

American Institute of Aeronautics and Astronautics

1

Ares I-X Ground Diagnostic Prototype

Mark Schwabacher
*
 and Rodney Martin

†

NASA Ames Research Center, Moffett Field, CA 94035

Robert Waterman
‡

NASA John F. Kennedy Space Center, Cape Canaveral, FL 32899

Rebecca Oostdyk
§

ASRC Aerospace Corporation, Cape Canaveral, FL 32899

John Ossenfort
**

 and Bryan Matthews
††

Stinger Ghaffarian Technologies, Inc., Moffett Field, CA 94035

The automation of pre-launch diagnostics for launch vehicles offers three potential

benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground

Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and

diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground

hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center

(KSC) and while it was on the launch pad. The prototype combines three existing tools. The

first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool

from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE

(Spacecraft Health Inference Engine), is a rule-based expert system that was developed at

the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and

mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool,

IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at

NASA Ames Research Center. The three tools were integrated and deployed to KSC, where

they were interfaced with live data. This paper describes how the prototype performed

during the period before the launch, including accuracy and computer resource usage. The

paper concludes with some of the lessons that we learned from the experience of developing

and deploying the prototype.

I. Definitions

Many of the words, phrases, and acronyms that are used in the field of Integrated Systems Health Management

(ISHM) are ill-defined, so we begin with some definitions. Anomaly detection is detecting that new data is different

from what has been seen before. An anomaly may or may not be a fault. Fault detection is detecting that something

has failed, resulting in a loss of function. Fault isolation is determining the location of the fault. Diagnostics is

determining the specific failure mode. All of these methods take as input the steam of sensor values and commands,

and output assessments of the system’s health. The Ares I-X Ground Diagnostic Prototype performs anomaly

detection, fault detection, fault isolation, and diagnostics.

*
 Computer Scientist, Intelligent Systems Division, MS 269-3, AIAA Member.

†
 Computer Engineer, Intelligent Systems Division, MS 269-1.

‡
 Command & Control Architecture Lead, Architecture Integration & Management Office, MS LX-S3.

§
 Electrical Engineer, Advanced Electronics and Technology Development Group, MS ASRC-25.

**
 Computer Scientist, Intelligent Systems Division, MS 269-1.

††
 Systems Engineer, Intelligent Systems Division, MS 269-1.

American Institute of Aeronautics and Astronautics

2

II. Introduction

HE automation of pre-launch diagnostics for launch vehicles offers

three potential benefits. First, it offers the potential to improve safety

by detecting faults that might otherwise have been missed so that they can

be corrected before launch. Second, it offers the potential to reduce launch

delays by more quickly diagnosing the cause of anomalies that occur

during pre-launch processing. Reducing launch delays will be critical to

the success of NASA’s planned future missions that require in-orbit

rendezvous. Third, it offers the potential to reduce costs, both by reducing

launch delays and by reducing the number of people needed to monitor the

pre-launch process.

Ares I is the launch vehicle that NASA is currently developing to bring

the Orion capsule and its crew of four astronauts to low-earth orbit on their

way to the moon. Ares I-X
1
 was the first uninhabited test flight of Ares I. It

launched on October 28, 2009 (see Figure 1). The Ares I-X Ground

Diagnostic Prototype (GDP) is a prototype ground diagnostic system that

provided anomaly detection, fault detection, fault isolation, and diagnostics

for the Ares I-X first-stage Thrust Vector Control (TVC) and for the

associated ground Hydraulic Support System (HSS) while the vehicle was

in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC)

and while it was on the launch pad. The TVC is used to steer the vehicle

during ascent by moving the nozzle of the first-stage solid rocket booster.

The HSS provides hydraulic pressure for testing the TVC before launch.

GDP is intended to serve as a prototype of a future operational ground

diagnostic system for Ares I or other future launch vehicles.

The prototype combines three existing diagnostic tools. The first tool,

TEAMS (Testability Engineering and Maintenance System), is a model-

based tool that is a commercial product from Qualtech Systems Inc.

