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Abstract

Most existing data stream classification techniques ignoreone important aspect of stream data:

arrival of a novel class. We address this issue, and propose adata stream classification technique that

integrates a novel class detection mechanism into traditional classifiers, which enables it to detect

a novel class automatically before the true labels of the novel class instances arrive. Novel class

detection problem becomes more challenging in the presenceof concept-drift, when the underlying

data distributions evolve in streams. In order to determinewhether an instance belongs to a novel class,

the classification model sometimes need to wait for more testinstances to discover similarities among

those instances. Therefore, unlike traditional classifiers that can classify a test instance immediately, a

time delay is involved in the novel class detection mechanism. The maximum allowable time delayTc, is

imposed as a time constraint to classify a test instance. Furthermore, most existing stream classification

approaches make impractical assumption about data labeling. They assume that the true label of a data

point can be accessed immediately after the data point is classified using the classification model. In

reality, true label of a data point is likely to be available after quite some time, since manual labeling is

time consuming. Therefore, a delay is involved in labeling.We assume that label of a data point becomes

availableTl time units after its arrival. We show how to take fast and correct classification decisions

under these constraints, and apply them to real benchmark data. Comparison with state-of-the-art stream

classification techniques prove the superiority of our approach.

Index Terms

Data streams, novel class, Ensemble classification

I. I NTRODUCTION

Data stream classification poses many challenges, some of which have not been addressed

yet. Most existing data stream classification algorithms [4], [8], [12], [17], [22], [24] address

two major problems related to data streams: their “infinite length”, and “concept-drift”. Since

data streams have infinite length, traditional multi-pass learning algorithms are not applicable

as they would require infinite storage and training time. Concept-drift occurs in the stream

when the underlying concept of the data changes over time. Thus, the classification model

must be updated continuously so that it reflects the most recent concept. However, another

major problem is ignored by most state-of-the-art data stream classification techniques, which

is “concept-evolution”, meaning, emergence of a novel class. Most of the existing solutions

assume that the total number of classes in the data stream is fixed. But in real world data
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stream classification problems, such as intrusion detection, text classification and fault detection,

novel classes may appear at any time in the stream (e.g. a new intrusion). Traditional data

stream classification techniques would be unable to detect the novel class until the classification

models are trained with labeled instances of the novel class. Thus, all novel class instances will

go undetected (i.e., misclassified) until the novel class ismanually detected by experts, and a

training data with the instances of that class is made available to the learning algorithm. We

address this concept-evolution problem and provide a solution that handles all three problems,

namely, infinite length, concept-drift, and concept-evolution. Novel class detection should be an

integral part of any realistic data stream classification technique because of the evolving nature

of streams. It can be useful in various domains, such as network intrusion detection [9], fault

detection [6], and credit card fraud detection [22]. For example, in case of intrusion detection,

a new kind of intrusion might go undetected by traditional classifier, but our approach should

not only be able to detect the intrusion, but also deduce thatit is a new kind of intrusion. This

discovery would lead to an intense analysis of the intrusionmore by human experts in order to

understand its cause, find a remedy, and make the system more secure.

We address the infinite length problem by dividing the streaminto equal-sized chunks, so that

each chunk can be accommodated in memory and processed online. Each chunk is used to train

one classification model as soon as all the instances in the chunk is labeled. We handle concept-

drift by maintaining an ensemble ofM such classifiers. An unlabeled instance is classified by

taking majority vote among the classifiers in the ensemble. The ensemble is continuously updated

so that it represents the most recent concept in the stream. The update is performed as follows:

as soon as a new model is trained, one of the existing models inthe ensemble is replaced by it,

if necessary. The victim is chosen by evaluating the error ofeach of the existing models in the

ensemble on the latest labeled chunk, and discarding the onewith the highest error. Our approach

provides a solution to concept-evolution problem by enriching each classifier in the ensemble

with a novel class detector. If majority of the classifiers discovers a novel class, the instances of

that class are separated and treated accordingly. Thus, novel class can be automatically identified

without manual intervention.

Our novel classes detection technique is different from traditional “one-classs” novelty detec-

tion techniques [11], [16], [23] that can only distinguish between the normal and anomalous

data. That is, the traditional novelty detection techniques assume that there is only one “normal”
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class and any instance that does not belong to the normal class is an anomaly/novel class

instance. Therefore, they are unable to distinguish among different types of anomaly. But our

approach offers a “multi-class” framework for the novelty detection problem, that can distinguish

between different classes of data and discover the emergence of a completely novel class. Besides,

traditional novelty detection techniques simply identifydata points as outliers/anomalies that

deviate from the “normal” class. But our approach not only detects whether a single data point

deviates from the existing classes, but also discovers whether a group of outliers possess the

potential of forming a new class by showing strong cohesion among themselves. Therefore, our

approach is a synergy of a “multi-class” classification model and a novel class detection model.

Traditional stream classification techniques also make impractical assumptions about the avail-

ability of labeled data. Most techniques [4], [8], [24] assume that the label of a data point can

be accessed as soon as it has been classified by the classification model. Thus, according to

their assumption, the existing model can be updated immediately using the labeled instance.

In reality, we would not be so lucky in obtaining the label of adata instance immediately,

since manual labeling of data is time consuming and costly. For example, in a credit card fraud

detection problem, the actual labels (i.e., authentic/fraud) of credit card transactions are revealed

only after the customer reports fraud transactions to the credit card company. Thus, a more

realistic assumption would be to have a data point labeled after Tl time units of its arrival. For

simplicity, we assume that thei-th instance in the stream arrives ati-th time unit. Thus,Tl

can be considered as a time constraint imposed on data labeling process. Note that traditional

stream classification techniques assumeTl = 0. Finally, we impose another time constraint,Tc, on

classification decision. That is, an instance must be classified by the classification model within

Tc time units of its arrival. If it assumed that there is no concept-evolution, it is customary to have

Tc=0, i.e., an instance should be classified as soon as it arrives. However, when new concepts

evolve, classification decision may have to be postponed until enough instances are seen by the

model to gain confidence in deciding whether an instance belongs to a novel class or not. Note

that Tc < Tl must be maintained in any practical classification model. Otherwise, we would not

need the classifier at all, we could just wait for the labels toarrive. We will discuss this issue

in details in later sections.

Figure 1 illustrates the significance ofTl andTc with an example. Herexk is the last instance

that has arrived in the stream. Letxj be the instance that arrivedTc time unit earlier, andxi
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Fig. 1. Illustration ofTl andTc

be the instance that arrivedTl time unit earlier. Thenxi and all instances that arrived before

xi (shown with dark-shaded area) are labeled, since all of themare at leastTl time units old.

Similarly, xj and all instances that arrived beforexj (both the light-shaded and dark-shaded

areas) are classified by the classifier since they are at leastTc time units old. However, the

instances inside the light-shaded area are unlabeled. Instances that arrived afterxj (age less than

Tc) are unlabeled, and may or may not be classified (shown with the unshaded area).

Integrating classification with novel class detection is a nontrivial task, especially in the

presence of concept-drift, and under time constraints. We assume an important property of each

class: the data points belonging to the same class should be closer to each other (cohesion) and

should be far apart from the data points belonging to other classes (separation). If a test instance

is well-separatedfrom the training data (called “Raw outlier”), it has potential to be a novel class

instance. Raw outliers that possibly appear as a result of concept-drift or noise are filtered out.

