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Abstract

Most existing data stream classification techniques igrume important aspect of stream data:
arrival of a novel class. We address this issue, and propatgaastream classification technique that
integrates a novel class detection mechanism into traditiclassifiers, which enables it to detect
a novel class automatically before the true labels of theehalass instances arrive. Novel class
detection problem becomes more challenging in the preseh@®ncept-drift, when the underlying
data distributions evolve in streams. In order to determihether an instance belongs to a novel class,
the classification model sometimes need to wait for moreitssances to discover similarities among
those instances. Therefore, unlike traditional classifteat can classify a test instance immediately, a
time delay is involved in the novel class detection mechanihe maximum allowable time deldy,, is
imposed as a time constraint to classify a test instanceh@&umnore, most existing stream classification
approaches make impractical assumption about data lgb8lhrey assume that the true label of a data
point can be accessed immediately after the data point ssifiled using the classification model. In
reality, true label of a data point is likely to be availabfeeaquite some time, since manual labeling is
time consuming. Therefore, a delay is involved in labelMg. assume that label of a data point becomes
availableT; time units after its arrival. We show how to take fast and ectrrclassification decisions
under these constraints, and apply them to real benchméak @amparison with state-of-the-art stream

classification techniques prove the superiority of our apph.

Index Terms

Data streams, novel class, Ensemble classification

. INTRODUCTION

Data stream classification poses many challenges, some iohwave not been addressed
yet. Most existing data stream classification algorithmg, [&], [12], [17], [22], [24] address
two major problems related to data streams: their “infingegth”, and “concept-drift”. Since
data streams have infinite length, traditional multi-passring algorithms are not applicable
as they would require infinite storage and training time. @ptarift occurs in the stream
when the underlying concept of the data changes over times,Tthe classification model
must be updated continuously so that it reflects the mosintecencept. However, another
major problem is ignored by most state-of-the-art dataastrelassification techniques, which
is “concept-evolution”, meaning, emergence of a novel ladost of the existing solutions

assume that the total number of classes in the data streamess. But in real world data
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stream classification problems, such as intrusion detediBxt classification and fault detection,
novel classes may appear at any time in the stream (e.g. a mtewgion). Traditional data
stream classification techniques would be unable to ddtechavel class until the classification
models are trained with labeled instances of the novel clEsss, all novel class instances will
go undetected (i.e., misclassified) until the novel class@ually detected by experts, and a
training data with the instances of that class is made aJailto the learning algorithm. We
address this concept-evolution problem and provide aisoluhat handles all three problems,
namely, infinite length, concept-drift, and concept-etiolo. Novel class detection should be an
integral part of any realistic data stream classificatiammeque because of the evolving nature
of streams. It can be useful in various domains, such as mktintrusion detection [9], fault
detection [6], and credit card fraud detection [22]. Formegée, in case of intrusion detection,
a new kind of intrusion might go undetected by traditionassifier, but our approach should
not only be able to detect the intrusion, but also deduceithsta new kind of intrusion. This
discovery would lead to an intense analysis of the intrusimmme by human experts in order to
understand its cause, find a remedy, and make the system pmres

We address the infinite length problem by dividing the stré@tm equal-sized chunks, so that
each chunk can be accommodated in memory and processed.dfdioh chunk is used to train
one classification model as soon as all the instances in tnekak labeled. We handle concept-
drift by maintaining an ensemble d@ff such classifiers. An unlabeled instance is classified by
taking majority vote among the classifiers in the ensembdie. @hsemble is continuously updated
So that it represents the most recent concept in the streaenupdate is performed as follows:
as soon as a new model is trained, one of the existing modéfeiensemble is replaced by it,
if necessary. The victim is chosen by evaluating the errcgaath of the existing models in the
ensemble on the latest labeled chunk, and discarding thevitiméhe highest error. Our approach
provides a solution to concept-evolution problem by ennigheach classifier in the ensemble
with a novel class detector. If majority of the classifiersadivers a novel class, the instances of
that class are separated and treated accordingly. Thusl clags can be automatically identified
without manual intervention.

Our novel classes detection technique is different frorditi@al “one-classs” novelty detec-
tion techniques [11], [16], [23] that can only distinguishtlween the normal and anomalous

data. That is, the traditional novelty detection techngjassume that there is only one “normal”
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class and any instance that does not belong to the normad @aan anomaly/novel class
instance. Therefore, they are unable to distinguish amaifgreht types of anomaly. But our
approach offers a “multi-class” framework for the novelstection problem, that can distinguish
between different classes of data and discover the emergérmccompletely novel class. Besides,
traditional novelty detection techniques simply identdgta points as outliers/anomalies that
deviate from the “normal” class. But our approach not onlyedet whether a single data point
deviates from the existing classes, but also discovershehet group of outliers possess the
potential of forming a new class by showing strong cohesimorag themselves. Therefore, our
approach is a synergy of a “multi-class” classification made a novel class detection model.

Traditional stream classification techniques also makeagtral assumptions about the avail-
ability of labeled data. Most techniques [4], [8], [24] asmuthat the label of a data point can
be accessed as soon as it has been classified by the classificaddel. Thus, according to
their assumption, the existing model can be updated imrteddiaising the labeled instance.
In reality, we would not be so lucky in obtaining the label ofdata instance immediately,
since manual labeling of data is time consuming and costly.eikample, in a credit card fraud
detection problem, the actual labels (i.e., authentioffyaf credit card transactions are revealed
only after the customer reports fraud transactions to tleelicrcard company. Thus, a more
realistic assumption would be to have a data point labeleat &f time units of its arrival. For
simplicity, we assume that theth instance in the stream arrives ath time unit. Thus,T;
can be considered as a time constraint imposed on datangh@iocess. Note that traditional
stream classification techniques assuine 0. Finally, we impose another time constraifit, on
classification decision. That is, an instance must be d¢laddy the classification model within
T, time units of its arrival. If it assumed that there is no cgsteevolution, it is customary to have
T.=0, i.e., an instance should be classified as soon as it arfivewever, when new concepts
evolve, classification decision may have to be postponeitl emiugh instances are seen by the
model to gain confidence in deciding whether an instancenigsléo a novel class or not. Note
that 7, < 7T; must be maintained in any practical classification modehe@tise, we would not
need the classifier at all, we could just wait for the labelatave. We will discuss this issue
in details in later sections.

Figure 1 illustrates the significance 6f and7,. with an example. Here,, is the last instance

that has arrived in the stream. Lef be the instance that arrivédl. time unit earlier, andr;
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Fig. 1. lllustration of7; andT.

be the instance that arriveéfy time unit earlier. Thenz; and all instances that arrived before
x; (shown with dark-shaded area) are labeled, since all of thmmat least/; time units old.
Similarly, z; and all instances that arrived befare (both the light-shaded and dark-shaded
areas) are classified by the classifier since they are at Teasine units old. However, the
instances inside the light-shaded area are unlabelednices that arrived after; (age less than
T,) are unlabeled, and may or may not be classified (shown wéhutitshaded area).

Integrating classification with novel class detection is antnvial task, especially in the
presence of concept-drift, and under time constraints. ¥8errae an important property of each
class: the data points belonging to the same class shoultbder ¢co each other (cohesion) and
should be far apart from the data points belonging to otresses (separation). If a test instance
is well-separatedrom the training data (called “Raw outlier”), it has potetio be a novel class
instance. Raw oultliers that possibly appear as a result afeqtrdrift or noise are filtered out.
A filtered outlier (or Foutlier) has potential to be a novedss instance. However, we musgait
to see whether more such Foutliers appear in the streamhvghiow strong cohesion among
themselves. If a sufficient number of such strongly coheBmgtliers are observed, a novel class
is assumed to have appeared, and the Foutliers are clagsf@dovel class instance. However,
we can wait at most, time unit to output the classification decision of a testanse after
its arrival, which makes the problem more challenging. femnore, we must keep detecting
novel class instances in this ‘unsupervised’ fashion folteast7; time units from the arrival
of the first novel class instance, since labeled training @dtthe novel class(es) would not be
available before that.