(http://teamqsi.com). It uses a qualitative model of failure propagation to

perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC in order to use it for

diagnostics, and developed a TEAMS model of the ground hydraulics. The second tool, SHINE (Spacecraft Health

Inference Engine), is a rule-based

expert system that was developed at the

NASA Jet Propulsion Laboratory
2
. We

developed SHINE rules for fault

detection and mode identification. The

prototype uses the outputs of SHINE as

inputs to TEAMS. The third tool, IMS

(Inductive Monitoring System)
3
, is an

anomaly detection tool that was

developed at NASA Ames Research

Center and is currently being used to

monitor three systems on the

International Space Station. IMS

automatically “learns” a model of

historical nominal data in the form of a

set of clusters and signals an alarm

when new data fails to match this

model. IMS offers the potential to

detect faults that have not been

modeled. The three tools were

integrated and deployed to Hangar AE

at KSC, where they were interfaced

with live data from the Ares I-X vehicle

and from the ground hydraulics. The

T

Figure 1. Ares I-X launch. Ares I-X

launched from Kennedy Space Center

on October 28, 2009.

Figure 2. Ares I-X GDP Architecture. The architecture combines

anomaly detection, fault detection, and diagnosis for the vehicle and the

ground support equipment.

American Institute of Aeronautics and Astronautics

3

outputs of the tools were displayed on a console in Hangar AE, which is one of the locations from which the Ares I-

X launch was monitored. The architecture of the prototype is shown in Figure 2.

In a previous publication
4
, we discussed how we selected the three tools based primarily on their ability to be

certified for human spaceflight, and described our plans for the prototype. This paper describes how the prototype

performed during the period before the launch. Section III describes the data that was used to test the prototype,

including the simulated failures that were inserted into historical Shuttle data. Section IV describes how we used

TEAMS and SHINE for fault detection and fault isolation, and includes a summary of the results from those tools.

Section V describes how we used IMS for anomaly detection, and includes a summary of the results from that tool.

Section VI describes the graphical tool that was used to display the outputs of the prototype. Section VII summarizes

the computational performance of the prototype. The prototype was not certified, but Section VIII presents a brief

summary of how we considered the need for certification in the design of the prototype and how we would propose

to get it certified if it were deployed as an operational system. The paper concludes with some of the lessons than we

learned from the experience of developing and deploying the prototype.

III. Data Used for Testing the Prototype

During the development and testing of Ares I-X GDP, Ares I-X data was not yet available. We therefore used

historical Space Shuttle data to test the entire prototype. The Space Shuttle Solid Rocket Booster (SRB) TVC is

virtually identical to the Ares I-X first-stage TVC, so the SRB TVC data was expected to be very similar to the Ares

I-X TVC data. Similarly, the ground hydraulic system used with the SRB TVC is virtually identical to the ground

hydraulic system used with the Ares I-X TVC. These expectations held up modestly well after our post-flight

analysis, in consideration of all the tools that were deployed to support failure and anomaly detection, as will be

discussed in subsequent sections. The differences that we found in the data were caused by differences in operations

between Shuttle and Ares I-X, rather than by differences in the TVC or HSS hardware.

The SRB TVC and the associated ground hydraulic system have had very few failures. We thus had available to

us an abundance of nominal data, but very little failure data. We therefore decided to develop a set of failure

simulations that could be used to test the ability of the prototype to detect and diagnose failures. We inserted

simulated failures into the historical Shuttle data, and used the resulting data sets to test the prototype before the

Ares I-X launch. We developed simulations of the following four failure modes:

 FSM (Fuel Supply Module) pressure drop due to N2H4 (Hydrazine) leak

 Hydraulic pumping unit over-temperature failure

 Hydraulic fluid reservoir level drop due to hydraulic fluid leak

 Actuator stuck during actuator positioning test

For the FSM failure, we developed a physics-based simulation. For the other three failure modes, we did not have

sufficient information available to develop physics-based simulations, so we used simple linear approximations.

More details of the simulated failures can be found in Ref. 5.

After the Ares I-X vehicle was assembled and powered up in the Vehicle Assembly Building (VAB), we began

testing the prototype using live data from the vehicle. This testing continued until launch.

