate this into kernel methods for
classification, regression, or anomaly detection. This flexi-
bility to incorporate kernel functions of different types moti-
vates the question of whether multiple such kernel functions
can be incorporated simultaneously. This question brought
about the field of Multiple Kernel Learning (MKL) [2, 14].
MKL replaces individual kernel functions with combinations
of kernel functions, thereby allowing the kernel method to
use multiple kernels simultaneously. MKL was initially used
with multiple copies of the same kernel function with differ-
ent hyperparameter settings. However, MKL has been found
most effective in cases where the different kernel functions
use different attributes, such as in computer vision where
Support Vector Machines (SVMs) that use a convex combi-
nation of kernels using multiple feature sets such as color,
shape, and texture, have been found to outperform SVMs
that only use one of the kernels [10].

MKL appears to be a promising way to satisfy our re-
quirement of incorporating both discrete and continuous se-
quences in anomaly detection. We use the kernel anomaly
detection method known as one-class Support Vector Ma-
chines [18, 16]. We incorporate a kernel over discrete se-
quences which is based on the normalized Longest Common
Subsequence (nLCS) measure used in SequenceMiner and a
kernel over continuous sequences that makes use of the Sym-
bolic Aggregate approXimation (SAX) [15] representation.
We demonstrate that this Multiple Kernel Anomaly Detec-
tion (MKAD) algorithm outperforms Orca and SequenceM-
iner at finding operationally significant anomalies in aviation
safety data. To our knowledge, MKL has never been used
with sequences or within one-class SVM prior to our very
recent poster which shows preliminary results of an earlier
version of our algorithm on synthetic data only [9].

3. ALGORITHM
We first give a brief but general description of multiple

kernel learning based detection technique. Then we describe
the two kernels that we use within our model.

3.1 Multiple Kernel Learning based Detection
As mentioned earlier one of the major advantage of ker-

nel based methods compared to other techniques is their
ability to combine information from multiple data sources.
The way the improved knowledge about the problem can
be incorporated in the core optimization problem is very
simple yet meaningful. The resultant kernel K can be a
convex combination of all kernels computed over multiple
features i.e. K(~xi, ~xj) =

∑n
p=1 ηik̂p(~xi, ~xj), with ηi ≥ 0 and

∑n
i=1 ηi = 1. Here k̂p(~xi, ~xj) represents the pth kernel com-

puted data points xi and xj , and ηi are to weight individ-
ual kernels. Here we take advantage of the multiple kernel
learning approach to incorporate more knowledge in the de-
cision process so that we can achieve an improvement in
detecting anomalies in complex heterogeneous systems that
involve various data sources and data structures. Since we
are interested in anomaly detection we have used the classi-
cal one-class SVMs [16] as our core algorithm. A one-class
SVM is a semi-supervised learning method that finds a set
of outliers using a decision boundary. Below we will provide
a brief description of some of the properties of the mapping
function and briefly describe the optimization problem of a
one-class SVM.

One-class SVMs construct an optimal hyperplane in the
high dimensional feature space by maximizing the margin
between the origin and the hyperplane. This is done by
solving an optimization problem [16]. The dual form of the
optimization can be written as,

minimize Q =
1

2

∑

i,j

αiαjk (xi, xj)

subject to 0 ≤ αi ≤
1

ℓν
,
∑

i

αi = 1, ρ ≥ 0, ν ∈ [0, 1] (4)

where αi is Lagrange multiplier, ν is a user specified param-
eter that defines the upper bound on the training error, and
also the lower bound on the fraction of training points that
are support vectors, ρ is a bias term and k is the kernel ma-
trix. Once this problem is solved at least νℓ training points
with non-zero Lagrangian multipliers (~α) are obtained and



these points {xi : i ∈ [ℓ] , αi > 0} are called support vectors.
The selected points can be marginal Im = {i : 0 < αi < 1}
and non-marginal Inm = {i : αi = 1} support vectors.
Once ~α is obtained, SVMs compute the following decision
function.

f(~xj) = sign(
∑

i∈Im

αik(~xi, ~xj) +
∑

i∈Inm

k(~xi, ~xj)− ρ)

(5)

If the decision function predicts a negative label for a given
test point xj , then it is classified as an outlier. Test examples
with positive labels are classified normal.