We have several contributions. First, to the best of our kedge, no other stream classification

techniques address the concept-evolution problem. Thé nsajor problem with data stream
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that must be dealt with. In this light, this paper offers a enogalistic solution to data stream
classification. Second, we propose a more practical frameviar stream classification by
introducing time constraints for delayed data labeling araking classification decision. Third,
our proposed technique enriches traditional classifinatredel with a novel class detection
mechanism. Finally, we apply our technique on both synthatid real-world data and obtain
much better results than state-of the art stream classsficatgorithms.

The rest of the paper is organized as follows: section Il udises related work, section IlI
discusses the overview of our approach, section IV dissusse approach in detail, section
V discusses the datasets and experimental evaluation, aaldl,fisection VI concludes with

direction to future works.

Il. RELATED WORK

We discuss the works related to both data stream classiiicatid novelty detection.

Data stream classification has been an interesting reségpachfor years. These approaches
fall into one of two categories: single model and ensembésgification. Single model clas-
sification techniques maintain and incrementally updaténgles classification model [4], [8],
[24]. These techniques also effectively respond to conddfit Several ensemble techniques for
stream data mining have been proposed [7], [17], [22]. Elderrechniques require relatively
simpler operations to update the current concept than givegle model counterparts, and also
handle concept-drift efficiently. Our approach follows thesemble technique. However, our
approach is different from all other stream classificatieohhiques in two different aspects.
First, none of the existing techniques can detect novekelgsbut our technique can. Second,
our approach is based on a more practical assumption abeuintle delay in data labeling,
which is not considered in most of the existing algorithms.

Our technique is also related to novelty/anomaly detectidarkou and Singh study novelty
detection in details in [11]. Most novelty detection tecjues fall into one of two categories:
parametric, and non-parametric. Parametric approactsesn&sa distribution of data, and esti-
mate parameters of the distribution from the normal dataofding to this assumption, any test
instance is assumed to be novel if it does not follow the iistion [14], [16]. Our technique is a
non-parametric approach, therefore, it is not restricbeany specific data distribution. There are

several non-parametric approaches available, such asrpaindow method [23] and K-nearest

August 28, 2009 DRAFT



SUBMITTED FOR REVIEW 7

neighbor (K-NN) based approaches [25].

Our approach is different from the above novelty/anomatgcten techniques in three aspects.
First, existing novelty detection techniques only considether a test point is significantly
different from the normal data. However, we not only considdether a test instance is
sufficiently different from the training data, but also coles whether there are strong similarities
among the test instances. Therefore, existing technigises\e@r novelty in a single test point,
whereas but our technique discovers novelty among a calfedf test points to detect the
presence of a novel class. Second, our model can be corsidsra “multi-class” novelty
detection technique, since it can distinguish among diffeclasses of data, and also discover
emergence of a novel class. But other novelty detection chndistinguish between normal and
novel, and, therefore, can be considered as “one-classsitirs. Finally, most of the existing
novelty detection techniques assume that the “normall” ehastatic, i.e., there is no concept-
drift in the data. But our approach can detect novel classéiserpresence of concept-drift.

Novelty detection is also closely related to outlier detattechniques. There are many outlier
detection techniques available, such as [1]-[3], [10]. 8ahthem are also applicable to data
streams [19], [20]. However, the main difference with thesdlier detection techniques from
ours is that our primary objective is novel class detectiant,outlier detection. Outliers are the
by-product of intermediate computation steps in our athari Thus, the precision of our outlier
detection technique is not too critical to the overall parfance of our algorithm.

Spinosa et al. [18] propose a cluster based novel concepttd@t technique that is applicable
to data streams. However, this is also a “single-class” ipdetection technique, where authors
assume that there is only one ‘normal’ class and all othessela are novel. Thus, it not directly
applicable to a multi-class environment, where more thanaasses are considered as ‘normal’
or ‘non-novel’. But our approach can handle any number oftixgjsclasses, and also detect a
novel class that do not belong to any of the existing clasEberefore, our approach offers a
more practical solution to the novel class detection problhich has been proved empirically.

This paper is an extension to our previous work [13] in which proposed a novel class
detection technique. However, in our previous work, we didl consider the time constraints
T, and T,.. Therefore the current version is more practical than thevipus one. These time
constraints impose several restrictions on the classdicatigorithm, making classification more

challenging. We encounter these challenges and provid=egifisolutions.
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1. OVERVIEW

At first, we mathematically formulate the data stream cfacsdion problem.

. The data stream is a continuous sequence of data pgitts:.x,... }, Where each; is a
d-dimensional feature vectot, is the very first data point in the stream, ang,, is the
latest data point that has just arrived.

« Each data point;; is associated with two attributeg;, andt;, being its class label, and
time of arrival, respectively.

« For simplicity, we assume that, ;=t;+1, and¢,;=1.

. The latest7; instances in the strean{z,ou—_1,+1,.--Znow} are unlabeled, meaning, their
corresponding class labels are unknown. But the class laifeddl other data points are
known.

« We are to predict the class label of,, before the timet,,, + 1., i.e., before the data

point x,,.,, 7. arrives, andl’, < 7;.

A. Top level algorithm

Algorithm 1 outlines the top level overview of our approadte algorithm starts with
building the initial ensemble of models = {L, ..., Ly} with the first M labeled data chunks.
The algorithm maintains three buffers: a temporary bufigf, that keeps potential novel class
instances, an unlabeled data bufférthat keeps unlabeled data points until they are labelet], an
labeled data buffeC, that keeps labeled instances until they are used to traiewaatassifier.
After initialization, the while loop begins from line 5, wdfi continues indefinitely. At each
iteration of the loop, the latest data point in the streamis classified (line 7) usin@lassify()
(algorithm 2). The novel class detection mechanism is @tuaside algorithm 2. If the class of
x; cannot be predicted immediately, it is stored in buf for fatprocessing. Details of this step
will be discussed in section IVz; is then pushed into the unlabeled data buffefline 8). If
the buffer size exceeds, the oldest element, is dequeued and labeled (line 9), sirGeunit
of time has elapsed sinag arrived in the stream (so it is time to labgl). The pair< xy, y, >
is pushed into the labeled data bufiér(line 9). When we havé instances inC, wheres is the
chunk size, a new classifidr is trained using the chunk (line 13). Then the existing erdem
is updated (line 14) by choosing the beést classifiers from thel/ + 1 classifiersL U {L'}
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based on their accuracies dn and the buffer is emptied to receive the next chunk of training

data (line 15).  Our algorithm will be mentioned henceforsh*"BCSMiner” (pronounced like

Algorithm 1 ECSMiner

1: L « Build-initial-ensemble()

2: buf «— empty //temporary buffer

3: U « empty //unlabeled data buffer

4: L — empty //labeled data buffer (training data)

5: while true do

6: x; « the latest data point in the stream

7. Classify(L,x;,buf) //section IV

8 U <« x; llenqueue

9: if |U| > T; then //time to label the oldest instance

10: xr < U /ldequeue the instance

11: L < < xp,y; > lllabel it and save in training buffer
12: if |£| =S then //training buffer is full

13: L' — Train-and-save-decision-boundary(£) (section IlI-E)
14: L « Update(L,L’,L)

15: L — empty

16: end if

17:  end if

18: end while

ExMiner), which stands for Ehanced @&ssifier for Data 8eams with novel class MineiWe
believe that any base learner can be enhanced with the mopawvel class detector, and used
in ECSMiner. The only operation that needs to be treated albedor a particular base learner
is Train-and-save-decision-boundarWe illustrate this operation for two base learners in this

section.