IV. Fault Detection, Fault Isolation, and Diagnostics

The software tool that was chosen to provide fault isolation and diagnostics for GDP is called TEAMS. TEAMS

is a software package for performing model-based diagnostics based on the system design, component definitions,

inputs, outputs, connectivity, signal flow and hierarchy. The TEAMS suite of tools includes TEAMS Designer, a

graphical tool that is used to build TEAMS models, and TEAMS-RT, a real-time fault isolation and diagnosis engine

that uses the TEAMS models. We used TEAMS Designer to build TEAMS models of the TVC and HSS, and

deployed TEAMS-RT to Hangar AE.

TEAMS-RT requires as its inputs a set of test results and the current system mode. Each test result has a “pass”

or “fail” value, and typically represents the result of a test that is performed on the TVC. Most of the tests involve

comparing a sensor value with a threshold. GDP uses a combination of SHINE rules and C code to compute the test

results and the system mode. This “wrapper” code performs fault detection and mode identification. The diagnoses

produced by TEAMS-RT label all of the components in the model as “good” (definitely not failed), “suspect”

(possibly failed), or “bad” (definitely failed).

TEAMS models are hierarchical; it is possible to “zoom in” on any of the modules displayed in TEAMS

Designer to see the components within them. At the lowest level, the failure modes and test points are modeled.

(The test results described above are input to the model at the test points.) We built separate TEAMS models of the

TVC and the HSS, and then integrated them into a single model by using a simple top-level model. The failure

American Institute of Aeronautics and Astronautics

4

modes and components were modeled based on information provided in the Failure Modes and Effects Analysis for

the vehicle, along with schematics, diagrams, users’ manuals, and knowledge from TVC engineers and systems

engineers. The integrated model has 655 components, 893 failure modes, and 263 tests. The tests use data from 281

measurements.

Prior to the Ares I-X launch, we tested the TEAMS model and the wrapper code using historical Shuttle data

from seven flights, into which we inserted simulated failures. This testing revealed some bugs in the SHINE rules. In

some cases, we had initially made some assumptions about the TVC testing procedures that turned out to be false for

at least one of the seven Shuttle flights. Other bugs were simply coding errors. After fixing all of the bugs, we were

able to run the prototype on the data from all seven Shuttle flights with no false alarms, and with all of the simulated

failures correctly detected.

We obtained the first Ares I-X data shortly after Ares I-X had its initial power-up in the VAB, approximately six

weeks before the launch. When we tested the prototype on this Ares I-X data, it produced a small number of false

alarms, caused by differences in the test procedures between Shuttle and Ares I-X. Most of these false alarms were

caused by incorrect mode identification. For example, some tests were performed in a different order for Ares I-X

than they were for Shuttle. Prior to the launch, we fixed the SHINE rules for mode identification. Shortly before the

launch, the prototype had a small number of false alarms caused by data dropouts. We had expected data dropouts

during ascent, but had not expected data dropouts before launch. After the launch, we modified the wrapper code to

detect data dropouts. After making this modification, we were able to run the prototype on the recorded data from

the launch without any false alarms. Ares I-X did not have any failures in the systems we modeled, so the prototype

had no correct detections and no missed detections.

V. Anomaly Detection

We ran IMS in parallel with the TEAMS/SHINE combination. We expected that TEAMS and SHINE would

detect all of the known failure modes that we modeled, while IMS would have the potential to detect unknown

failure modes and anomalies that are not yet failures. IMS has been proven as a mature tool by supporting various

NASA Johnson Space Center (JSC) Shuttle and International Space Station (ISS) operations for four years as well as

being licensed commercially for three years. It is currently running on a console at JSC Mission Control Center to

monitor live data from the ISS Control Moment Gyroscopes, Early External Thermal Control System, and Rate

Gyroscopic Assembly, and has been certified as Class C software for those three systems.

The tool works under the principle of a one-class modeling algorithm by building a model of the nominal

historical data on which it is trained. Because IMS only models the nominal data, and does not model any failure

modes, it can potentially detect unknown failure modes. The model takes the form of a knowledge base (KB) of

clusters. Once the KB has been learned, unseen data points are evaluated against the KB and assigned anomaly

scores based on how different the data points are from the training data. If a new point falls within an existing

cluster, then it is assigned an IMS score of zero. If it does not fall within an existing cluster, then the distance to the

nearest cluster is used as the IMS score.