3.2 Building Multiple Kernels
In this research our kernel takes the form of,

k(~xi, ~xj) = ηKd(~xi, ~xj) + (1− η)Kc(~xi, ~xj) (6)

where Kd is a kernel over discrete sequences, Kc is a ker-
nel over discretized continuous time series, and η is used to
weight the two kernels (in this paper, we always use η = 0.5).
We have2

Kd(~xi, ~xj) =
|LCS(~xi, ~xj)|

√

l~xi
l~xj

, (7)

where l~x is the number of symbols in sequence ~x. Given
two sequences X and Z, Z is a subsequence of X if removing
some symbols from X produces Z. Z is a common subse-
quence of sequences ~xi and ~xj if Z is a subsequence of both
~xi and ~xj . The longest such subsequence of ~xi and ~xj is
called the longest common subsequence (LCS) and is de-
noted by LCS(~xi, ~xj) and |LCS(~xi, ~xj)| is its length. LCS
is a useful metric for measuring similarity between discrete
sequences for two reasons. First, it is not restricted to a
location-based one-to-one match—the LCS can be located
within different parts of the two original sequences. Second,
the LCS length has an optimal substructure property which
is the foundation of a well-known dynamic programming al-
gorithm. In particular, the algorithm builds up a table L
such that entry L(i, j) is the length of the LCS of the first
i symbols in ~xi and the first j symbols in ~xj . Entry L(i, j)
only depends on entries of L for lower values of i and j.
Details on the Hunt-Szymanski algorithm which we used to
calculate LCS can be found in [11].
The continuous kernel Kc(~xi, ~xj) is inversely proportional

to the distance between the SAX representations [15] of ~xi

and ~xj . Briefly, ~xi and ~xj are first divided into some number
w bins along the time axis. That is, if both vectors have
v variables for n consecutive time points each, then they
are divided into w consecutive bins with all v variables and
of mostly equal time length (all but the last one contain
⌊n/w⌋ consecutive time steps and the last bin contains the
remainder). The mean value of each variable in each frame
is then calculated. So, for example, ~̄xiab is the mean of the
values in the bth time interval of the ath variable of ~xi,

2In all equations related to the discrete and continuous ker-
nels, we assume that the discrete and continuous parts of
the data points ~xi and ~xj are selected. To reduce notational
clutter, we will not include operators to select the discrete
or continuous parts of the data points.

~̄xiab = ⌊n/w⌋

⌊n/w⌋b
∑

k=⌊n/w⌋(b−1)+1

~xiak. (8)

where ~xiak is the kth time point in the ath variable of ~xi.
Then, for each variable, we fit a normal distribution to all
the training data, choose a number of bins ca, and then find
equiprobable bins with breakpoints βa,1, βa,2, . . . , βa,ca−1 such
that the area under the normal density function for x ≤ βa,1,
x ∈ [βa,k, βa,k+1] for all k ∈ {1, 2, . . . , ca − 2}, and for
x ≥ βa,ca−1 are each 1/ca. We assign each bin a discrete
label (e.g., letters A, B, C, etc.). We replace ~̄xiab with the
corresponding discrete label.

So ~xi and ~xj started off having v continuous variables and
n time points per variable, and are replaced by a new ma-
trix that still has v variables but has w discrete symbols per
variable representing the means of that variable in the w
consecutive time windows. The advantages of implementing
SAX are that both the time and amplitude discretization
result in reduction of the noise content as well as reduced
dimensionality of the data. The distance between the SAX
representations of ~xi and ~xj is simply the nLCS length as
shown above in equation (7). Looking at empirical formu-
lation of the similarity measure and how the above kernels
are constructed it is pretty straightforward to understand
that both Kd and Kc are symmetric positive semi-definite
matrices.