A filtered outlier (or Foutlier) has potential to be a novel class instance. However, we mustwait

to see whether more such Foutliers appear in the stream, which show strong cohesion among

themselves. If a sufficient number of such strongly cohesiveFoutliers are observed, a novel class

is assumed to have appeared, and the Foutliers are classifiedas a novel class instance. However,

we can wait at mostTc time unit to output the classification decision of a test instance after

its arrival, which makes the problem more challenging. Furthermore, we must keep detecting

novel class instances in this ‘unsupervised’ fashion for atleastTl time units from the arrival

of the first novel class instance, since labeled training data of the novel class(es) would not be

available before that.

We have several contributions. First, to the best of our knowledge, no other stream classification

techniques address the concept-evolution problem. This isa major problem with data stream
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that must be dealt with. In this light, this paper offers a more realistic solution to data stream

classification. Second, we propose a more practical framework for stream classification by

introducing time constraints for delayed data labeling andmaking classification decision. Third,

our proposed technique enriches traditional classification model with a novel class detection

mechanism. Finally, we apply our technique on both synthetic and real-world data and obtain

much better results than state-of the art stream classification algorithms.

The rest of the paper is organized as follows: section II discusses related work, section III

discusses the overview of our approach, section IV discusses our approach in detail, section

V discusses the datasets and experimental evaluation, and finally, section VI concludes with

direction to future works.

II. RELATED WORK

We discuss the works related to both data stream classification and novelty detection.

Data stream classification has been an interesting researchtopic for years. These approaches

fall into one of two categories: single model and ensemble classification. Single model clas-

sification techniques maintain and incrementally update a single classification model [4], [8],

[24]. These techniques also effectively respond to concept-drift. Several ensemble techniques for

stream data mining have been proposed [7], [17], [22]. Ensemble techniques require relatively

simpler operations to update the current concept than theirsingle model counterparts, and also

handle concept-drift efficiently. Our approach follows theensemble technique. However, our

approach is different from all other stream classification techniques in two different aspects.

First, none of the existing techniques can detect novel classes, but our technique can. Second,

our approach is based on a more practical assumption about the time delay in data labeling,

which is not considered in most of the existing algorithms.

Our technique is also related to novelty/anomaly detection. Markou and Singh study novelty

detection in details in [11]. Most novelty detection techniques fall into one of two categories:

parametric, and non-parametric. Parametric approaches assume a distribution of data, and esti-

mate parameters of the distribution from the normal data. According to this assumption, any test

instance is assumed to be novel if it does not follow the distribution [14], [16]. Our technique is a

non-parametric approach, therefore, it is not restricted to any specific data distribution. There are

several non-parametric approaches available, such as parzen window method [23] and K-nearest
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neighbor (K-NN) based approaches [25].

Our approach is different from the above novelty/anomaly detection techniques in three aspects.

First, existing novelty detection techniques only consider whether a test point is significantly

different from the normal data. However, we not only consider whether a test instance is

sufficiently different from the training data, but also consider whether there are strong similarities

among the test instances. Therefore, existing techniques discover novelty in a single test point,

whereas but our technique discovers novelty among a collection of test points to detect the

presence of a novel class. Second, our model can be considered as a “multi-class” novelty

detection technique, since it can distinguish among different classes of data, and also discover

emergence of a novel class. But other novelty detection can only distinguish between normal and

novel, and, therefore, can be considered as “one-class” classifiers. Finally, most of the existing

novelty detection techniques assume that the “normall” model is static, i.e., there is no concept-

drift in the data. But our approach can detect novel classes inthe presence of concept-drift.

Novelty detection is also closely related to outlier detection techniques. There are many outlier

detection techniques available, such as [1]–[3], [10]. Some of them are also applicable to data

streams [19], [20]. However, the main difference with theseoutlier detection techniques from

ours is that our primary objective is novel class detection,not outlier detection. Outliers are the

by-product of intermediate computation steps in our algorithm. Thus, the precision of our outlier

detection technique is not too critical to the overall performance of our algorithm.

Spinosa et al. [18] propose a cluster based novel concept detection technique that is applicable

to data streams. However, this is also a “single-class” novelty detection technique, where authors

assume that there is only one ‘normal’ class and all other classes are novel. Thus, it not directly

applicable to a multi-class environment, where more than one classes are considered as ‘normal’

or ‘non-novel’. But our approach can handle any number of existing classes, and also detect a

novel class that do not belong to any of the existing classes.Therefore, our approach offers a

more practical solution to the novel class detection problem, which has been proved empirically.

This paper is an extension to our previous work [13] in which we proposed a novel class

detection technique. However, in our previous work, we did not consider the time constraints

Tl and Tc. Therefore the current version is more practical than the previous one. These time

constraints impose several restrictions on the classification algorithm, making classification more

challenging. We encounter these challenges and provide efficient solutions.
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III. OVERVIEW

At first, we mathematically formulate the data stream classification problem.

• The data stream is a continuous sequence of data points:{x1,...,xnow}, where eachxi is a

d-dimensional feature vector.x1 is the very first data point in the stream, andxnow is the

latest data point that has just arrived.

• Each data pointxi is associated with two attributes:yi, and ti, being its class label, and

time of arrival, respectively.

• For simplicity, we assume thatti+1=ti+1, andt1=1.

• The latestTl instances in the stream:{xnow−Tl+1,...,xnow} are unlabeled, meaning, their

corresponding class labels are unknown. But the class labelsof all other data points are

known.

• We are to predict the class label ofxnow before the timetnow + Tc, i.e., before the data

point xnow+Tc
arrives, andTc < Tl.

A. Top level algorithm

Algorithm 1 outlines the top level overview of our approach.The algorithm starts with

building the initial ensemble of modelsL = {L1, ..., LM} with the firstM labeled data chunks.

The algorithm maintains three buffers: a temporary buffer buf, that keeps potential novel class

instances, an unlabeled data bufferU , that keeps unlabeled data points until they are labeled, and

labeled data bufferL, that keeps labeled instances until they are used to train a new classifier.

After initialization, the while loop begins from line 5, which continues indefinitely. At each

iteration of the loop, the latest data point in the stream,xj is classified (line 7) usingClassify()

(algorithm 2). The novel class detection mechanism is situated inside algorithm 2. If the class of

xj cannot be predicted immediately, it is stored in buf for future processing. Details of this step

will be discussed in section IV.xj is then pushed into the unlabeled data bufferU (line 8). If

the buffer size exceedsTl, the oldest elementxk is dequeued and labeled (line 9), sinceTl unit

of time has elapsed sincexk arrived in the stream (so it is time to labelxk). The pair< xk, yk >

is pushed into the labeled data bufferL (line 9). When we haveS instances inL, whereS is the

chunk size, a new classifierL′ is trained using the chunk (line 13). Then the existing ensemble

is updated (line 14) by choosing the bestM classifiers from theM + 1 classifiersL ∪ {L′}
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based on their accuracies onL, and the bufferL is emptied to receive the next chunk of training

data (line 15). Our algorithm will be mentioned henceforth as “ECSMiner” (pronounced like

Algorithm 1 ECSMiner
1: L ← Build-initial-ensemble()

2: buf← empty //temporary buffer

3: U ← empty //unlabeled data buffer

4: L ← empty //labeled data buffer (training data)

5: while true do

6: xj ← the latest data point in the stream

7: Classify(L,xj ,buf) //section IV

8: U ⇐ xj //enqueue

9: if |U | > Tl then //time to label the oldest instance

10: xk ⇐ U //dequeue the instance

11: L ⇐ < xk, yk > //label it and save in training buffer

12: if |L| = S then //training buffer is full

13: L′ ← Train-and-save-decision-boundary(L) (section III-E)

14: L ← Update(L,L′,L)

15: L ← empty

16: end if

17: end if

18: end while

ExMiner), which stands for Enhanced Classifier for Data Streams with novel class Miner. We

believe that any base learner can be enhanced with the proposed novel class detector, and used

in ECSMiner. The only operation that needs to be treated specially for a particular base learner

is Train-and-save-decision-boundary. We illustrate this operation for two base learners in this

section.