IMS also calculates a contributing

score for each measurement,

representing each measurement’s

contribution to the overall IMS score.

When an anomalous period of the

testing data is localized, these

contributing IMS scores can be used to

help diagnose the issue.

Prior to the Ares I-X launch, we

trained IMS on historical Space Shuttle

data, and tested it using historical

Shuttle data into which we had inserted

simulated failures. During the Ares I-X

pre-launch period, IMS processed live

Ares I-X data, using the knowledge

base that was the result of training IMS

on historical Shuttle data. The

remainder of this section describes the

selection of measurements for use with

Figure 3. AUC as a function of IMS Parameter Max Interp for

Shuttle data from the VAB. The red dot indicates the optimal value.

American Institute of Aeronautics and Astronautics

5

IMS, the training and testing procedures

used, and the results obtained both on

Shuttle data and on Ares I-X data. The

section concludes with a summary of the

results.

A. Training and Testing Procedures

For the purpose of training and

testing IMS, we used historical Space

Shuttle data into which we inserted

simulated failures. Although the main

purpose of using IMS in GDP is to

detect unknown failures, we tested it by

using simulations of known failures.

IMS has a number of tunable input

parameters. One key parameter that was

very important to tune was the

maximum interpolation (max interp)

parameter. This parameter governs the

threshold in the learning phase that

determines if a new data point should be

placed in the current cluster or used to

generate a new cluster. The parameter

directly influences the number of

clusters created in the learning phase

and therefore has a major influence in

the final anomaly score calculated by

IMS. As the max interp value increases

the total number of clusters formed becomes smaller.

To determine the optimal max interp value and corresponding number of clusters a set of cross validation runs

was performed on a set of Shuttle VAB and launch pad data, using the Area under the ROC (Receiver Operating

Characteristic) curve (AUC) as the governing metric for optimization. Cross validation is a technique for estimating

the accuracy of a machine learning

algorithm, by training and testing the

algorithm multiple times, each time

using different subsets of the available

data for training and testing, and then

averaging the results. The ROC curve

is a plot of true positive rate against

false positive rate, and can be used to

help make the tradeoff between these

two rates. The AUC is loosely a

measure of accuracy over all possible

tradeoffs between true positive rate

and false positive rate. More formally,

the AUC represents the probability

that a randomly chosen failure data

point is more suspect than a randomly

chosen nominal data point.
6
 An AUC

of one thus indicates perfect ranking of

these two randomly selected data

ponts.

B. Results on Shuttle Simulations

Once the cross validation runs

were complete, the areas under the

Figure 4. ROC Curve for Shuttle data from the VAB. This ROC

curve was generated using the optimal max interp value from Figure 3.

Figure 5. ROC Curve for Shuttle data from the pad. IMS had nearly

perfect accuracy on the Shuttle pad data.

American Institute of Aeronautics and Astronautics

6

ROC curves were calculated. Figure 3

shows the maximum, minimum, and

average AUC over the three-fold cross

validations and three fault scenarios for

each max interp value. The optimal

max interp value that was chosen is

marked in the plots. The ROC curve

with the optimal max interp value of

0.13 can be seen in Figure 4. The AUC

is only 0.86893, because IMS had

difficulty detecting one of the three

simulated failures that were used. The

increase in IMS score resulting from

this simulated failure was not much

larger than the nominal variation in the

IMS score, so it was not possible to

select a threshold that would allow

IMS to detect all of the simulated

failures without having any false

alarms. Some failure modes are easily

detected using IMS’ distance-based

approach with clustering, while others

are not. When IMS is used in parallel

with TEAMS-RT, TEAMS-RT should

detect all of the failures that are

modeled in the TEAMS model; the

advantage of using IMS in addition is

that it has the potential to detect

failures that were not modeled, as well

as anomalies that are not yet failures.