3.3 Baseline Algorithms
Both Orca and SequenceMiner have been chosen as the

baseline algorithms. Orca [3] is a K-nearest neighbors ap-
proach outlier detection algorithm with a modified pruning
technique. For continuous data, Orca takes a nominal refer-
ence data set and calculates the nearest neighbors’ using Eu-
clidean distance to all test points in the original vector space.
For discrete data points the Hamming distance is used. Each
data point is scored independently and therefore anomalies
in the temporal domain are undetectable. SequenceMiner
computes outliers by comparing a set of sequences using the
normalized longest common subsequence as the similarity
metric. Sequences that are similar are clustered together.
Outliers are sequences that have a very low similarity values
with the clusters’ medoids. Since SequenceMiner takes into
account the order of the discrete switches it has the abil-
ity to identify anomalies in the temporal domain, however
it is unable to handle continuous data and therefore does
not have the ability to detect anomalies in continuous pa-
rameters. Among the baseline algorithms, SequenceMiner
has been open sourced3 while Orca4 is freely available for
non-commercial use.

To test the robustness of the MKAD method, synthetic
data was generated with various types of seeded faults. This
allowed the algorithm to demonstrate its ability to detect
each anomaly for comparison against the existing state-of-
the-art algorithms. Finally the MKAD method was com-
pared with the combined performance of Orca and SequenceM-
iner.

3https://dashlink.arc.nasa.gov/algorithm/sequenceminer-
algorithm/
4https://dashlink.arc.nasa.gov/algorithm/orca/



3.4 Synthetic data sets
To simulate an aircraft system it was assumed that the

pilot inputs (the discrete switches) are used to influence
the measured continuous output parameters. Therefore the
data parameters were chosen with this assumption in mind.
Ten binary parameters were simulated with three fundamen-
tal behaviors: random flipping, constant throughout, and
predefined switching. One parameter was set to randomly
switch between 0 and 1, while two parameters never changed
states. For the predefined switching six channels would hold
a value at their initial state and change to the alternate state
when a separate channel toggled from 0 to 1.
With the binary parameters generated, the underlying

system state can be used to generate continuous data. To
construct the continuous data, each continuous parameter
was assigned a set of binary parameters as input variables.
A set of Gaussian distributions was defined for each possible
binary state corresponding to the continuous parameter. For
example: if a given continuous parameter was dependent on
2 binary parameters 4 distributions would be generated, if
3 binary parameters, 8 distributions and so forth (see fig-
ure 3). At each time step the continuous parameters would
draw from its defined distribution for the given state of the
binary parameters. This method allows the continuous pa-
rameters to vary directly with the state of the binary inputs
and therefore have the desired relationship assumed for this
problem.

Figure 3: The figure demonstrates a sample distri-
bution for a single continuous parameter that is de-
pendent on 2 binary parameters.

This method was repeated for each flight in the data set.
A total of 300 flights were synthesized (150 for training and
150 for testing)5. Each flight is 1000 sample points long.
Four different fault types, three examples of each, were in-
jected into randomly chosen flights.

Fault type I: The first type of fault involves missing switches
and this implies that sequences of switching that were
expected at a given stage did not occur. For example,
such an event takes place when flaps are not extended
to normal full deployment at landing.

5The synthesized data set can be downloaded from
https://dashlink.arc.nasa.gov/topic/multiple-kernel-
learning-based-heterogeneous-algorithm/

Table 1: The table represents the summary of the
performance of all three algorithms in detecting the
faults in the synthetic data for each fault category.
A total of 12 faults have been randomly injected, out
of which 3 are continuous and 9 are discrete. MKAD
was the only algorithm to detect all fault types.

Algorithms Correct detection
(of faults)

Discrete Continuous
Orca 0 100%
SequenceMiner 89% 0
MKAD method 100% 100%

Fault type II: The second kind of fault involves extra switch-
ing where sequences of switching that were not ex-
pected did occur, such as landing gear retracted after
being deployed on final approach.

Fault type III: The final kind of discrete fault describes out
of order switch sequences. A typical example is landing
gear deployed before initial flaps when the aircraft was
below flaps limit.