B. Nearest neighborhood rule

We assume that the instances belonging to a elasgenerated by a an underlying generative
model 4., and the instances in each class are independently idintdiatributed. With this
assumption, one can reasonably argue that the instances afle close together under some

distance metric are supposed to be generated by the samé, maddelong to the same class.
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This is the basic assumption for nearest-neighbor claasdis [5]. Besides, this assumption is
used in numerous semi-supervised learning techniqueh, &s1¢15], and in many other semi-
supervised learning works [26]. We generalize this assiomgiy introducing the concept of a
“nearest neighborhood”.

Definition 1 (\. ,-neighborhood): . ,-neighborhood, on. ,(x) of any instancer is the set of
g nearest neighbors of within classc.

For example, let there be three classesandc_, andc,, denoted by the symbols “+”, “-”, and
black dots, respectively (figure 2). Also, lgt5. then)., ,(x) of any arbitrary instance is the

set of 5 nearest neighbors ofin classc,, and so on.

@ ‘;"Co, 3 (X)

A

;LC+ 5 i 5
\‘. .

Fig. 2. lllustratingA.,q(z) for ¢=5

Let D, ,(r) be the average distance framto \.,(z), i.e.,

Z D(z,z;) (1)

where D(z;, z;) is the distance between the data pointsandz; in some appropriate metric.

Let \,.in o-neighborhood, on,,;, ,(x) of any instancer be the\ ,-neighborhood of:, whose
correspondingD..,(z) is the minimum. For example, in figure 2., ,(z) = A7)

Definition 2 @-nearest neighborhood rulei{NH rule)): Let ¢,.;, be the class label of the
instances in\,,,;, ,(z). According to theg-NH rule, the predicted class label of an unlabeled test
instancez is ¢,ip.

In the example of figure 2;,,;,, = ¢y, SOz is labeled as clasg. Our novel class detection
technique is based on the assumption that any class of dita the g-NH rule. In section IV,

we discuss the similarity of this rule with k-NN rule, and hiight its significance.
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C. Novel class and its properties

Definition 3 (Existing class and Novel clasd)et L. be the current ensemble of classification
models. A clasg is an existing class if at least one of the modgjsc L has been trained with
the instances of class Otherwisec is a novel class.

Therefore, if a novel class appears in the stream, none of the classification modelsein th
ensemble will be able to correctly classify the instances @i important property of the novel
class follows from the;-NH rule.

Property 1: Let = be an instance belonging to a novel clasand let¢’ be an existing class.
Then according ta-NH rule, D, (), i.e., the average distance fromto \.,(x) is smaller
than D, ,(z), the average distance fromto ). ,(z), for any existing clasg’. In other words,

x Is closer to the neighborhood of its own class (cohesion], farther from the neighborhood
of any existing classes (separation).

Figure 3 shows an hypothetical example of a decision treethedappearance of a novel
class. A decision tree and its corresponding feature vquaotitioning by its leaf nodes are
shown in the figure. The shaded portions of the feature spgmesents the training data. After
the decision tree is built, a novel class appears in the mtrggoown with “x” symbol). The
decision tree model misclassifies all the instances in thelndass as existing class instance
since the model is unaware of the novel class. Our goal istectthe novel class without having
to train the model with that class. Note that instances imiheel class follows property 1, since
the novel-class neighborhood of any novel-class instasamuch closer to the instance than
the neighborhoods of any other classes. If we observe tbisepty in a collection of unlabeled
test instances, we can detect the novel class. This is navial tiask, since we must decide
when to classify an instance immediately, and when to postibe classification decision, and
wait for more test instances so that property 1 can be redeateong those instances. Because
in order to discover property 1 (cohesion) we need to dedh waitcollection of test instances
simultaneously. Besides, we cannot defer the decision nmameX. time units after the arrival
of a test instance.

Therefore, themain challengesn novel class detection are as follows:

« Saving the training data efficiently without using much meyno

« Knowing when to classify a test instance immediately, an@&mto postpone the classifi-

August 28, 2009 DRAFT



SUBMITTED FOR REVIEW 12

cation decision.
« Classifying the deferred instances withip time unit.

« Predicting the presence of a novel class quickly and cdyrect

Novel class
|

D::y'x'x"i 'xx)c./,_
T xxXkX XK,
1
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0L AAAKKAAA |
woooposxoxaxx [ C
AAEA—— X %/
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Fig. 3. A hypothetical example.

D. Base learners

We apply our technique on two different classifiers: decigiee, and k-nearest neighbor (k-
NN). When decision tree is used as a classifier, each trairatagahunk is used to build a decision
tree. When k-NN is used, each chunk is used to build a k-NN ifieatson model. The simplest
way to build such a model is to just store all the data pointgheftraining chunk in memory.
But this strategy would lead to a inefficient classificationd®lo both in terms of memory and
running time. In order to make the model more efficient, wddoli clusters with the training
data [12]. We apply a semi-supervised clustering technicpileg Expectation Maximization (E-
M) that tries to minimize both intra-cluster dispersionni&aobjective as unsupervised K-means)

and cluster impurity.

K
Obj =3 (D e — >+ Y |z — wl[” * Imp;) )
i=1 xEX; TEX;

The first term in equation 2 is the same as unsupervisegheans, which penalizes intra-
cluster dispersion. The second term penalizes clusterritgpA cluster is considered pure if all

data points in the cluster comes from the same class. WenisgpyandGini indexfor impurity
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measure. After building the clusters, we save the clustemsary (mentioned as “pseudopoint”)
of each cluster (centroid, and frequencies of data poinisnigeng to each class), and discard
the raw data points. Since we store and use dilypseudopoints, both the time and memory
requirements become functions &f (a constant number). A test instance is classified as
follows: we find the pseudopoint whose centroid is nearesnhft;, and assign it a class label

that has the highest frequency in that pseudopoint.

E. Creating decision boundary during training

The training data are clustered usifigmeans and the cluster centroids and other statistics
of each cluster are saved as pseudopoints. Then the ravingailata are discarded. These
pseudopoints form a decision boundary for the training.data

Clustering: K clusters are built per chunk from the training data. Thissidtng step is
specific to each base learner. For example, for decision¢hestering is done at each leaf node
of the tree, since we need to create decision boundariescimleaf node separately. For k-NN,
existing clusters are used that were created using the agprdiscussed in section 1lI-D. For
decision tree, clustering is done locally at each leaf nad®iéows. Supposé' is the chunk-size.
During decision tree training, when a leaf ndgés reachedk; = (¢;/5)* K clusters are built in
that leaf, wherég; denotes the number of training instances belonging to ledéf). Therefore,
the number of clusters built in each leaf node is proportibméhe number of training instances
that belong to the leaf node. If a leaf node is not empty (has @anmore instances), then at
least one cluster is built in that node.