B. Nearest neighborhood rule

We assume that the instances belonging to a classc is generated by a an underlying generative

model θc, and the instances in each class are independently identically distributed. With this

assumption, one can reasonably argue that the instances which are close together under some

distance metric are supposed to be generated by the same model, i.e., belong to the same class.
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This is the basic assumption for nearest-neighbor classifications [5]. Besides, this assumption is

used in numerous semi-supervised learning techniques, such as [15], and in many other semi-

supervised learning works [26]. We generalize this assumption by introducing the concept of a

“nearest neighborhood”.

Definition 1 (λc,q-neighborhood):λc,q-neighborhood, orλc,q(x) of any instancex is the set of

q nearest neighbors ofx within classc.

For example, let there be three classesc+, andc−, andc0, denoted by the symbols “+”, “-”, and

black dots, respectively (figure 2). Also, letq=5. thenλc+,q(x) of any arbitrary instancex is the

set of 5 nearest neighbors ofx in classc+, and so on.

Fig. 2. Illustratingλc,q(x) for q=5

Let D̄c,q(x) be the average distance fromx to λc,q(x), i.e.,

D̄c,q(x) =
1

q

∑

xi∈λc,q(x)

D(x, xi) (1)

whereD(xi, xj) is the distance between the data pointsxi andxj in some appropriate metric.

Let λmin,q-neighborhood, orλmin,q(x) of any instancex be theλc,q-neighborhood ofx, whose

correspondingD̄c,q(x) is the minimum. For example, in figure 2,λmin,q(x) = λc0,q(x).

Definition 2 (q-nearest neighborhood rule (q-NH rule)): Let cmin be the class label of the

instances inλmin,q(x). According to theq-NH rule, the predicted class label of an unlabeled test

instancex is cmin.

In the example of figure 2,cmin = c0, so x is labeled as classc0. Our novel class detection

technique is based on the assumption that any class of data follow the q-NH rule. In section IV,

we discuss the similarity of this rule with k-NN rule, and highlight its significance.
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C. Novel class and its properties

Definition 3 (Existing class and Novel class):Let L be the current ensemble of classification

models. A classc is an existing class if at least one of the modelsLi ∈ L has been trained with

the instances of classc. Otherwise,c is a novel class.

Therefore, if a novel classc appears in the stream, none of the classification models in the

ensemble will be able to correctly classify the instances ofc. An important property of the novel

class follows from theq-NH rule.

Property 1: Let x be an instance belonging to a novel classc, and letc′ be an existing class.

Then according toq-NH rule, D̄c,q(x), i.e., the average distance fromx to λc,q(x) is smaller

than D̄c′,q(x), the average distance fromx to λc′,q(x), for any existing classc′. In other words,

x is closer to the neighborhood of its own class (cohesion), and farther from the neighborhood

of any existing classes (separation).

Figure 3 shows an hypothetical example of a decision tree andthe appearance of a novel

class. A decision tree and its corresponding feature vectorpartitioning by its leaf nodes are

shown in the figure. The shaded portions of the feature space represents the training data. After

the decision tree is built, a novel class appears in the stream (shown with “x” symbol). The

decision tree model misclassifies all the instances in the novel class as existing class instance

since the model is unaware of the novel class. Our goal is to detect the novel class without having

to train the model with that class. Note that instances in thenovel class follows property 1, since

the novel-class neighborhood of any novel-class instance is much closer to the instance than

the neighborhoods of any other classes. If we observe this property in a collection of unlabeled

test instances, we can detect the novel class. This is not a trivial task, since we must decide

when to classify an instance immediately, and when to postpone the classification decision, and

wait for more test instances so that property 1 can be revealed among those instances. Because

in order to discover property 1 (cohesion) we need to deal with a collection of test instances

simultaneously. Besides, we cannot defer the decision more thanTc time units after the arrival

of a test instance.

Therefore, themain challengesin novel class detection are as follows:

• Saving the training data efficiently without using much memory.

• Knowing when to classify a test instance immediately, and when to postpone the classifi-
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cation decision.

• Classifying the deferred instances withinTc time unit.

• Predicting the presence of a novel class quickly and correctly.

Fig. 3. A hypothetical example.

D. Base learners

We apply our technique on two different classifiers: decision tree, and k-nearest neighbor (k-

NN). When decision tree is used as a classifier, each training data chunk is used to build a decision

tree. When k-NN is used, each chunk is used to build a k-NN classification model. The simplest

way to build such a model is to just store all the data points ofthe training chunk in memory.

But this strategy would lead to a inefficient classification model, both in terms of memory and

running time. In order to make the model more efficient, we build K clusters with the training

data [12]. We apply a semi-supervised clustering techniqueusing Expectation Maximization (E-

M) that tries to minimize both intra-cluster dispersion (same objective as unsupervised K-means)

and cluster impurity.

Obj =
K∑

i=1

(
∑

x∈Xi

||x− ui||
2 +

∑

x∈Xi

||x− ui||
2 ∗ Impi) (2)

The first term in equation 2 is the same as unsupervisedK-means, which penalizes intra-

cluster dispersion. The second term penalizes cluster impurity. A cluster is considered pure if all

data points in the cluster comes from the same class. We useentropyandGini indexfor impurity
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measure. After building the clusters, we save the cluster summary (mentioned as “pseudopoint”)

of each cluster (centroid, and frequencies of data points belonging to each class), and discard

the raw data points. Since we store and use onlyK pseudopoints, both the time and memory

requirements become functions ofK (a constant number). A test instancexj is classified as

follows: we find the pseudopoint whose centroid is nearest from xj, and assign it a class label

that has the highest frequency in that pseudopoint.

E. Creating decision boundary during training

The training data are clustered usingK-means and the cluster centroids and other statistics

of each cluster are saved as pseudopoints. Then the raw training data are discarded. These

pseudopoints form a decision boundary for the training data.

Clustering: K clusters are built per chunk from the training data. This clustering step is

specific to each base learner. For example, for decision tree, clustering is done at each leaf node

of the tree, since we need to create decision boundaries in each leaf node separately. For k-NN,

existing clusters are used that were created using the approach discussed in section III-D. For

decision tree, clustering is done locally at each leaf node as follows. SupposeS is the chunk-size.

During decision tree training, when a leaf nodeli is reached,ki = (ti/S)∗K clusters are built in

that leaf, whereti denotes the number of training instances belonging to leaf nodeli. Therefore,

the number of clusters built in each leaf node is proportional to the number of training instances

that belong to the leaf node. If a leaf node is not empty (has one or more instances), then at

least one cluster is built in that node.

Storing the cluster summary information:For each cluster, we store the following summary

information: i) Weight, w: Total number of points in the cluster. ii)Centroid, ζ. iii) Radius, R:

Distance between the centroid and the farthest data point inthe cluster. iv)Mean distance, µd:

The mean distance from each point to the cluster centroid. The cluster summary of a cluster

will be referred to henceforth as a “pseudopoint”h. So, w(h) denotes the “weight” value of

pseudopointh, and so on. After computing the cluster summaries, the raw data are discarded

and only the pseudopoints are stored in memory. Thus, the memory requirement for storing the

training data becomes constant, i.e.,O(K). LetHi denote the set of pseudopoints corresponding

to the classifierLi. Any pseudopoint having too few (less than 3) instances is considered as

noise and is not stored in memory.
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Each pseudopointh corresponds to a hypersphere in the feature space having center ζ(h)

and radiusR(h). Let us denote the portion of feature space covered by a pseudopoint h as the

“region” of h or RE(h). Let RE(Hi) denote the union of the regions of all pseudopoints inHi,

i.e.,

RE(Hi) = ∪h∈Hi
RE(h)

Therefore,RE(Hi) forms a decision boundary for the training data of classifierLi.