For the pad, IMS performed much

better. After optimizing the value of

max_interp, the ROC curve was

generated and can be seen in Figure 5.

Here the AUC is 0.99919, indicating

that IMS does an excellent job of

detecting the two simulated failure

modes at the pad.

C. Results on Ares I-X

Once the optimal max interp parameter was determined from the Shuttle data, IMS was trained on 33

measurements using Shuttle data from seven flights. After building the KB, the Ares I-X data was evaluated against

it. The resulting IMS scores for the VAB are shown in Figure 6. With the initial set of 33 measurements, 3 periods

of anomalous behavior were flagged by IMS; they are labeled as three “False Alarms” in Figure 6. We performed

an analysis of each “false alarm”; here we present the analysis of False Alarm 1 as an example. We determined that

False Alarm 1 was primarily caused by two measurements, the TVC rock and tilt actuator positions. The

contributing IMS scores for these two measurements are plotted in Figure 7.

False Alarm 1 was caused by a difference between the Space Shuttle and Ares I-X. In recent years, the TVC

actuator tests performed in the VAB have all been “pinned” tests, meaning that the actuator is physically pinned to

the nozzle during testing, so that the nozzle moves during the test. The first TVC actuator position test performed in

the VAB for Ares I-X was an “unpinned” test, meaning that the actuator was detached from the nozzle, and the

nozzle did not move during the test. Because the actuator was unpinned, it was able to move through a larger range

of motion that is not possible during pinned testing. IMS therefore saw rock and tilt position values that it had never

seen in the Shuttle data, which it flagged as anomalies. These anomalies are “false alarms” in the sense that they are

not failures, but they do illustrate the ability of IMS to detect new data that is different from what it has seen before.

We performed a similar analysis for the launch pad, where there were fewer anomalies identified by IMS. Like the

Figure 6. Ares I-X Sept 17th VAB Global IMS Score. Periods during

which IMS detected anomalies that were not failures are labeled as “false

alarms”

Figure 7. Sept 17th VAB Top Contributing IMS Scores For False

Alarm 1. False Alarm 1 was primarily caused by the TVC rock and tilt

actuator positions, which moved through a larger range of motion on Ares

I-X than they did on Shuttle.

American Institute of Aeronautics and Astronautics

7

anomalies detected at the VAB, the

anomalies detected at the launch pad

were caused by operational differences

between Shuttle and Ares I-X.

D. Summary of IMS results

The experiments that we ran before

the Ares I-X launch using historical

Space Shuttle data with simulated

failures demonstrated that IMS is able

to detect most of the simulated failures,

but not all of them. In particular, it had

difficulty detecting one of the

simulated failure modes in the VAB.

That is not surprising. IMS is not

trained to detect specific failure modes;

it detects data that is anomalous

according to its cluster-based model.

We expect that many known and

unknown failure modes will be detected as anomalies by IMS, but it is not guaranteed to detect all possible failure

modes. The advantage of using IMS together with a model-based diagnosis system such as TEAMS is that it adds

the potential to detect unknown failure modes and to detect precursors of failures.

The results of running IMS on Ares I-X data, using a KB that was trained on historical Space Shuttle data,

confirm our hypothesis that the Ares I-X TVC data is reasonably similar to the Space Shuttle SRB TVC data. Most

of the time, IMS produced small anomaly scores when run on the Ares I-X data. IMS did detect some “anomalies”

in the Ares I-X data. These anomalies were “false alarms” in the sense that they were not failures but rather caused

by operations performed differently for Ares I-X versus Shuttle; hence, they illustrate the ability of IMS to detect

new data that is different from what has been seen in the past.

VI. Java Display

Java Display is an application that is used to display in real time the following information:

1. An interactive schematic of the HSS and TVC subsystems

2. Values for sensors present in the HSS and TVC subsystems

3. Outcome of tests performed by the wrapper code (SHINE)

4. Diagnostic results of TEAMS at both the component and failure levels

5. A tally of suspect and bad components both at the component and failure levels

6. The IMS score

A screen shot of the Java Display is shown in Figure 8.