Fault type IV: Apart from all the above three, abnormal
patterns (independent of discrete variables) were in-
jected in arbitrary continuous channels. Such an anomaly
may occur with high bank angles or excessive rate of
descent below 1,000 ft.

After the data was generated some preprocessing steps are
required before the algorithm can be executed. The details
of the preprocessing steps have been discussed in a later
section. Here we propose to conduct a proof- of-concept
study that demonstrates the feasibility of using the proposed
MKAD algorithm in detecting a variety of anomalies such
as those injected in the synthetic data set.

Table 1 shows the summary of the outcomes. Since the
actual fault injection incidents are known, we are able to
evaluate the performance of all algorithms in detecting those
faults. Out of twelve injected faults, Orca was able to find
the three continuous anomalies. Even though Orca can han-
dle both discrete (binary) variables and continuous variables,
the algorithm is unable to detect sequential anomalies where
the ordering of transitions is embedded in some form. Se-
quenceMiner, using one standard deviation threshold cal-
culated from the reference set, was able to detect most of
the discrete anomalies and clearly missed all the continuous
anomalies. Whereas the MKAD technique stands out across
all the algorithms since it was able to identify all twelve fault
types (both discrete and continuous).

3.5 Real World Analysis on FOQA Data
The real world data set chosen for analysis is from a re-

gional carrier in the U.S. All aircraft analyzed were of the
same fleet and type (narrow body jet), with a subset of
flights that landed on the same runway at a single airport for
an entire year, resulting in approximately 3500 total flights.
Each flight consists of 160 parameters sampled at 1 Hz with
the average flight length approximately 1.7 hours. Due to
privacy reasons, each pilot’s identity is kept confidential by
the airline industry.



3.5.1 Data Preparation
Data analysis was focused on the portion of the flight

below 10,000 ft. Mean Sea Level (MSL) to landing, using
the deployment of the thrust reversers as a means to deter-
mine touchdown. To account for parameters that recorded
bad data, such as noisy sensors or sensor values reaching
cut-off value or unreasonable data values, a conservative
data quality filter was applied to all 3500 flights, return-
ing approximately 2500 “cleaned” flights. Since the filtering
was conservative, to ensure that significant anomalies were
not removed, some flights that partially contained bad data
were not eliminated from the data set. An aggressive data
quality filter was applied to the remaining flights to deter-
mine a nominal set for training (returning approximately 500
flights). For parameter selection a domain expert provided a
list of 39 relevant continuous parameters that were extracted
for analysis. The flap position parameter was continuously
recorded, however it is categorical. Using input from the
domain expert and statistics from the data the flap parame-
ter was decomposed into 3 binary state variables which were
combined with landing gear and ground spoilers for sequence
analysis.
The working data set consists of approximately 2500 flights

with varying lengths and each of these flights are multidi-
mensional heterogeneous time series. For continuous data,
the mean and standard deviation are calculated for each pa-
rameter across all training flights. These statistics are then
used in both training and testing to z-score normalize each
parameter and flight to maintain consistency.

3.5.2 Experimental Details
When using Orca to analyze the flights, the z-score nor-

malized temporal features of all the flights corresponding to
both the test and the training set were concatenated. The
discrete inputs to Orca are in standard binary format and
the number of nearest neighbors was set to the default value
(k=5). For SequenceMiner the binary states (of the dis-
crete variables) were translated into state transitions where
only the bit changes (switching) were logged as a sequence
of transitions. Figure 4 represents a snapshot of ten such
flights representing sequential data. The SequenceMiner
model builds clusters in the sequence space and the num-
ber of clusters were determined to be 3 for this analysis.
This is because we observed three distinct clusters in the
reference set.

Figure 4: This figure represents a snapshot of a typi-
cal sequences generated from the binary input. Each
sequence represents an unique flight. Examples of
similar sequence (Flight 5 and Flight 6) and dissim-
ilar sequence (Flight 7 and Flight 9) are shown.