IV. CLASSIFICATION WITH NOVEL CLASS DETECTION

Algorithm 2 (Classify) sketches the classification and novelclass detection technique. The

algorithm consists of two main parts: classification (lines1-5) and novel class detection (lines

6-14). Details of the steps of this algorithm will be explained in the following subsections.

Algorithm 2 Classify(L,xj,buf )
Input: L: Current ensemble of bestM classifiers

xj : test instance

buf : buffer holding temporarily deferred instances

Output: Immediate or deferred class prediction ofxj

1: fout← true

2: if Foutlier(L,xj) = false then

3: y′
i ← majority-voting(L,xj) //classify immediately

4: fout← false

5: end if

6: Filter(buf )

7: if fout = true then

8: buf ⇐ xj //enqueue

9: if buf .length> q and last trial + q ≤ ti then

10: last trial ← ti

11: novel← Detect-NovelClass(L,buf )

12: if novel = true then removenovel (buf )

13: end if

14: end if
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A. Classification

In line 2 of algorithm 2 we first check whether the test instance xj is anFoutlier, which is

to be defined shortly. If any test instancexj falls outside the decision boundaryRE(Hi) of a

classifierLi, thenxj is an outlier. Ifxj is a novel class instance, it must be an outlier, which

would be justified shortly. However,xj may also appear an outlier because of other reasons:

noise, concept-drift, or insufficient training data forLi. Therefore, we apply filtering so that most

of the outliers, which appear for any reason other than beingnovel class instance, are filtered

out. The filtered outliers are calledFoutliers.

Definition 4 (Foutlier): A test instance is an Foutlier (i.e., filtered outlier) if it is outside the

decision boundary of all classifiersLi ∈ L.

Intuitively, all novel class instances should beFoutliers. Because, if any test instancexj is not

an Foutlier, then it must be inside the decision boundary of some classifier Li. Therefore, it

must be insideRE(h′) of some pseudopointh′. This implies thatxj is closer to the centroid of

h′ than at least one training instance inh′ (the one at the farthest distance from the centroid of

h′), which leads to the conclusion thatxj is most likely an existing class instance having the

same class label as the instances inh′. So, if xj is not anFoutlier, we classify it immediately

using the ensemble voting (line 3).

B. Novel class detection

The bufferbuf temporarily holds potential novel class instances. These instances are analyzed

periodically in order to detect novel class, which is explained in the next paragraph.buf needs

to be cleared periodically (line 6, algorithm 2) to remove instances that no longer contribute

to novel class detection. Besides, instances in the buffer that has reached classification deadline

Tc are classified immediately. An instance is removed frombuf if it fulfills either of the three

conditions:

1) Age > S: the front of the buffer contains the oldest element in the buffer. It is removed

if its age is greater thanS, the chunk size.

2) Ensemble update: the ensemble may be updated while an instancexk is waiting inside the

buffer. As a result,xk may no longer be anFoutlier for the new ensemble of models,

and it must be removed if so. Ifxk is no longer anFoutlier, and it is not removed, it
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could be falsely identified as a novel class instance, and also it could interfere with other

valid novel class instances, misleading the detection process.

3) Existing class: any instance is removed frombuf if it has been labeled, and it belongs to

one of the existing classes.

When an instance is removed frombuf , it is classified immediately using the current ensemble

(if not classified already).

Lines (7-14) are executed only ifxj is anFoutlier. At first, xj is enqueued into the buffer

(line 9). Then we check whether the buffer length is at leastq, and the last check onbuf for

detecting novel class had been executed (last trial ) at leastq time unit earlier (line 10). Since

novel class detection is more expensive than simple classification, this operation is performed

at most once in everyq time unit. In line 11, algorithm 3 (DetectNovelClass) is called, which

returns true of a novel class is found. Finally, if a novel class is found, all instances that are

identified as novel class are removed frombuf (line 12).

Next, we examine algorithm 3 to understand howbuf is analyzed to detect presence of novel

class. First, we defineq-neighborhood silhouette coefficient, orq-NSC, as follows:

Definition 5 (q-NSC): Let D̄q,cout
(x) be the mean distance from anFoutlier x to λq,cout

(x)

defined by equation 1, whereλq,cout
(x) is the set ofq-nearest neighbors ofx within theFoutlier

instances. Also, let̄Dq,cmin
(x) be the minimum among all̄Dq,c(x), wherec is an existing class.

Thenq-NSC of x is given by:

q-NSC(x) =
D̄q,cmin

(x)− D̄q,cout
(x)

max(D̄q,cmin
(x), D̄q,cout

(x))
(3)

q-NSC, which is a unified measure of cohesion and separation, yields a value between -1 and

+1. A negative value indicates thatx is closer to the existing classes (less separation) and farther

away from otherFoutliers, and vice versa. We declare anew classif there are at leastq′ (> q)

Foutliers having positiveq-NSC. The justification behind this decision is discussed in the next

subsection.

Speeding up the computation ofq-NSC: Computingq-NSC for everyFoutlier instancex

takes quadratic time in the number ofFoutliers. In order to make the computation faster, we

also createKo (= (buf .length/S) * K) pseudopoints fromFoutliers usingK-means clustering

and perform the computations on the pseudopoints (referredto asFpseudopoints), whereS is
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the chunk size. Thus, the time complexity to compute theq-NSC of all of theFpseudopoints

is O(Ko ∗ (Ko +K)), which is constant, since bothKo andK are independent of the input size.

Note thatq-NSC of aFpseudopoint is actually an approximate average of theq-NSC of each

Foutlier in that Fpseudopoint. By using this approximation, although we gain speed, we also

lose some precision. However, this drop in precision is negligible, as shown in the analysis to

be presented shortly.

In line 1 of algorithm 3, we createFpseudopoints using theFoutliers as explained earlier.

For each classifierLi ∈ L, we computeq-NSC(h) of every Fpseudopoint h (line 4). If the

total weight of theFpseudopoints having positiveq-NSC() is greater thanq, then Li votes

for novel class. If all classifiers vote for novel class, thenwe ultimately declare a novel class.

Once novel class is declared, we need to find the instances of the novel class. This is done as

follows: supposeh is anFpseudopoint having positiveq-NSC(h) with respect to all classifiers

Li ∈ L (note thatq-NSC(h) is computed with respect to each classifier separately). Therefore,

all Foutlier instances belonging toh are identified as novel class instances.

Algorithm 3 DetectNovelClass(L,buf )
Input: L: Current ensemble of bestM classifiers

buf : buffer holding temporarily deferred instances

Output: true, if novel class is found; false, otherwise

1: Make Ko=(K*buf .length/S) clusters with the instances inbuf using K-means clustering, and createKo

Fpseudopoints

2: Let Ho be the set ofFpseudopoints

3: for each classifierLi ∈ L do

4: for eachh ∈ Ho do Computeq-NSC(h)

5: Hp ← {h|h ∈ Ho andq-NSC(h) > 0 } //Fpseudopoints with positiveq-NSC

6: w(Hp) ←
∑

h∈Hp

w(h). //sum of their weights

7: if w(Hp) > q then NewClassVote++

8: end for

9: found← NewClassVote== M

This algorithm can detect one or more novel classes concurrently as long as each novel class

follows property 1 and contains at leastq instances. This is true even if the class distributions are

skewed. However, if more than one such novel classes appear concurrently, our algorithm will
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identify the instances belonging those classes as novel, without imposing any distinction between

dissimilar novel class instances (i.e., it will treat them simply as “novel”). But the distinction

will be learned by our model as soon as the true labels of thosenovel class instances arrive,

and a classifier is trained with those instances.