Storing the cluster summary informatiokRor each cluster, we store the following summary
information: i) Weight w: Total number of points in the cluster. ientroid (. iii) Radius R:
Distance between the centroid and the farthest data poititeircluster. iv)Mean distance,:
The mean distance from each point to the cluster centroié. diaster summary of a cluster
will be referred to henceforth as a “pseudopoint” So, w(h) denotes the “weight” value of
pseudopoint,, and so on. After computing the cluster summaries, the raa dee discarded
and only the pseudopoints are stored in memory. Thus, theamyeraquirement for storing the
training data becomes constant, i@(,K). Let H; denote the set of pseudopoints corresponding
to the classifierL;. Any pseudopoint having too few (less than 3) instances isidered as

noise and is not stored in memory.
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Each pseudopoint corresponds to a hypersphere in the feature space havingrcgh)
and radiusR (k). Let us denote the portion of feature space covered by a ppeirt /. as the
“region” of h or RE(h). Let RE(H;) denote the union of the regions of all pseudopoint${in
ie.,

RE(H;) = Uper, RE(h)

Therefore,RE(H;) forms a decision boundary for the training data of classifier

IV. CLASSIFICATION WITH NOVEL CLASS DETECTION

Algorithm 2 (Classify) sketches the classification and naslaks detection technique. The
algorithm consists of two main parts: classification (lirie§) and novel class detection (lines

6-14). Details of the steps of this algorithm will be expksinin the following subsections.

Algorithm 2 Classify(L,x;,bu f)
Input: L: Current ensemble of bedt/ classifiers

x;: test instance
buf: buffer holding temporarily deferred instances
Output: Immediate or deferred class predictionaof
1: fout — true
2: if Foutlier(L,z;) = false then
3:  y; < majority-voting(L,z;) //classify immediately
fout «— false
end if
. Filter(bu f)

4

5

6

7: if fout = true then
8 buf < x; llenqueue
9

if buf.length> ¢ and lasttrial + q < ¢; then

10: lasttrial < ¢;

11 novel < Detect-NovelClasd(,bu f)

12: if novel =true then removenovel puf)
13:  end if

14: end if
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A. Classification

In line 2 of algorithm 2 we first check whether the test instangis an Foutlier, which is
to be defined shortly. If any test instange falls outside the decision boundafyE(H;) of a
classifierL;, thenz; is an outlier. Ifz; is a novel class instance, it must be an outlier, which
would be justified shortly. However;; may also appear an outlier because of other reasons:
noise, concept-drift, or insufficient training data fox. Therefore, we apply filtering so that most
of the outliers, which appear for any reason other than bamgl class instance, are filtered
out. The filtered outliers are callefloutliers.

Definition 4 (Foutlier): A test instance is an Foutlier (i.e., filtered outlier) if & outside the
decision boundary of all classifiefs € L.
Intuitively, all novel class instances should beutliers. Because, if any test instancgis not
an Foutlier, then it must be inside the decision boundary of some clasdifi Therefore, it
must be insideRE(h’) of some pseudopoirt’. This implies that; is closer to the centroid of
h’ than at least one training instance/ih(the one at the farthest distance from the centroid of
h'), which leads to the conclusion that is most likely an existing class instance having the
same class label as the instance®'inSo, if z; is not anFoutlier, we classify it inmediately

using the ensemble voting (line 3).

B. Novel class detection

The bufferbuf temporarily holds potential novel class instances. Thesances are analyzed
periodically in order to detect novel class, which is expdal in the next paragrapbuf needs
to be cleared periodically (line 6, algorithm 2) to removstamces that no longer contribute
to novel class detection. Besides, instances in the bufédriths reached classification deadline
T, are classified immediately. An instance is removed frtanj if it fulfills either of the three
conditions:
1) Age > S: the front of the buffer contains the oldest element in thieb It is removed
if its age is greater thad, the chunk size.
2) Ensemble update: the ensemble may be updated while amaest, is waiting inside the
buffer. As a result,r;, may no longer be aoutlier for the new ensemble of models,

and it must be removed if so. lf, is no longer anFoutlier, and it is not removed, it
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could be falsely identified as a novel class instance, araitsould interfere with other
valid novel class instances, misleading the detectiongz®c
3) Existing class: any instance is removed fréay if it has been labeled, and it belongs to

one of the existing classes.

When an instance is removed fradmf, it is classified immediately using the current ensemble
(if not classified already).

Lines (7-14) are executed only if; is an Foutlier. At first, x; is enqueued into the buffer
(line 9). Then we check whether the buffer length is at lgasind the last check obw. f for
detecting novel class had been executedtgrial) at leastg time unit earlier (line 10). Since
novel class detection is more expensive than simple cleaBdn, this operation is performed
at most once in every time unit. In line 11, algorithm 3 (DetectNovelClass) is edll which
returns true of a novel class is found. Finally, if a novelsslas found, all instances that are
identified as novel class are removed frony (line 12).

Next, we examine algorithm 3 to understand hiayy is analyzed to detect presence of novel
class. First, we defing-neighborhood silhouette coefficient, @NSC, as follows:

Definition 5 ¢-NSC): Let D,,.,,,(z) be the mean distance from dfoutlier x to \,.,,, ()
defined by equation 1, wherg, ., () is the set ofj-nearest neighbors af within the Foutlier
instances. Also, leD, . . (x) be the minimum among aiD, .(z), wherec is an existing class.
Then¢-NSC of z is given by:

D C (l’) — D c (l’)
N = ——9Cmin .
¢-NS5C(z) Maz(Dy ey (T); Do (7))

3)

¢-NSC, which is a unified measure of cohesion and separatielgsya value between -1 and
+1. A negative value indicates thatis closer to the existing classes (less separation) arkefart
away from otherFoutliers, and vice versa. We declarenaw classf there are at least’ (> q)
Foutliers having positivej-NSC. The justification behind this decision is discussedriext
subsection.

Speeding up the computation ¢NSC: Computing¢g-NSC for every Foutlier instancex
takes quadratic time in the number Bbutliers. In order to make the computation faster, we
also create, (= (buf.lengthf) * K) pseudopoints fronFoutliers usingK-means clustering

and perform the computations on the pseudopoints (reféoes Fpseudopoints), wheresS' is
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the chunk size. Thus, the time complexity to compute ¢idSC of all of the F'pseudopoints

is O(K, * (K, + K)), which is constant, since botli, and K are independent of the input size.
Note thatg-NSC of a Fpseudopoint is actually an approximate average of thh&SC of each
Foutlier in that Fpseudopoint. By using this approximation, although we gain speed, we also
lose some precision. However, this drop in precision isigddé, as shown in the analysis to
be presented shortly.

In line 1 of algorithm 3, we creaté'pseudopoints using theFoutliers as explained earlier.
For each classifiel,; € L, we computeg-NSCR) of every Fpseudopoint h (line 4). If the
total weight of the Fpseudopoints having positiveg-NSC() is greater tham, then L; votes
for novel class. If all classifiers vote for novel class, tivea ultimately declare a novel class.
Once novel class is declared, we need to find the instancdseaifdvel class. This is done as
follows: suppose: is an Fpseudopoint having positiveg-NSC() with respect to all classifiers
L; € L (note thatg-NSC) is computed with respect to each classifier separatelydréefare,

all Foutlier instances belonging th are identified as novel class instances.

Algorithm 3 DetectNovelClass(L,bu f)

Input: L: Current ensemble of bedt/ classifiers

buf: buffer holding temporarily deferred instances

Output: true, if novel class is found; false, otherwise
1. Make K,=(K*buf.lengthk) clusters with the instances ibw.f using K-means clustering, and creafé,
Fpseudopoints

: Let H, be the set off'pseudopoints

. for each classifiel; € L do

for eachh € ‘H, do Computeq-NSC(h)

H, «— {h|h € H, and¢-NSC() > 0 } //[Fpseudopoints with positive-NSC

w(Hp) — D pen, w(h). [lsum of their weights

if w(H,) > ¢ then NewClassVote++

: end for

: found «+— NewClassVote== M

This algorithm can detect one or more novel classes condiyras long as each novel class
follows property 1 and contains at leasinstances. This is true even if the class distributions are

skewed. However, if more than one such novel classes appeauicently, our algorithm will
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identify the instances belonging those classes as novlputiimposing any distinction between
dissimilar novel class instances (i.e., it will treat theim@y as “novel”). But the distinction
will be learned by our model as soon as the true labels of tnosel class instances arrive,
and a classifier is trained with those instances.