For the MKAD algorithm, once the sequences are gen-
erated (Figure 4) the discrete kernel is computed pairwise
across all possible flight combinations in the training set. For
the continuous data, each time series was SAX transformed 6

using the technique described in Section 3.2. In the original
version of SAX, the z-score normalization is an integral part
of the algorithm. However in this research, we normalized
each time series (only once) before it is SAX transformed.
We are able to maintain consistency in choosing the alphabet
size for both reference and test sets. The window size was
also kept fixed throughout the analysis. The window size
and alphabet size were both set to 10. Once the SAX repre-
sentations are obtained, another kernel is computed pairwise
across for all possible flight combinations. Each element of
this kernel is the average of the pairwise comparison across
the parameters of any two flights. In the optimization, we
have set the ν parameter of one-class SVMs to 0.1. For
testing, the support vectors are used to calculate the pair-
wise similarity between all testing flights. The discrete and
continuous kernels for test data were generated in a similar
fashion as the training.

3.5.3 Result Summary
The MKAD method reported a total of 227 anomalous

flights and assigned an appropriate anomaly score to each
of these flights. A simple post-processing method is used
to rank the anomalous flights and decompose the anomaly
score of individual flights in terms of discrete (parameters)
and continuous (parameters) contributions. This results in
three distinct categories, a list of flights with anomalies in ei-
ther discrete parameters or continuous parameters or in both
(i.e. heterogeneous). The MKAD algorithm detected 19 dis-
crete, 94 continuous and 114 heterogeneous anomalies. We
have observed that the majority of the top ranking anomalies
belong to the heterogeneous category. Some of these hetero-
geneous anomalies have distinct discrete-continuous interac-
tions i.e. a sequence of unexpected events in the discrete
parameters results in some abnormal effects in the continu-
ous variables or a series of abnormal event in the continuous
parameters prompts some necessary changes in the states
of the discrete variables. We will elaborate on this using
examples in the analysis section.

3.5.4 Low Occurrence Anomaly
Using the feedback from the domain expert we identi-

fied a good number of anomalous flights which are opera-
tionally significant while the majority are due to low oc-
currence events. Most of the flights in the list of discrete
anomalies and some from the heterogeneous category were
identified anomalous because they fall outside the distribu-
tion of (most) observed values. This does not necessarily
mean that the detected anomaly is operationally significant.
Table 2 represents a typical distribution of the deployment
of landing gears as a function of flap settings. According
to the domain expert there is nothing unusual in deploy-
ing the landing gear before flap-1 setting (10◦). In fact it
is acceptable if the pilot slows down the aircraft by deploy-
ing the landing gear while transiting from cruise to descent.
Such an example was picked up as a low occurrence anomaly
due to the fact that it is a low occurrence event. For simi-
lar reason, we have observed a number of anomalous flights

6The source code of SAX can be obtained from the authors’
website at http://www.cs.ucr.edu/ eamonn/SAX.htm.



Table 2: The table (top) shows the details on how landing gear is deployed as a function of flap settings.
The second part of the table provides statistics on the typical settings of flaps during the landing phase.
The numbers in each cell represent the percentage of flights that fall under that particular category. This
information helps explain why some of the low occurrence anomalies are detected by the MKAD algorithms.

Gear ordering Before Between Between
flaps 10◦ flaps 10◦ − 20◦ flaps 20◦ − 45◦

% of flights 1% 78% 21%

Flaps setting Flaps 10◦ above Flaps 10◦ below No full flaps deployed
10k feet 10k feet + full flaps at landing

% of flights 2% 96% 2%

with either flap-1 setting before 10, 000 ft of altitude and/or
full-flap not at all deployed during landing. Table 2 pro-
vides the statistics of various flap settings as a function of
altitude. The other important category of anomalies which
resulted from this analysis are clusters of flights with a com-
mon set of bad data sources (bad sensors) having common
tail numbers which is valuable maintenance information.