It should be noted that the larger the value ofq, the greater the confidence with which we

can decide whether a novel class has arrived. However, ifq is too large, then we may also

fail to detect a new class if the total number of instances belonging to the novel class in the

corresponding data chunk is≤ q. An optimal value ofq is obtained empirically (section V).

Impact of evolving class labels on ensemble classification:As reader might have realized

already, arrival of novel classes in the stream causes the classifiers in the ensemble to have

different sets of class labels. There are two scenarios to consider. Scenario (a): suppose an

older (earlier) classifierLi in the ensemble has been trained with classesc0 and c1, and an

younger (later) classifierLj has been trained with classesc1, and c2, wherec2 is a new class

that appeared afterLi had been trained. This puts a negative effect on voting decision, since

the older classifier mis-classifies instances ofc2. So, rather than counting the votes from each

classifier, we selectively count their votes as follows: if an younger classifierLj classifies a test

instancex as classc, but an older classifierLi does not have the class labelc in its model,

then the vote forLi will be ignored if x is found to be an outlier forLi. Scenario (b): the

opposite situation may also arise where the oldest classifier is trained with some classc′, but

none of the newer classifiers are trained with that class. This means classc′ has been outdated,

and in that case, we removeLi from the ensemble. Figure 4 (a) illustrates scenario (a). The

classifier in the ensemble are sorted according to their age,with L1 being the oldest, andL4

being the youngest. Each classifierLi is marked with the classes with which it has been trained.

For example,L1 is trained with classesc1, c2, and c3, and so on. Note that classc4 appears

only in the two youngest classifiers.x appears as an outlier toL1. Therefore,L1’s vote is not

counted sincex is classified asc4 by an younger classifierL3, andL1 does not contain class

c4. Figure 4 (b) illustrates scenario (b). HereL1 contains classc1, which is not contained by

any younger classifiers in the ensemble. Therefore,c1 has become outdated, andL1 is removed

from the ensemble. In this way we ensure that older classifiers have less impact in the voting

process. If classc1 later re-appears in the stream, it will be automatically detected again as a

novel class (see definition 3).
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Fig. 4. Impact of evolving class label on ensemble

C. Analysis and discussion

In this subsection at first we justify the novel class detection algorithm, then analyze the extent

of precision loss in computingq-NSC, and finally analyze the time complexity of ECSMiner.

Justification of the novel class detection algorithm:In algorithm 3, we declare a novel class

if there are at leastq′ > q Foutliers that have positiveq-NSC for all the classifiers in the

ensemble. First, we illustrate the significance of this condition, i.e., “more thanq Foutliers

have poisitiveq-NSC”. Equation (3) establishes a relationship between i) the mean distance

from anFoutlier instancex to all instances in its nearestFoutlier neighborhood, and ii) the

mean distance fromx to all instances in its nearest existing class neighborhood. Now we go

one step further to establish a relationship between i) the distance fromx to a single instance in

its nearestFoutlier neighborhood, and ii) the distance fromx to a single instance in its nearest

existing class neighborhood.

Let F be the set ofFoutliers having positiveq-NSC. Therefore, for anyx ∈ F :

D̄q,cmin
(x)− D̄q,cout

(x) > 0 (from equation 3)

⇒ D̄q,cmin
(x) > D̄q,cout

(x)
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Summing up for allFoutliers x ∈ F :

∑

x∈F

D̄q,cmin
(x) >

∑

x∈F

D̄q,cout
(x)

⇒
∑

x∈F

1

q

∑

xi∈λcmin,q(x)

D(x, xi) >
∑

x∈F

1

q

∑

xj∈λcout,q(x)

D(x, xj) (from equation 1)

⇒
1

m

1

q

∑

x∈F

∑

xi∈λcmin,q(x)

D(x, xi) >
1

m

1

q

∑

x∈F

∑

xj∈λcout,q(x)

D(x, xj) (letting m = |F|)

(4)

Therefore, the mean pairwise distance between any pair ofFoutliers (x,xj), (such thatx is an

Foutlier with positiveq-NSC andxj is anFoutlier in theq-nearest neighborhood ofx), is less

than the mean pairwise distance between anFoutlier x and any existing class instancexi. In

other words, anFoutlier with positive q-NSC is more likely to have majority of its k-nearest

neighbors (k-NNs) within theFoutlier instances. So, each of theFoutliers x ∈ F should have

the same class as theFoutlier instances, and should have a different class than any of the

existing classes. The higher the value ofq, the larger the support we have in favor of the arrival

of a new class. Furthermore, when all the classifiers unanimously agree on the arrival of a novel

class, we have very little choice other than announcing the appearance of a novel class. The

q-NH rule can be thought of another way of expressing the k-NN rule. Therefore, this rule is

applicable to any dataset irrespective of its data distribution, and shape of classes (e.g. convex

and non-convex).

Computing precision loss in approximateq-NSC computation:As discussed earlier, we com-

pute q-NSC for eachFpseudopoint, rather than eachFoutler individually in order to reduce

time complexity, which causes a reduction of precision in computation. However, following

analysis shows that this loss is negligible. Without loss ofgenerality, letφi be anFpseudopoint

having weightq1, andφj be an existing class Pseudopoint having weightq2, which is nearest

from φi (figure 5). We compute the approximateq-NSC ofφi (q-NSC ′(φi)) using the following

formula:

q-NSC ′(φi) =
D(µi, µj)− D̄i

max(D(µi, µj), D̄i)
(5)

Where µi is the centroid ofφi, µj is the centroid ofφj, and D̄i is the mean distance from

centroidµi to the instances inφi. Equation (5) is an approximate of the realq-NSC. The exact
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Fig. 5. Illustrating the computation of precision loss.φi is anFpseudopoint, i,e., a cluster ofFoutliers, andφj is an existing

class Pseudopoint, i.e., a cluster of existing class instances. In this particular example, all instances inφi belong to a novel class.

value ofq-NSC follows from equation (3):

q-NSC(φi) =
1

q1

∑

x∈φi

1
q

∑
xj∈λq,j(x) D(x, xj)−

1
q

∑
xi∈λq,i(x) D(x, xi)

max(1
q

∑
xj∈λq,j(x) D(x, xj),

1
q

∑
xi∈λq,i(x) D(x, xi))

(6)

Whereλq,i(x) is the q-nearest neighborhood ofx within FPseudopoint φi, andλq,j(x) is the

q-nearest neighborhood ofx within FPseudopoint φj, for somex ∈ φi. Therefore, the precision

loss is their difference:q-NSC(φi) - q-NSC ′(φi)

Lprec =
1

q1

∑

x∈φi

1
q

∑
xj∈λq,j(x) D(x, xj)−

1
q

∑
xi∈λq,i(x) D(x, xi)

max(1
q

∑
xj∈λq,j(x) D(x, xj),

1
q

∑
xi∈λq,i(x) D(x, xi))

−
D(µi, µj)− D̄i

max(D(µi, µj), D̄i)
(7)

In order to simplify the computations, we assume thatq1 = q2 = q, andq-NSC is positive for

anyx ∈ φi. Therefore,λq,i(x) = φi, λq,j(x) = φj. Also, we consider square of Eucledian distance

as the distance metric, i.e.,D(x, y) = (x − y)2. Sinceq-NSC is positive for anyx ∈ φi, we

have max(D(µi, µj), D̄i) = D(µi, µj), and max(1
q

∑
xj∈λq,j(x) D(x, xj),

1
q

∑
xi∈λq,i(x) D(x, xi))

= 1
q

∑
xj∈λq,j(x) D(x, xj). Also, D̄i = 1

q

∑
x∈φi

(x−µi)
2 = σ2

i , the mean distance of the instances

in φi from the centroid. Continuing from equation (7):

Lprec =
1

q

∑

x∈φi

1
q

∑
xj∈φj

(x− xj)
2 − 1

q

∑
xi∈φi

(x− xi)
2

1
q

∑
xj∈φj

(x− xj)2
−

(µi − µj)
2 − σ2

i

(µi − µj)2

=
1

q

∑

x∈φi

(

1
q

∑
xj∈φj

(x− xj)
2 − 1

q

∑
xi∈φi

(x− xi)
2

1
q

∑
xj∈φj

(x− xj)2
−

(µi − µj)
2 − (x− µi)

2

(µi − µj)2
)
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It is easy to show that1
q

∑
x∈φi

(x−xi)
2−(x−ui)

2 = σ2
i and 1

q

∑
x∈φj

(x−xj)
2−(x−uj)

2 = σ2
j .