It should be noted that the larger the valuegofthe greater the confidence with which we
can decide whether a novel class has arrived. Howevey,isf too large, then we may also
fail to detect a new class if the total number of instancesrmghg to the novel class in the
corresponding data chunk s ¢. An optimal value ofq is obtained empirically (section V).

Impact of evolving class labels on ensemble classificatAs:reader might have realized
already, arrival of novel classes in the stream causes #msifiers in the ensemble to have
different sets of class labels. There are two scenarios tsider. Scenario (a): suppose an
older (earlier) classified.; in the ensemble has been trained with classeand ¢;, and an
younger (later) classifief; has been trained with classes andc,, wherec, is a new class
that appeared aftek; had been trained. This puts a negative effect on voting wegisince
the older classifier mis-classifies instances:0fSo, rather than counting the votes from each
classifier, we selectively count their votes as follows:nfysunger classifief.; classifies a test
instancez as classe, but an older classifief,; does not have the class labeln its model,
then the vote forL; will be ignored if x is found to be an outlier for.;. Scenario (b): the
opposite situation may also arise where the oldest classifigained with some class, but
none of the newer classifiers are trained with that classs i@ans clasg has been outdated,
and in that case, we removeg from the ensemble. Figure 4 (a) illustrates scenario (ag Th
classifier in the ensemble are sorted according to their &gk, L, being the oldest, and,
being the youngest. Each classifieris marked with the classes with which it has been trained.
For example,; is trained with classes;, ¢;, and 3, and so on. Note that clags appears
only in the two youngest classifiers.appears as an outlier tb,. Therefore,L,’s vote is not
counted sincer is classified as:; by an younger classifief.;, and L; does not contain class
cy. Figure 4 (b) illustrates scenario (b). Hefg contains class;, which is not contained by
any younger classifiers in the ensemble. Therefordas become outdated, aig is removed
from the ensemble. In this way we ensure that older classifiave less impact in the voting
process. If clasg; later re-appears in the stream, it will be automaticallyedetd again as a

novel class (see definition 3).
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Fig. 4. Impact of evolving class label on ensemble

C. Analysis and discussion

In this subsection at first we justify the novel class detectilgorithm, then analyze the extent
of precision loss in computing-NSC, and finally analyze the time complexity of ECSMiner.

Justification of the novel class detection algorithim:algorithm 3, we declare a novel class
if there are at leasy’ > ¢ Foutliers that have positive;-NSC for all the classifiers in the
ensemble. First, we illustrate the significance of this doon i.e., “more thang Foutliers
have poisitiveqg-NSC”. Equation (3) establishes a relationship between @) tfilean distance
from an Foutlier instancex to all instances in its nearestoutlier neighborhood, and ii) the
mean distance from: to all instances in its nearest existing class neighborhood. Newgav
one step further to establish a relationship between i) thiamce frome to asingleinstance in
its nearestFoutlier neighborhood, and ii) the distance framo asingleinstance in its nearest
existing class neighborhood.

Let F be the set off'outliers having positive;-NSC. Therefore, for any. € F:

Dye,.. () — Dye,.,(x) >0 (from equation 3)

= DQ:Cmin (x) > D%Cout (I)
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Summing up for allFoutliers x € F:

Z D‘Mmin(‘r) > Z Dq,cout (ZE)

zeF zeF
= Z > D(x,z)> Z = ) D(z,z;) (from equation 1)
(EE]'— xle)\‘mzn CI( ) :BG]: x76>\°0? t Q(x)
Z Z D(z,z;) > __Z Z D(x,z;) (letting m =|F|)
1 a, i€Xe,im0a (@) 1 oer T5E€Achyy,q(T)

(4)

Therefore, the mean pairwise distance between any paifootiiers (z,x;), (such thatr is an
Foutlier with positiveq-NSC andz; is an Foutlier in the g-nearest neighborhood @}, is less
than the mean pairwise distance betweenFantlier x and any existing class instaneg In
other words, anfoutlier with positive ¢-NSC is more likely to have majority of its k-nearest
neighbors (k-NNs) within the"outlier instances. So, each of th&utliers x € F should have
the same class as theoutlier instances, and should have a different class than any of the
existing classes. The higher the valuegpthe larger the support we have in favor of the arrival
of a new class. Furthermore, when all the classifiers unamigagree on the arrival of a novel
class, we have very little choice other than announcing fhigearance of a novel class. The
g-NH rule can be thought of another way of expressing the k-NN.rTherefore, this rule is
applicable to any dataset irrespective of its data distioby and shape of classes (e.g. convex
and non-convex).

Computing precision loss in approximageNSC computationAs discussed earlier, we com-
pute ¢-NSC for eachFpseudopoint, rather than eacli’outler individually in order to reduce
time complexity, which causes a reduction of precision impatation. However, following
analysis shows that this loss is negligible. Without losg@ferality, letp; be anFpseudopoint
having weightg;, and ¢; be an existing class Pseudopoint having weightwhich is nearest
from ¢; (figure 5). We compute the approximatdNSC of ¢; (¢-NSC’(¢;)) using the following

formula:

D(pi; 1) = Ds
maz (D (s, 1), D)

Where 1, is the centroid ofg;, 1, is the centroid of¢;, and D; is the mean distance from

Q'NSC/(CM =

(5)

centroidy; to the instances iw;. Equation (5) is an approximate of the rgaNSC. The exact
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Fig. 5. lllustrating the computation of precision logs.is an Fpseudopoint, i,e., a cluster o outliers, andeg; is an existing

class Pseudopoint, i.e., a cluster of existing class instances. In thisumrégzample, all instances iy belong to a novel class.

value of ¢-NSC follows from equation (3):

L 1
Q‘NSC(¢) :i Z ‘ ije}\q’j(x) D(l’, xj) _a Zﬂfz‘E)\q,i(ﬂc) D(xv xz)
o vEPi maﬂ?(% ije)‘q’j(x) D(x’ $j)’ % inE)\q,i(I) D(ma xz))

Where )\, ;(z) is the g-nearest neighborhood of within F' Pseudopoint ¢;, and A, ;(z) is the

(6)

g-nearest neighborhood efwithin F'Pseudopoint ¢;, for somez € ¢,. Therefore, the precision
loss is their differenceg-NSC(p;) - ¢-NSC'(¢;)

e L 3 1 @ P %) = 3 3 enuw D@ @) D(ui,py) = D,
pree = o = max(}] ijekq’j(x) D(x,x;), é ine/\q,i(m) D(z,z;))  max(D(wi, pj), D;)

In order to simplify the computations, we assume that ¢; = ¢, andg-NSC is positive for

(7)

anyz € ¢;. Therefore )\, ;(z) = ¢, A, ;(x) = ¢;. Also, we consider square of Eucledian distance
as the distance metric, i.eD(z,y) = (z — y)?. Sinceq-NSC is positive for anyr € ¢;, we
have maz (D (i, i), D;) = D(ui, p1j), and max(é Dseng (@) D@, 7)), é D vieng (o) D@, i)
= 2 2 en, o D@, xy). Also, Dy = 037 (v — u;)* = of, the mean distance of the instances

in ¢; from the centroid. Continuing from equation (7):

s 7 Donses, (T — 15)? (1 — p1)?