3.5.5 Analysis of Operationally Significant Anoma-
lies

In this section we will present some examples identified
as operationally significant by a domain expert. The first
anomalous flight is a go-around (where the pilot aborted the
landing, climbed, circled around, and landed) and is classi-
fied by the algorithm as a heterogeneous anomaly. The top
anomalous continuous parameters are plotted in Figure 5.
All continuous parameters show abnormally high deflections
during the maneuver. The anomalies found in the discrete
sequence confirmed the maneuver by identifying the extra
switching due to the pilot retracting the landing gear and
flaps during the climb and redeploying for landing on the
second approach.
The second anomalous flight is also identified as hetero-

geneous anomaly with unusually high air speed when com-
pared to a set of reference flights. Figure 6 shows the rela-
tionship between air speed and altitude with the air speed
remaining high at 2500 ft MSL. The anomaly identified in
the sequence indicates the landing gear was deployed before
the flaps. The domain expert said that this ordering may
not be unusual but the pilot could be using the landing gear
to bleed off air speed, which is evident after the landing
gear is deployed. This behavior demonstrates an interac-
tion between the continuous and sequential variables, i.e.
due to the aircraft’s high speed at a low altitude the pilot
was prompted to deploy the landing gear, which in return
resulted in a delayed effect of lower air speed.
The third anomalous flight is also identified as a hetero-

geneous anomaly with indications of gusty winds. The top
contributing parameters are plotted in Figure 7, with the
exception of wind speed, since it was not analyzed by the
algorithm. The domain expert saw the large swings in drift
angle and concluded that there may have been high winds.
The wind speed plot shows that there were indeed high gusts
of up to 70 mph during the approach, which is also appar-
ent in the control column/wheel and lateral accelerations.
The anomaly identified in the discrete sequence was that
flaps fully deployed at 45 degrees was not present at land-
ing. The domain expert said that landing with flaps set at 20
degrees is considered an approved landing flaps setting for
this particular aircraft and may not indicate an anomaly,

however during high cross wind conditions full flaps pro-
vide additional lift that can make it hard for the pilot to
maintain the aircraft’s course, and therefore the pilot may
not have deployed full-flaps because of these environmental
conditions.

The fourth anomalous flight is an abnormal approach and
the only one identified as a continuous anomaly (refer Figure
8). The flight shows high control column and fuel flow fluc-
tuations beginning slightly before 10 miles to landing, which
coincides with the altitude fluctuations. The domain expert
said this is an interesting flight since the pilot had abnormal
altitude deflections and was under glide slope, however the
pilot was still able to line up on glide slope at 5 miles to
landing, which is required to maintain a stable approach.
By definition, glide slope is a 3 ◦ approach vector used to
guide aircraft in for landing.

Figure 5: Top anomalous parameters associated
with a go-around. The top left plot shows the con-
trol column and wheel positions associated with the
maneuver. The top right plot shows high fuel flow
consumption related to the climb. The bottom left
plot shows the high acceleration in the longitudinal
direction. The bottom right plot shows the 3 dimen-
sional track of the aircraft (the go-around maneuver
is denoted by the dotted lines)

3.5.6 Discussions
It is important to note that the combined anomaly lists

from Orca and SequenceMiner were able to detect some but
not all of the 4 anomalies just discussed. For the go-around
and air speed anomalies SequenceMiner is able to detect the
anomalies, however Orca did not. Both the anomalies have
components that are sequential in nature (the go-around
having additional flaps and landing gear switches, and the
air speed anomaly deploying the landing gear early to bleed



Figure 6: For the high airspeed anomaly the top
anomalous parameter (airspeed) is plotted against
altitude. The speed limit threshold at 10,000 ft. is
denoted by the dashed line at 250 knots.