The two scrollable text areas on the right hand side display information pertaining to TEAMS diagnoses and

SHINE wrapper code test results. On the top right hand corner of the display are fields that display the IMS score

and the current time. A large part of the Java Display is dedicated to a schematic representation of the HSS and TVC

subsystems. The schematic representation is hierarchical and the user is provided with the ability to click on a

particular subsystem to view details at a component level. The subsystem schematics also display in real time the

associated sensor values. Each component of the schematic is colored with an outline depending on the outcome of

the diagnosis from TEAMS. In particular, good, suspect and bad components are colored green, yellow and red

respectively.

VII. Computational Performance of the Prototype

The prototype performed very well from a computational perspective. During development and testing, we ran

the prototype on a Dell Precision M4400 laptop with an Intel Core 2 Quad Q9300 CPU running at 2.53 GHz and 4

GB of DRAM, running Windows XP 32-bit. Table 1 shows the memory and CPU usage of each of the processes

within the prototype, when running on the laptop with historical Space Shuttle data and a simulated fault

(“Hydraulic pump over-temperature failure”) fed into it at simulated real-time (25 Hz). The CPU usage numbers

indicate what percentage of the quad-core CPU was used. So, for example, a process that used all of the CPU time

on one core would be listed as 25%.

Figure 8. GDP Java Display screen shot. The schematic has been

blurred to protect confidentiality.

American Institute of Aeronautics and Astronautics

8

Table 1: GDP memory and CPU usage

Process CPU DRAM

TEAMS (includes TEAMS-RT, the SHINE rules, the C test logic, and the data

interface code)
8% 12 MB

IMS (including its data interface code) 1% 11 MB

Java display (including JVM) 1% 29 MB

Data playback software 18% 56 MB

Plotting tool 1% 12 MB

Windows XP Operating System 5% 410 MB

Total 34% 530 MB

In summary, the prototype could be run on a single laptop PC using only a small fraction of the available CPU

and memory. It could have easily run on a PC with half as many cores and half as much memory. It used a

substantial size model (with 893 failure modes), and ran at 25 Hz. We expect that future NASA ground diagnostic

applications will receive data at a much lower rate (possibly 1 Hz), but will model dozens of systems (compared

with the two systems modeled in our prototype).

VIII. Verification, Validation, and Certification

Ares I-X GDP is a prototype. It was not certified, and as such its outputs cannot be used to make operational

decisions. The team did, however, seek to develop the tool in such a way that it could be certified. The three tools

that were integrated (TEAMS-RT, IMS, and SHINE) were selected based in large part on their potential to be

certified. These three tools were judged to be easier to certify than competing tools because of their past usage in

relevant applications and because of their relative simplicity. Decisions regarding how the vehicle and ground

models would be integrated were also made based in part on ease of certification. The team wrote a draft verification

and validation plan that describes how we would have verified, validated, and certified the prototype if it had been

deployed as operational software.

In lieu of a formal verification and validation process, the team performed informal testing of the prototype and

its components. Much of testing used historical Shuttle data into which we inserted simulated failures. In addition,

the team performed testing of the interface code by running large quantities of historical Shuttle data through the

different pieces of interface code and verifying that the data that came out of each interface matched the data that

went into each interface. Before deploying the prototype to Hangar AE at KSC, the team performed integrated

testing of the entire prototype (including TEAMS-RT, SHINE, IMS, and the Java display) using historical data from

several Shuttle flights. Shortly after the initial power-up of Ares I-X in the VAB, the prototype was tested using

recorded Ares I-X data from the initial power-up. Finally, after the prototype was installed in Hangar AE, it was

tested using live Ares I-X data from the VAB.

IX. Lessons Learned

We learned many lessons from our experience of developing and deploying the prototype. We expect that these

lessons will be useful to future NASA efforts to build automated diagnostic systems, and may also be useful to

people beyond NASA. The most important lessons are summarized in this section.

A. Need for the system to provide system mode and event information

TEAMS-RT requires mode and event information as part of its inputs (since certain failure modes can only occur

in certain system modes). The system modes that we needed were the major system modes of the vehicle,

specifically VAB or pad (and were easy to infer). The events and subevents were generally indications of what test

was being performed or what step within a test was being performed. These were often more difficult to infer. If the

system gets into the wrong mode or event, it is unlikely to ever recover automatically. When GDP got into the

wrong mode or event, we stopped the software, manually set the mode and event, and then restarted it.