1 —r)2_1 — )2
£p'f‘60 —1 Z q Z$J€¢] (x x]) q sze¢z ('T xl) (ILL@ - ILL]>2 — 0'1/2

q = G Dowsen, (T — ) (bi = p1)?

1 2 1 2
=—Z D Gkt DN kA TR Gt e T
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Itis easy to show thaf >, (v—2)*—(v—w,)* = o7 and; 3 ., (v—;)*—(x—u;)* = 07,

Substituting these values, we obtain:

prec:_z U * x_”]) B _($_M)2_ (Mi_:uj)Q_(x_/Li)Q)

9 of + (& — py)° (1 = )
12 JJ - :ui) (I - ,uz)
g Z 24 (z— ;)2 1+ (i — )2)
xe¢> g; T — M i —

_01'2 1 o} 1 (z — i)
. _ .2__2 2 _ ,2__2 2 _ .2)
i ia-—i—(x 1) q o5+ (x — pj)

zeP; J

(i — )2 oF 07+ (i — p)? 9= oF + (x — py)?

The last line follows since using the relationship betweamionic mean and arithmetic mean

o7 o} 1 Z (x — p;)?

it can be shown that:
1 Z o; S o? _ o?
Q7 07+ (@ =) T ey 0 (@) o ol (s — )
Following the fact that alk: € ¢; has positiveg-NSC, we can deduce the following relation-

ships: i) (z — p3)? < (s — pj)%, i) (2 — py)? < (x — wi)* + (s — p3)? @ by triangle inequality.
i) of < (i —y)? sinceo? = 030 o (v = u)? < 03 es (i — 1)* = (i — py)* V)
0—]2 < (m — pj)* : becausep; represents an existing class, and similar reasoning asaiii)be

applied here too.

Applying these relationships, and after several algehbraaipulations, we obtain:

o2 o2 o2 o2
1 _ 1 _ 3 — 3 (8)
(i = p)* 3 — p5)? 3w = p)* 3w — pyy)?

Usually, if ¢; belongs to a novel class, it is empirically observed in alnadlsdatasets that

q¢-NSC'(¢;) > 0.9. In this caseg? < (1 — 0.9)(u; — ;)% Therefore,L,,... < 1/30, which is a

ﬁprec S

negligible loss.
Time and space complexitiine 1 of algorithm 3 (clustering) take3( K S) time, and the for

loop (lines 3-8) take® (K 2L) time. The overall time complexity of algorithm 3 K?L+ K S)
= O(KS), sinceS >> KL. Lines 1-5 of algorithm 2 take®(K LS + Lf.(S)) per chunk,

where f.(S) is the time to classify an instance using a classifier. LinealesO(S) time.
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Line 11 (algorithm 3) is executed at most once in evetyme unit. Therefore, the worst case
complexity of lines 7-14 i)(Sq' K S. So, the overall complexity of algorithm 2 &(K LS +
Lf.(S)+ Sq'KS) per chunk. For most classifier,(S) = O(S). Also, letS/q = m. So, the
overall complexity of algorithm 2 becom&$(K LS + LS +mS) = O(mS), sincem >> K L.
Finally, the overall complexity of algorithm 1 (ECSMiner) @&(msS + f;(S)) per chunk, where
f:(S) is the time to train a classifier with training instances.

ECSMiner keeps three buffersu f, the training buffer, and the unlabeled data buffer. Both
buf and hold at most instances, whereas the unlabeled data buffer holds at Thasstances.
Therefore, the space required to store all three buffer®isuaz(S,7;)). The space required
to store a classifier (along with the pseudopoints) is musk tBansS. So, the overall space

complexity remaing)(max(S,1;)).

V. EXPERIMENTS

In this section we describe the datasets, experimentaf@maent, and discuss and analyze

the results.

A. Data sets

Synthetic data with only concept-drift (SynC): SynC simulates only concept-drift, with no
novel classes. This is done to show that concept-drift de¢semoneously trigger a new-class
detection in our approach. SynC data are generated with anmbyperplane. The equation of
a hyperplane is as followsy? | a;z; = ao. If S0, a;z; < ao, then an example is negative,
otherwise it is positive. Each example is a randomly geerdr@idimensional vectofz, ..., x4},
wherez; € [0, 1]. Weights{ay, ...,aq} are also randomly initialized with a real number in the
range [0, 1]. The value af; is adjusted so that roughly the same number of positive agdtive
examples are generated. This can be done by choagiﬁg% Zle a;. We also introduce noise
randomly by switching the labels @Po of the examples, where=5 is set in our experiments.

There are several parameters that simulate concept daifanfreterm specifies the percent
of total dimensions whose weights are involved in changany] it is set to 20%. Parameter
t specifies the magnitude of the change in ev@ryexamples. In our expeiments,is varied
from 0.1 to 1.0, andV is set to 1000s;,7 € {1,...,d} specifies the direction of change for

each weight. Weights change continuously, ie.is adjusted bys;.t/N after each example is
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generated. There is a possibility of 10% that the change dvoaierse direction after every N
examples are generated. We generate a total of 250,00@Ise@od generate equal-sized chunks.
Synthetic data with concept-drift and novel-class (SynCN): This synthetic data simulates
both concept-drift and novel-class. Data points belongmgach class are generated by fol-

lowing a Normal distribution having different mean (-5.046.0) and variance (0.5 to 6) for
different classes. Besides, in order to simulate the evglaeture of data streams, the probability
distributions of different classes are varied with timeisTbaused some classes to appear and
some other classes to disappear at different time slotsrderdo introduce concept-drift, the
mean values of a certain percentage of attributes have beedsat a constant rate. As done
in the SynC dataset, this rate of change is also controllethbyparameters:, ¢, s, and NV in

a similar way. The dataset is normalized so that all attelw#lues fall within the range [0,1].
We generate the SynCN dataset with 20 classes, and 40 reabvattributes, having a total of
400K data points.

Real data - KDDCup 99 network intrusion detection: We have used the 10% version of the
dataset, which is more concentrated, hence more challgrigan the full version. It contains
around 490,000 instances. Here different classes appeadiaappear frequently, making the
new class detection challenging. This dataset contains TdDiRection records extracted from
LAN network traffic at MIT Lincoln Labs over a period of two wiee Each record refers to
either to a normal connection or an attack. There are 22 typattacks, such as buffer-overflow,
portsweep, guess-passwd, neptune, rootkit, smurf, spySet, there are 23 different classes of
data. Most of the data points belong to the normal class. Eaobrd consists of 42 attributes,
such as connection duration, the number bytes transmiti@chber of root accesses, etc. we
use only the 34 continuous attributes, and remove the catedattributes. This dataset is also
normalized to keep the attribute values within [0,1].

Real data - Forest cover (UCI repository): The dataset contains geospatial descriptions of
different types of forests. It contains 7 classes and 54bates and around 581,000 instances.
We normalize the dataset, and arrange the data so that infamk @t most 3 and at least 2

classes co-occur, and new classes appear randomly.
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B. Experimental setup:

We implement our algorithm in Java. The code for decisioe tias been adapted from the
Weka machine learning open source repository
(http://www.cs.waikato.ac.nz/ml/weka/). The experitsewere run on an Intel P-IV machine
with 2GB memory and 3GHz dual processor CPU. Our paramet@ngetre as follows, unless
mentioned otherwise: if{ (number of pseudopoints per chunk) = 50, diYminimum number
of instances required to declare novel class) = 50 Milifensemble size) = 6, ¥y (chunk size)

= 2,000. These values of parameters are tuned to achieveesallosatisfactory performance.