Figure 7: Top anomalous parameters associated
with the gusty wind anomaly. The top left plot
shows the control column and wheel positions. The
top right plot shows the high drift angle. The bot-
tom left plot shows high lateral (side-to-side) ac-
celerations. The bottom right plot shows the wind
speed gusts.

off speed) and, therefore it makes sense that SequenceMiner
detects the anomaly while Orca treating all points indepen-
dently, did not. In the case of the gusty winds and abnormal
approach anomalies, neither Orca nor SequenceMiner were
able to detect them.
Baseline results were obtained by running Orca, SequenceM-

iner and comparing the results with those obtained from the
MKAD method on the FOQA data set described above. It
has been observed that the average flight length (average
flight time expressed in sample points during services, from
take-off to landing) is approximately 1500 sample points in
this data set. Based on this information we allowed Orca to
report back the same number of sample points (≈ 350, 000)
which is equivalent to those 227 flights identified by MKAD.
Any flight that had less than 1% of the average flight length
labeled anomalous was ignored and doing so Orca reported

Figure 8: Top anomalous parameters associated
with the abnormal approach anomaly. The top left
plot shows the high control column position. The
top right plot shows the large swings in fuel flow ac-
tivity. The bottom plot shows the altitude vs. the
distance to landing with the glide slope and glide
slope deviation superimposed.

674 anomalous flights in total. For SequenceMiner we have
calculated a 2−sigma threshold from the reference set and
considered any sequence that was above that threshold in
the test set as an outlier, resulting in 72 anomalous flights.

Table 3 shows the overlap between the baseline algorithms
and MKAD. As expected Orca performs well at detecting
mostly the continuous anomalies found by MKAD, while Se-
quenceMiner identifies anomalies related to discrete and/or
heterogeneous anomalies found by MKAD. However MKAD
still finds a significant number of anomalies that the com-
bined baseline set does not detect. From the proof of con-
cept study we have observed these limitations of Orca and
SequenceMiner in identifying anomalies which are respec-
tively discrete and continuous in nature. This is due to the
fundamental nature of the baseline algorithms. However the
MKAD is able to compress and appropriately combine the
information from both discrete and continuous domain, to
detect anomalies. This has also been reflected in the analy-
sis of the real world data set, where the baseline algorithms
missed some of the operationally significant anomalies de-
tected by MKAD.

4. CONCLUSIONS
The current state-of-the-art algorithms have both strengths

and shortcomings in detecting a variety of anomalous con-
ditions, as discussed in the detection of the 4 real world
anomalous flights. The vector space based techniques were
unable to detect sequential anomalies, whereas SequenceM-
iner was not able to identify anomalies in continuous data.
The MKAD method aims to combine both strengths into a
single approach to allow for detection of a variety of anoma-
lies. This is not to say the proposed algorithm is able to
find all possible anomalies in the data, but rather that it
is robust enough to find a significant overlap with the cur-
rent state-of-the-art methods while also detecting additional
operationally significant anomalies in heterogeneous data
sources. Other approaches such as exceedance queries can
be very efficient in detecting specific anomalies, however the
goal is not to continue to find anomalies that are already be-



Table 3: In this table we compare the detection performance of Orca, SequenceMiner and the MKAD
algorithm on aviation safety data set. The objective is to show the statistics of overlapping anomalous flights
which fall under either discrete, continuous and heterogeneous categories. Total number of anomalous flights
detected by each algorithms are also reported. The result of the MKAD algorithm is also compared with the
combined outcome of Orca and SequenceMiner.

Algorithms Overlap of anomalous flights
(with MKAD)

Discrete Continuous Heterogeneous
Orca 21% 59% 34%
SequenceMiner 53% 0% 54%
Combined Orca and SequenceMiner 58% 59% 67%
MKAD method 19 94 114

ing studied, but to develop a novel method that “..can find
the unknown unknowns...” while analyzing the FOQA data
set.

5. ACKNOWLEDGMENTS
This project was supported by the NASA Aviation Safety

Program, Integrated Vehicle Health Management Project.
The authors would like to thank Robert Lawrence for his
invaluable domain expertise and Dr. Irv Statler for his in-
sightful discussions. The authors also thank Dr. Kanishka
Bhaduri for valuable discussions and suggestions. The au-
thors also thank the reviewers for providing input to improve
the paper.

6. REFERENCES
[1] I. C. Statler, The Aviation System Monitoring and

Modeling (ASMM) Project: A Documentation of its
History and Accomplishments: 1999-2005, 2007,
Technical Report: NASA/TP–2007–214556.