Substituting these values, we obtain:

Lprec =
1

q

∑

x∈φi

(
σ2

j + (x− µj)
2 − σ2

i − (x− µi)
2

σ2
j + (x− µj)2

−
(µi − µj)

2 − (x− µi)
2

(µi − µj)2
)

=
1

q

∑

x∈φi

(1−
σ2

i + (x− µi)
2

σ2
j + (x− µj)2

− 1 +
(x− µi)

2

(µi − µj)2
)

=
1

q

∑

x∈φi

(
(x− µi)

2

(µi − µj)2
−

σ2
i + (x− µi)

2

σ2
j + (x− µj)2

)

=
σ2

i

(µi − µj)2
−

1

q

∑

x∈φi

σ2
i

σ2
j + (x− µj)2

−
1

q

∑

x∈φi

(x− µi)
2

σ2
j + (x− µj)2

)

≤
σ2

i

(µi − µj)2
−

σ2
i

σ2
i + σ2

j + (µi − µj)2
−

1

q

∑

x∈φi

(x− µi)
2

σ2
j + (x− µj)2

The last line follows since using the relationship between harmonic mean and arithmetic mean

it can be shown that:

1

q

∑

x∈φi

σ2
i

σ2
j + (x− µj)2

≥
σ2

i

1
q

∑
x∈φi

σ2
j + (x− µj)2

=
σ2

i

σ2
j + σ2

i + (µi − µj)2

Following the fact that allx ∈ φi has positiveq-NSC, we can deduce the following relation-

ships: i) (x− µi)
2 ≤ (µi − µj)

2, ii) (x− µj)
2 ≤ (x− µi)

2 + (µi − µj)
2 : by triangle inequality.

iii) σ2
i ≤ (µi − µj)

2 : since σ2
i = 1

q

∑
x∈φi

(x − µi)
2 ≤ 1

q

∑
x∈φi

(µi − µj)
2 = (µi − µj)

2. iv)

σ2
j ≤ (µi − µj)

2 : becauseφj represents an existing class, and similar reasoning as iii)can be

applied here too.

Applying these relationships, and after several algebraicmanipulations, we obtain:

Lprec ≤
σ2

i

(µi − µj)2
−

σ2
i

3(µi − µj)2
−

σ2
i

3(µi − µj)2
=

σ2
i

3(µi − µj)2
(8)

Usually, if φi belongs to a novel class, it is empirically observed in almost all datasets that

q-NSC ′(φi) ≥ 0.9. In this case,σ2
i ≤ (1− 0.9)(µi − µj)

2. Therefore,Lprec ≤ 1/30, which is a

negligible loss.

Time and space complexity:Line 1 of algorithm 3 (clustering) takesO(KS) time, and the for

loop (lines 3-8) takesO(K2L) time. The overall time complexity of algorithm 3 isO(K2L+KS)

= O(KS), sinceS >> KL. Lines 1-5 of algorithm 2 takesO(KLS + Lfc(S)) per chunk,

where fc(S) is the time to classify an instance using a classifier. Line 6 takesO(S) time.
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Line 11 (algorithm 3) is executed at most once in everyq time unit. Therefore, the worst case

complexity of lines 7-14 isO(Sq−1KS. So, the overall complexity of algorithm 2 isO(KLS +

Lfc(S) + Sq−1KS) per chunk. For most classifiers,fc(S) = O(S). Also, let S/q = m. So, the

overall complexity of algorithm 2 becomesO(KLS + LS + mS) = O(mS), sincem >> KL.

Finally, the overall complexity of algorithm 1 (ECSMiner) isO(mS + ft(S)) per chunk, where

ft(S) is the time to train a classifier withS training instances.

ECSMiner keeps three buffers:buf , the training buffer, and the unlabeled data buffer. Both

buf and hold at mostS instances, whereas the unlabeled data buffer holds at mostTl instances.

Therefore, the space required to store all three buffers is:O(max(S, Tl)). The space required

to store a classifier (along with the pseudopoints) is much less thanS. So, the overall space

complexity remainsO(max(S, Tl)).

V. EXPERIMENTS

In this section we describe the datasets, experimental environment, and discuss and analyze

the results.

A. Data sets

Synthetic data with only concept-drift (SynC): SynC simulates only concept-drift, with no

novel classes. This is done to show that concept-drift does not erroneously trigger a new-class

detection in our approach. SynC data are generated with a moving hyperplane. The equation of

a hyperplane is as follows:
∑d

i=1 aixi = a0. If
∑d

i=1 aixi ≤ a0, then an example is negative,

otherwise it is positive. Each example is a randomly generatedd-dimensional vector{x1, ..., xd},

wherexi ∈ [0, 1]. Weights{a1, ..., ad} are also randomly initialized with a real number in the

range [0, 1]. The value ofa0 is adjusted so that roughly the same number of positive and negative

examples are generated. This can be done by choosinga0 = 1
2

∑d

i=1 ai. We also introduce noise

randomly by switching the labels ofp% of the examples, wherep=5 is set in our experiments.

There are several parameters that simulate concept drift. Parameterm specifies the percent

of total dimensions whose weights are involved in changing,and it is set to 20%. Parameter

t specifies the magnitude of the change in everyN examples. In our expeiments,t is varied

from 0.1 to 1.0, andN is set to 1000.si, i ∈ {1, ..., d} specifies the direction of change for

each weight. Weights change continuously, i.e.,ai is adjusted bysi.t/N after each example is

August 28, 2009 DRAFT



SUBMITTED FOR REVIEW 24

generated. There is a possibility of 10% that the change would reverse direction after every N

examples are generated. We generate a total of 250,000 records and generate equal-sized chunks.

Synthetic data with concept-drift and novel-class (SynCN): This synthetic data simulates

both concept-drift and novel-class. Data points belongingto each class are generated by fol-

lowing a Normal distribution having different mean (-5.0 to+5.0) and variance (0.5 to 6) for

different classes. Besides, in order to simulate the evolving nature of data streams, the probability

distributions of different classes are varied with time. This caused some classes to appear and

some other classes to disappear at different time slots. In order to introduce concept-drift, the

mean values of a certain percentage of attributes have been shifted at a constant rate. As done

in the SynC dataset, this rate of change is also controlled bythe parametersm, t, s, andN in

a similar way. The dataset is normalized so that all attribute values fall within the range [0,1].

We generate the SynCN dataset with 20 classes, and 40 real valued attributes, having a total of

400K data points.