C. Baseline method:

To the best of our knowledge, there is no approach that cassifjadata streams and
detect novel class. So, we compare MineClass with a combmaifi two baseline techniques:
OLINDDA [18], and Weighted Classifier Ensemblé’(C'E) [22], where the former works as
novel class detector, and the latter performs classificafithis is done as follows: For each
chunk, we first detect the novel class instances usidig N DDA. All other instances in the
chunk are assumed to be in the existing classes, and theyamsfied using CE. We use
OLINDDA as the novelty detector, since it is a recently proposedrifiigo that is shown to
have outperformed other novelty detection techniques ta dieams [18].

However,OLIN DDA assumes that there is only one “normal” class, and all otlemses
are “novel”. So, it is not directly applicable to the multass novelty detection problem, where
any combination of classes can be considered as the “gfistlasses. We propose two alter-
native solutions. First, we build parallel LI N DDA models, one for each class, which evolve
simultaneously. Whenever the instances of a novel classaappe create a neWLINDDA
model for that class. A test instance is declared as novall the existing class modeidentify
this instance as novel. We will refer to this baseline metasdVCE-OLINDDA PARALLEL.
Second, we initially build arOLINDDA model with all the available classes. Whenever a
novel class is found, the class is absorbed into the existihd N DDA model. Thus, only
one “normal” model is maintained throughout the stream.sTill be referred to as WCE-
OLINDDA _SINGLE. In all experiments, the ensemble size and chunk-aie kept the same
for both these techniques. Besides, the same base learnsedsfor WCFE and X M. The

parameter settings faDLINDDA are: i) number of clusters built in the initial modek =
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30, ii) least number of normal instances needed to updatesttsting model = 100, iii) least
number of instances needed to build the initial model = 1MOmiaximum size of the “unknown
memory” = 200. These parameters are chosen either accotdlitige default values used in
[18] or by trial and error to get an overall satisfactory pemiance We will henceforth use the
acronymsXM for ECSMiner, W-OP for WCE-OLINDDA _PARALLEL and W-OS for WCE-
OLINDDA_SINGLE.

D. Performance study

Evaluation approach: We use the following performance metrics to evaluate ounrgie:
M,.... = % of novel class instances Misclassified as existing clas@]—f,?@—o, F, .., = % of
existing class instances Falsely identified as novel claﬁﬁ—lﬁ-ﬁ), ERR = Total misclassification

error (%)(includingM, ., and F,,,,) = el Fe)100

, Where F;,, = total novel class instances
misclassified as existing clasB, = total existing class instances misclassified as novesclas
= total existing class instances misclassified (other thgn N, = total novel class instances in
the stream/V = total instances the stream. From the definition of the emetrics, it is clear
that ERR is not necessarily equal to the sum\éf,,, and F,..,.

Evaluation is done as follows: we build the initial modelsaach method with the first 3
chunks. From the 4th chunk onward, we evaluate the perfaresaaf each method on each data
point using the time constraints. We update the models witreva chunk whenever all data
points in that chunk is labeled.

Results: Figures 6(a)-(c) show the total number of novel class ircgammissed (i.e., misclas-
sified as existing class) and Figures 6(d)-(f) show the d\vereor rates (ERR) of each of the
techniques for decision tree classifier up to a certain paoirthe stream in different datasets.
We omit SynC from the figures since it does not have any nowssclK-NN classifier also
has similar results. For example, in figure 6(a) at X axis =,10@ Y values show the total
number of novel class instances missed by each approacte ifirth 100K data points in the
stream (Forest Cover). At this point, XM misses only 15 novatg instances, whereas W-OP,
and W-OS misses 1937, and 7053 instances, respectivebl. Aminber of novel class instances
appeared in the stream by this point of time is shown by theesponding Y value of the
curve “Total”, which is 12,226. Likewise, in figure 6(d), tiERR rates are shown throughout

the stream history. In this figure, at the same position (X331¥ values show the ERR of each
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of the three techniques upto the first 100K data points in theas). The ERR rates of XM,
W-OP, and W-OS at this point are: 9.2%, 14.0%, and 15.5% ectsely.

35K 4 Missed by XM —— 35K 4 Missed by XM —— 35K 4 Missed by XM ——
Missed by W-OP Missed by W-OP Missed by W-OP-------
30K - Missed by W-OS—— 30K Missed by W-OS—— 30K - Missed by W-OS——
Total Total Total
& 25K £ 25K 4 o 9 25K
Q o { o
c c ! =
£ 20K 4 £ 20K | = £ 20K |
£ = { <
T 15K 4 T 15K 4 o T 15K 4
g g B g
0K~ 10K { 10K -
5K 4 H _ 5K {7 R 5K T -
0 — T T T 0 —— T T T 0= T T T
100 200 300 400 100 200 300 400 100 200 300
Stream (in thousand data pts) Stream (in thousand data pts) Stream (in thousand data pts)
(a) Forest Cover (b) KDDcup (c) SynCN
25 25 25
XM —— XM —— XM ——
W-OP ------- W-OP ------- W-OP -------
W-0S —— W-0S —— W-0S ——
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(d) Forest Cover (e) KDDcup (f) SynCN

Fig. 6. Top row: novel class instances missed by each method, bottenoverall error of each method’(=1000,7,.=400)

Table | summarizes the error metrics for each of the teclesigu each dataset for decision tree
and KNN. The columns headed by ERR,,.,, and F,,.,, report the average of the corresponding
metric on an entire dataset. For example, while using datisee in KDD dataset, XM, W-OP,
and W-OS have 1.0%, 5.8%, and 6.7% ERR, respectively. Alsar, tberesponding)/,,.., are
1.0%, 13.2% and 96.9%, respectively. Note that there is nelraass in SynC, and so, there is no
M,,.., for any approach. Both W-OP and W-OS have sadfjg, in SynC dataset, which appears
since W-OP and W-OS are less sensitive to concept-drift Xisin Therefore, some existing
class instances are misclassified as novel class becaussmaépt drift. All approaches have
lower error rates in SynCN than SynC because SynCN is genanaieg Gaussian distribution,
which is naturally easier for the classifiers to learn. AlSgnC has lower error rates with K-NN

than with decision tree since the hyperplane dataset iseetslearn for K-NN. In general, XM
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TABLE |

PERFORMANCE COMPARISON

Classifier Dataset ERR Maew Few
XM W-OP W-0S| XM W-OP W-0S| XM W-OP W-0S

SynC 6.9 14.1 12.8 - - - 0.0 2.4 1.1

Decision tree| SynCN 1.2 8.9 139 | 0.0 26.5 96.2 | 0.02 1.6 0.1
KDD 1.0 5.8 6.7 10 13.2 969 | 0.9 4.3 0.03
Forest Cover| 4.7 7.9 85 0.2 30.7 70.1 | 3.0 1.1 0.2
SynC 0.0 2.4 1.1 - - - 0.0 2.4 1.1

K-NN SynCN 0.01 8.9 139 | 00 26.5 96.2 | 0.0 1.6 0.1
KDD 12 4.9 5.2 5.9 12.9 96.5 | 0.9 4.4 0.03
Forest Cover| 3.6 4.1 4.6 84 32.0 70.1 | 1.3 1.1 0.2

outperforms the baseline techniques in overall classificaccuracy and novel class detection.
The main reason behind the poorer performance of W-OP irctiegenovel classes is the way
OLINDDA detects novel class. Simply said, OLINDDA makes tatoong assumptions about a
novel class and normal classes. First, it assumes a sphieooadary of the normal model. It
updates the radius of the sphere periodically, and dectarghing outside the sphere as a novel
class if there is evidence of sufficient cohesion among te&airces outside the boundary. The
assumption that a data class would have spherical boundagoistrict to be maintained for
real world problem. Second, it assumes that the data deokiynovel class must be at least
that of the normal class. If a novel class is more sparse thamaoérmal class, the instances of
that class would never be recognized as a novel class. Butdalavorld problem, two different
classes may have different data densities. OLINDDA wouildifiethose cases where any of the
assumptions are violated. On the other hand, XM does notvassuny spherical boundary of
an existing class, or similar data densities of differeassés. Therefore, XM can detect novel
classes much more efficiently. Besides, OLINDDA is less s$®&egio concept-drift, which results
in falsely declaring novel classes when drift occurs in tkisteng class data. W-OS performs
worse than W-OP since W-OS *“assimilates” the novel class&sthe normal model, making
the normal model too generalized. Therefore, it considesstrof the future novel classes as
normal (non-novel) data, yielding very high false negatiate.