[2] F. R. Bach, G. R. G. Lanckriet and M. I. Jordan,
Multiple kernel learning, conic duality, and the SMO
algorithm, 2004, International Conference on Machine
Learning.

[3] S. D. Bay and M. Schwabacher, Mining
Distance-Based Outliers in Near Linear Time with
Randomization and a Simple Pruning Rule, 2003,
Proceedings of The Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining.

[4] National Transportation Safety Board, Loss of Control
and Impact with Pacific Ocean Alaska Airlines Flight
261, 2002, ulr:
http://www.ntsb.gov/publictn/2002/AAR0201.pdf.

[5] S. Budalakoti and A. N. Srivastava and M. E. Otey,
Anomaly Detection and Diagnosis Algorithms for
Discrete Symbol Sequences with Applications to
Airline Safety, 2008, Vol. 39, No. 1, IEEE
Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, pages 101-113.

[6] C. J. C. Burges, A tutorial on support vector machines
for pattern recognition, 1998, Vol. 2, DMKD, pages
121-167.

[7] V. Chandola, A. Banerjee and V. Kumar, Anomaly
Detection: A Survey, 2009, ACM Computing Surveys.

[8] O. Chapelle and P. Haffner, Support Vector Machines
for Histogram-Based Classification, 1999, Vol. 10, No.

5, IEEE Transactions on Neural Networks, pages
1055-1064.

[9] S. Das, B. L. Matthews, K. Bhaduri, N. C. Oza and
A. N. Srivastava, Detecting Anomalies in Multivariate
Data Sets with Switching Sequences and Continuous
Streams, 2009, NIPS 2009 Workshop: Understanding
Multiple Kernel Learning Methods.

[10] Z. Harchaoui and F. R. Bach, Image classification with
Segmentation Graph Kernels, 2007, Computer Vision
and Pattern Recognition, pages 1-8.

[11] J. W. Hunt and T. G. Szymanski, A Fast Algorithm
for Computing Longest Common Subsequences, 1977,
Vol. 20, No. 5, Communications of the ACM, pages
350-353.

[12] D. L. Iverson, R. Martin, M. Schwabacher, L.
Spirkovska, W. Taylor, R. Mackey, and J. P. Castle
General Purpose Data-Driven System Monitoring for
Space Operations, 2009, Proceedings of the AIAA
Infotech@Aerospace Conference.

[13] H. Kashima, K. Tsuda and A. Inokuchi, Kernels for
Graphs, 2004, Vol. 39, No. 1, Kernel Methods in
Computational Biology, pages 101-113.

[14] G. R. G. Lanckriet, N. Cristianini, L. El Ghaoui, P.
Bartlett and M. I. Jordan, Learning the Kernel Matrix
with Semidefinite Programming, 2004, Vol. 5, Journal
of Machine Learning Research, pages 27-72.

[15] P. Patel and E. Keogh and J. Lin and S. Lonardi,
Mining Motifs in Massive Time Series Databases,
2002, International Conference on Data Mining.

[16] B. Schölkopf, J. C. Platt, J. Shawe-taylor, A. J.
Smola and R. C. Williamson, Estimating the Support
of a High-Dimensional Distribution, 2001, Vol. 13, No.
7, Neural Computation, issn 0899-7667, MIT Press,
Cambridge, MA, USA, pages 1443–1471.

[17] B. Schölkopf and A. Smola, Learning with Kernels,
2002, MIT Press, Cambridge, MA, USA.

[18] D. M. J. Tax and R. P. W. Duin, Support Vector
Domain Description, 1999, Vol. 20, Pattern
Recognition Letters, pages 1191-1199.

[19] Aviation Safety Team, Statistical Summary of
Commercial Jet Airplane Accidents, 2007, Boeing
Commercial Airplanes.

[20] H. Zhang, A. C. Berg, M. Maire and J. Malik,
SVM-KNN: Discriminative Nearest Neighbor
Classification for Visual Category Recognition, 2006,
Computer Vision and Pattern Recognition, pages
2126-2136.