Real data - KDDCup 99 network intrusion detection: We have used the 10% version of the

dataset, which is more concentrated, hence more challenging than the full version. It contains

around 490,000 instances. Here different classes appear and disappear frequently, making the

new class detection challenging. This dataset contains TCP connection records extracted from

LAN network traffic at MIT Lincoln Labs over a period of two weeks. Each record refers to

either to a normal connection or an attack. There are 22 typesof attacks, such as buffer-overflow,

portsweep, guess-passwd, neptune, rootkit, smurf, spy, etc. So, there are 23 different classes of

data. Most of the data points belong to the normal class. Eachrecord consists of 42 attributes,

such as connection duration, the number bytes transmitted,number of root accesses, etc. we

use only the 34 continuous attributes, and remove the categorical attributes. This dataset is also

normalized to keep the attribute values within [0,1].

Real data - Forest cover (UCI repository): The dataset contains geospatial descriptions of

different types of forests. It contains 7 classes and 54 attributes and around 581,000 instances.

We normalize the dataset, and arrange the data so that in any chunk at most 3 and at least 2

classes co-occur, and new classes appear randomly.
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B. Experimental setup:

We implement our algorithm in Java. The code for decision tree has been adapted from the

Weka machine learning open source repository

(http://www.cs.waikato.ac.nz/ml/weka/). The experiments were run on an Intel P-IV machine

with 2GB memory and 3GHz dual processor CPU. Our parameter settings are as follows, unless

mentioned otherwise: i)K (number of pseudopoints per chunk) = 50, ii)q (minimum number

of instances required to declare novel class) = 50, iii)M (ensemble size) = 6, iv)S (chunk size)

= 2,000. These values of parameters are tuned to achieve an overall satisfactory performance.

C. Baseline method:

To the best of our knowledge, there is no approach that can classify data streams and

detect novel class. So, we compare MineClass with a combination of two baseline techniques:

OLINDDA [18], and Weighted Classifier Ensemble (WCE) [22], where the former works as

novel class detector, and the latter performs classification. This is done as follows: For each

chunk, we first detect the novel class instances usingOLINDDA. All other instances in the

chunk are assumed to be in the existing classes, and they are classified usingWCE. We use

OLINDDA as the novelty detector, since it is a recently proposed algorithm that is shown to

have outperformed other novelty detection techniques in data streams [18].

However,OLINDDA assumes that there is only one “normal” class, and all other classes

are “novel”. So, it is not directly applicable to the multi-class novelty detection problem, where

any combination of classes can be considered as the “existing” classes. We propose two alter-

native solutions. First, we build parallelOLINDDA models, one for each class, which evolve

simultaneously. Whenever the instances of a novel class appear, we create a newOLINDDA

model for that class. A test instance is declared as novel, ifall the existing class modelsidentify

this instance as novel. We will refer to this baseline methodas WCE-OLINDDAPARALLEL.

Second, we initially build anOLINDDA model with all the available classes. Whenever a

novel class is found, the class is absorbed into the existingOLINDDA model. Thus, only

one “normal” model is maintained throughout the stream. This will be referred to as WCE-

OLINDDA SINGLE. In all experiments, the ensemble size and chunk-size are kept the same

for both these techniques. Besides, the same base learner is used for WCE and XM . The

parameter settings forOLINDDA are: i) number of clusters built in the initial model,K =
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30, ii) least number of normal instances needed to update theexisting model = 100, iii) least

number of instances needed to build the initial model = 100, iv) maximum size of the “unknown

memory” = 200. These parameters are chosen either accordingto the default values used in

[18] or by trial and error to get an overall satisfactory performance.We will henceforth use the

acronymsXM for ECSMiner, W-OP for WCE-OLINDDA PARALLEL and W-OS for WCE-

OLINDDA SINGLE.

D. Performance study

Evaluation approach: We use the following performance metrics to evaluate our technique:

Mnew = % of novel class instances Misclassified as existing class =Fn∗100
Nc

, Fnew = % of

existing class instances Falsely identified as novel class =Fp∗100

N−Nc
, ERR = Total misclassification

error (%)(includingMnew and Fnew) = (Fp+Fn+Fe)∗100

N
, whereFn = total novel class instances

misclassified as existing class,Fp = total existing class instances misclassified as novel class, Fe

= total existing class instances misclassified (other thanFp), Nc = total novel class instances in

the stream,N = total instances the stream. From the definition of the errormetrics, it is clear

that ERR is not necessarily equal to the sum ofMnew andFnew.

Evaluation is done as follows: we build the initial models ineach method with the first 3

chunks. From the 4th chunk onward, we evaluate the performances of each method on each data

point using the time constraints. We update the models with anew chunk whenever all data

points in that chunk is labeled.

Results: Figures 6(a)-(c) show the total number of novel class instances missed (i.e., misclas-

sified as existing class) and Figures 6(d)-(f) show the overall error rates (ERR) of each of the

techniques for decision tree classifier up to a certain pointin the stream in different datasets.

We omit SynC from the figures since it does not have any novel class. K-NN classifier also

has similar results. For example, in figure 6(a) at X axis = 100, the Y values show the total

number of novel class instances missed by each approach in the first 100K data points in the

stream (Forest Cover). At this point, XM misses only 15 novel class instances, whereas W-OP,

and W-OS misses 1937, and 7053 instances, respectively. Total number of novel class instances

appeared in the stream by this point of time is shown by the corresponding Y value of the

curve “Total”, which is 12,226. Likewise, in figure 6(d), theERR rates are shown throughout

the stream history. In this figure, at the same position (X=100), Y values show the ERR of each
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of the three techniques upto the first 100K data points in the stream. The ERR rates of XM,

W-OP, and W-OS at this point are: 9.2%, 14.0%, and 15.5%, respectively.
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Fig. 6. Top row: novel class instances missed by each method, bottom row: overall error of each method (Tl=1000,Tc=400)

Table I summarizes the error metrics for each of the techniques in each dataset for decision tree

and KNN. The columns headed by ERR,Mnew andFnew report the average of the corresponding

metric on an entire dataset. For example, while using decision tree in KDD dataset, XM, W-OP,

and W-OS have 1.0%, 5.8%, and 6.7% ERR, respectively. Also, their correspondingMnew are

1.0%, 13.2% and 96.9%, respectively. Note that there is no novel class in SynC, and so, there is no

Mnew for any approach. Both W-OP and W-OS have someFnew in SynC dataset, which appears

since W-OP and W-OS are less sensitive to concept-drift thanXM. Therefore, some existing

class instances are misclassified as novel class because of concept drift. All approaches have

lower error rates in SynCN than SynC because SynCN is generatedusing Gaussian distribution,

which is naturally easier for the classifiers to learn. Also,SynC has lower error rates with K-NN

than with decision tree since the hyperplane dataset is easire to learn for K-NN. In general, XM
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TABLE I

PERFORMANCE COMPARISON

Classifier Dataset
ERR Mnew Fnew

XM W-OP W-OS XM W-OP W-OS XM W-OP W-OS

Decision tree

SynC 6.9 14.1 12.8 - - - 0.0 2.4 1.1

SynCN 1.2 8.9 13.9 0.0 26.5 96.2 0.02 1.6 0.1

KDD 1.0 5.8 6.7 1.0 13.2 96.9 0.9 4.3 0.03

Forest Cover 4.7 7.9 8.5 0.2 30.7 70.1 3.0 1.1 0.2

K-NN

SynC 0.0 2.4 1.1 - - - 0.0 2.4 1.1

SynCN 0.01 8.9 13.9 0.0 26.5 96.2 0.0 1.6 0.1

KDD 1.2 4.9 5.2 5.9 12.9 96.5 0.9 4.4 0.03

Forest Cover 3.6 4.1 4.6 8.4 32.0 70.1 1.3 1.1 0.2

outperforms the baseline techniques in overall classification accuracy and novel class detection.