Figures 7(a),(b) show how XM and W-OP respond to the comgdj and7, in Forest Cover
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Fig. 7. M. and overall error (ERR) rates on Forest Cover dataset fof {a00 and different values df; and (b)7; =
2000 and different values df,

dataset. Similar characteristics are observed for othtasdess and W-OS. From figure 7(a) it is
evident that increasin@; increases error rates. This is because of the higher delajved in
labeling, which makes the newly trained models more outtddt&aturally, M,,.,, rate decreases
with increasingT,. as shown in figure 7(b) because higher valuesl’/oineans more time to
detect novel classes. As a result, ERR rates also decreases.

Figures (8(a)-(d)) illustrate how the error rates of XM charfor different parameter settings
on Forest Cover dataset and decision tree classifier. Thesenpters have similar effects on
other datasets, and K-NN classifier. Figure 8(a) shows tfextedf chunk size on ERRE,.,,,
and M,,.,, rates for default values of other parameters. We note that &R, rates decrease
upto a certain point (2,000) then increases. The initiarel®ent occurs because larger chunk
size means more training data for the classifiers, whichsleadower error rates. However, if
chunk size is increased too much, then we have to wait muaieloio build the next classifier.
As a result, the ensemble is updated less frequently tharedemeaning, the ensemble remains
outdated for longer period of time. This causes increasem eates.

Figure 8(b) shows the effect of ensemble sizé)(on error rates. We observe that the ERR
and F,,., rates keeps decreasing with increasiig This is because when/ is increased,
classification error naturally decreases because of thectied of error variance [21]. But the

rate of decrement is diminished gradually. HoweVéy,.,, rate keeps increasing after some point
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Fig. 8. Parameter sensitivity

(M=6), because a larger ensemble means more restriction daratean of the arrival of novel
classes. Therefore, we choose a value where the overatl @RR) is considerably low and
also M, is low. Figure 8(c) shows the effect of number of clustek§ ©En error. The x-axis

in this chart is drawn in a logarithmic scale. Although the@ll error is not much sensitive on
K, M,., rate is. Increasind< reducesh,,.,, rate, because outliers are more correctly detected.
Figure 8(d) shows the effect gf(Minimum neighborhood size to declare a novel class) ornrerro
rates. The x-axis in this chart is also drawn in a logarithsgele. Naturally, increasing up

to a certain point (e.g. 200) helps reducifg.,, and ERR, since a higher value gfgives us

a greater confidence (i.e., reduces possibility of falsedmn) in declaring a new class (see
section 1V). But a too large value of increases\,,.,, and ERR rates (which is observed in

the chart), since a new class is missed by the algorithm &4 less tha instances in a data
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TABLE Il

RUNNING TIME COMPARISON IN ALL DATASETS

Dataset Time(sec)/1K Points/sec Speed gain

XM  W-OP W-0OS XM W-OP W-OS| XM over W-OP XM over W-OS
SynC 0.33 0.41 0.2 | 2,960 2,427, 5,062 12 0.6
SynCN 17 14.2 2.3 605 71 426 85 14
KDD 1.1 30.6 05| 888 33| 1,94 26.9 0.45
Forest Cover| 0.93 8.3 0.36 | 1,068 120| 2,792 8.9 0.4

chunk. We have found that any value between 20 to 100 is thecbesce forg.

Finally, we compare the running times of all three competmgthods on each dataset for
decision tree in table 1l. K-NN also shows similar perforro@s. The columns headed by “Time
(sec)/1K ” show the average running times (train and testydnonds per 1000 points, the
columns headed by “Points/sec” show how many points have peecessed (train and test)
per second on average, and the columns headed by “speedshaws the ratio of the speed
of XM to that of W-OP, and W-OS, respectively. For example, X326.9 times faster than
W-OP on KDD dataset. Also, XM is 1.2, 8.5, and 8.9 times fatttan W-OP in SynC, SynCN,
and Forest cover datasets, respectively. In general, WsQBuighly C' times slower than XM
in a dataset having' classes. This is because W-OP needs to mairttaparallel models, one
for each class. Beside§,LI N DDA model creates cluster using the “unknown memory” every
time a new instance is identified as unknown, and tries taatdi the clusters. As a result, the
processing speed becomes diminished when novel classesfoagquently, as observed in KDD
dataset. However, W-OS seems to run a bit faster than XM ieetldatasets, although W-OS
shows much poorer performance in detecting novel classgsnaoverall error rates (see table
). For example, W-OS fails to detect 70% or more novel classainces in all datasets, but XM
correctly detects 91% or more novel class instances in ataseia Therefore, W-OS is virtually
incomparable to XM for the novel class detection task. XMoataitperforms W-OP both in
speed and accuracy.

We also test the scalability of XM on higher dimensional dasging larger number of classes.

Figure 9 shows the results. The tests are done on synthetieierated data, having different
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dimensions (20-60) and number of classes (10-40). Eaclsetateas 250,000 instances. It is
evident from the results that the time complexity of XM inases linearly with total number of
dimensions in the data, as well as total number of classdidata. Therefore, XM is scalable

to high dimensional data.

1% 3500 (7] 3500
9 D=20 —— 8 C=10 ——
< D=40 = C=20
7 3000 4 D=60 —— 7 3000 4 C=30 ——
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X 2500 A X 25004
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Fig. 9. Scalability test

VI. CONCLUSION

We have addressed several real world problems related #ostt@am classification. We have
proposed a solution to the “novel class evolution” problevhich has been ignored by most of
the existing data stream classification techniques. Exjsfiata stream classification techniques
assume that total number of classes in the stream is fixedefne, when a novel class appears
in the stream, instances belonging to those classes aréasssied by the existing techniques.
We show how to detect novel classes automatically even wherclassification model is not
trained with the novel class instances. Novel class detediecomes more challenging in the
presence of concept-drift. Existing novel class detectemhniques have limited applicability,
since those are similar to one-class classifiers. Thatag,dssume that there is only one “normal”
class, and all other classes are novel. However, our tegangjapplicable to the more realistic
scenario where there are more than one existing classeg istbam. Besides, our novel class
detection technique is non-parametric, and it does re@unyespecific data distribution, or does

not require the classes to have spherical shape. We haveladsm how to effectively classify
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stream data under different time constraints. Our approatperforms the state-of-the art data
stream based classification techniques in both classdic@tcuracy and processing speed. We
believe that our proposed technique will inspire more nesetoward solving real-world stream
classification problems.

In future we would like to apply our technique to network fiafBesides, we would like to

address the data stream classification problem under dgrigaiiure sets.
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