The main reason behind the poorer performance of W-OP in detecting novel classes is the way

OLINDDA detects novel class. Simply said, OLINDDA makes twostrong assumptions about a

novel class and normal classes. First, it assumes a spherical boundary of the normal model. It

updates the radius of the sphere periodically, and declaresanything outside the sphere as a novel

class if there is evidence of sufficient cohesion among the instances outside the boundary. The

assumption that a data class would have spherical boundary is too strict to be maintained for

real world problem. Second, it assumes that the data densityof a novel class must be at least

that of the normal class. If a novel class is more sparse than the normal class, the instances of

that class would never be recognized as a novel class. But in a real world problem, two different

classes may have different data densities. OLINDDA would fail in those cases where any of the

assumptions are violated. On the other hand, XM does not assume any spherical boundary of

an existing class, or similar data densities of different classes. Therefore, XM can detect novel

classes much more efficiently. Besides, OLINDDA is less sensitive to concept-drift, which results

in falsely declaring novel classes when drift occurs in the existing class data. W-OS performs

worse than W-OP since W-OS “assimilates” the novel classes into the normal model, making

the normal model too generalized. Therefore, it considers most of the future novel classes as

normal (non-novel) data, yielding very high false negativerate.

Figures 7(a),(b) show how XM and W-OP respond to the constraintsTl andTc in Forest Cover
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Fig. 7. Mnew and overall error (ERR) rates on Forest Cover dataset for (a)Tc=400 and different values ofTl and (b)Tl =

2000 and different values ofTc

dataset. Similar characteristics are observed for other datasets and W-OS. From figure 7(a) it is

evident that increasingTl increases error rates. This is because of the higher delay involved in

labeling, which makes the newly trained models more outdated. Naturally,Mnew rate decreases

with increasingTc as shown in figure 7(b) because higher values ofTc means more time to

detect novel classes. As a result, ERR rates also decreases.

Figures (8(a)-(d)) illustrate how the error rates of XM change for different parameter settings

on Forest Cover dataset and decision tree classifier. These parameters have similar effects on

other datasets, and K-NN classifier. Figure 8(a) shows the effect of chunk size on ERR,Fnew,

andMnew rates for default values of other parameters. We note that ERRandFnew rates decrease

upto a certain point (2,000) then increases. The initial decrement occurs because larger chunk

size means more training data for the classifiers, which leads to lower error rates. However, if

chunk size is increased too much, then we have to wait much longer to build the next classifier.

As a result, the ensemble is updated less frequently than desired, meaning, the ensemble remains

outdated for longer period of time. This causes increased error rates.

Figure 8(b) shows the effect of ensemble size (M ) on error rates. We observe that the ERR

and Fnew rates keeps decreasing with increasingM . This is because whenM is increased,

classification error naturally decreases because of the reduction of error variance [21]. But the

rate of decrement is diminished gradually. However,Mnew rate keeps increasing after some point
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Fig. 8. Parameter sensitivity

(M=6), because a larger ensemble means more restriction on declaration of the arrival of novel

classes. Therefore, we choose a value where the overall error (ERR) is considerably low and

alsoMnew is low. Figure 8(c) shows the effect of number of clusters (K) on error. The x-axis

in this chart is drawn in a logarithmic scale. Although the overall error is not much sensitive on

K, Mnew rate is. IncreasingK reducesMnew rate, because outliers are more correctly detected.

Figure 8(d) shows the effect ofq (Minimum neighborhood size to declare a novel class) on error

rates. The x-axis in this chart is also drawn in a logarithmicscale. Naturally, increasingq up

to a certain point (e.g. 200) helps reducingFnew and ERR, since a higher value ofq gives us

a greater confidence (i.e., reduces possibility of false detection) in declaring a new class (see

section IV). But a too large value ofq increasesMnew and ERR rates (which is observed in

the chart), since a new class is missed by the algorithm if it has less thanq instances in a data
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TABLE II

RUNNING TIME COMPARISON IN ALL DATASETS

Dataset
Time(sec)/1K Points/sec Speed gain

XM W-OP W-OS XM W-OP W-OS XM over W-OP XM over W-OS

SynC 0.33 0.41 0.2 2,960 2,427 5,062 1.2 0.6

SynCN 1.7 14.2 2.3 605 71 426 8.5 1.4

KDD 1.1 30.6 0.5 888 33 1,964 26.9 0.45

Forest Cover 0.93 8.3 0.36 1,068 120 2,792 8.9 0.4

chunk. We have found that any value between 20 to 100 is the best choice forq.

Finally, we compare the running times of all three competingmethods on each dataset for

decision tree in table II. K-NN also shows similar performances. The columns headed by “Time

(sec)/1K ” show the average running times (train and test) inseconds per 1000 points, the

columns headed by “Points/sec” show how many points have been processed (train and test)

per second on average, and the columns headed by “speed gain”shows the ratio of the speed

of XM to that of W-OP, and W-OS, respectively. For example, XMis 26.9 times faster than

W-OP on KDD dataset. Also, XM is 1.2, 8.5, and 8.9 times fasterthan W-OP in SynC, SynCN,

and Forest cover datasets, respectively. In general, W-OP is roughlyC times slower than XM

in a dataset havingC classes. This is because W-OP needs to maintainC parallel models, one

for each class. Besides,OLINDDA model creates cluster using the “unknown memory” every

time a new instance is identified as unknown, and tries to validate the clusters. As a result, the

processing speed becomes diminished when novel classes occur frequently, as observed in KDD

dataset. However, W-OS seems to run a bit faster than XM in three datasets, although W-OS

shows much poorer performance in detecting novel classes and in overall error rates (see table

I). For example, W-OS fails to detect 70% or more novel class instances in all datasets, but XM

correctly detects 91% or more novel class instances in any dataset. Therefore, W-OS is virtually

incomparable to XM for the novel class detection task. XM also outperforms W-OP both in

speed and accuracy.

We also test the scalability of XM on higher dimensional datahaving larger number of classes.

Figure 9 shows the results. The tests are done on synthetically generated data, having different
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dimensions (20-60) and number of classes (10-40). Each dataset has 250,000 instances. It is

evident from the results that the time complexity of XM increases linearly with total number of

dimensions in the data, as well as total number of classes in the data. Therefore, XM is scalable

to high dimensional data.
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Fig. 9. Scalability test

VI. CONCLUSION

We have addressed several real world problems related to data stream classification. We have

proposed a solution to the “novel class evolution” problem,which has been ignored by most of

the existing data stream classification techniques. Existing data stream classification techniques

assume that total number of classes in the stream is fixed. Therefore, when a novel class appears

in the stream, instances belonging to those classes are misclassified by the existing techniques.

We show how to detect novel classes automatically even when the classification model is not

trained with the novel class instances. Novel class detection becomes more challenging in the

presence of concept-drift. Existing novel class detectiontechniques have limited applicability,

since those are similar to one-class classifiers. That is, they assume that there is only one “normal”

class, and all other classes are novel. However, our technique is applicable to the more realistic

scenario where there are more than one existing classes in the stream. Besides, our novel class

detection technique is non-parametric, and it does requireany specific data distribution, or does

not require the classes to have spherical shape. We have alsoshown how to effectively classify
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stream data under different time constraints. Our approachoutperforms the state-of-the art data

stream based classification techniques in both classification accuracy and processing speed. We

believe that our proposed technique will inspire more research toward solving real-world stream

classification problems.

In future we would like to apply our technique to network traffic. Besides, we would like to

address the data stream classification problem under dynamic feature sets.
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