The Space Shuttle and Ares I-X both provided us with inadequate system mode and event information. Because

of that, we needed to develop complex SHINE rules to infer the system mode and events from the sensor data and

the command stream. That caused five problems:

1) The development of these SHINE rules was very labor intensive, which resulted in increased costs.

American Institute of Aeronautics and Astronautics

9

2) The complexity of these SHINE rules increased the risk that an error in the SHINE rules would result in a

false alarm. (And in fact, we did have false alarms caused by errors in these SHINE rules during the Ares I-

X pre-launch period. We have since fixed all of the errors of which we are aware.)

3) We faced the risk that if any of the data on which these SHINE rules depended was missing or incorrect, the

prototype would infer the system mode or event incorrectly, resulting in false alarms.

4) Certain failure modes could be mistakenly interpreted as mode changes, resulting in both missed detections

and false alarms. For example, suppose an event that needs to be detected is a valve being closed manually

by a person turning a knob. Suppose that the SHINE rules use a pressure sensor downstream of the valve to

detect when the valve has been closed. If there is a system failure that results in a decrease in pressure, such

as a leak, then the SHINE rules will mistakenly conclude that the valve has been closed.

5) There were some events that we determined could not be detected using the available sensor data and

command stream. We therefore had to remove from our scope the failure modes that depended on these

events.

We believe it is very important for future launch vehicles, such as Ares I, to transmit system mode and event

information to the diagnostic software.

B. Cost of developing wrapper code

In addition to developing the TEAMS models and the IMS KBs, the GDP team also needed to develop “wrapper

code.” The wrapper code consists of:

1) The interface code that gets live data and feeds it to TEAMS-RT, the SHINE rules, and IMS

2) The system mode and event identification code

3) The “pass/fail” test logic.

The cost of developing the “wrapper” code was higher than we had expected it to be. We estimate that the cost

of developing the wrapper code was comparable to the cost of developing the TEAMS models. We expect that the

relative cost of developing wrapper code will be lower in the future, for two reasons:

1) We hope that future systems will provide better mode and event information, reducing the cost of developing

system mode and event identification code (see Lesson A).

2) A significant part of the cost of developing the wrapper code was the cost of developing the interface code.

This interface code is not specific to the systems we modeled. Since we only modeled two systems (TVC and

HSS), we were only able to amortize this cost over these two systems. We expect that future diagnostic

systems will model more systems, and will therefore be able to amortize the cost of the interface code over

more systems.

C. Utility of using rule-based systems for wrapper code

The use of SHINE in development of the wrapper code had several upsides but also many downsides. Once the

basic syntax of coding in SHINE was understood, the SHINE framework allowed for very fast development of rules

for event mode detection. After the rules were compiled into C code, the forward-chaining aspect of SHINE greatly

simplified what would otherwise have been a complicated series of nested-if statements. Unfortunately there were a

number of problems as well that may have been avoided if SHINE had not been used, or if it had been used in a

more limited context. The biggest downside turned out to be the difficulty of debugging the SHINE rules. This could

have been improved upon in a number of ways:

1) Begin testing SHINE rules on smaller datasets.

2) Break the SHINE code into smaller, more manageable “chunks”.

3) An Integrated Development Environment (IDE) for SHINE could potentially have helped to debug the rules

prior to testing on real data. It could have enhanced the visibility of what rules are associated and triggered

by certain variables, and also helped to spot potential “infinite loops”.

4) Move all TEAMS tests outside of SHINE. While SHINE was fully capable of evaluating TEAMS test logic,

most of these tests were more easily coded and managed using table lookups.

Overall, SHINE proved to be a useful but cumbersome tool. If future work were to be done in this area, SHINE

could certainly help but it is recommended to be used in some combination with straightforward C/C++

programming to minimize complexity. In general, the things that can easily be done in C or C++, such as table

lookups for threshold values, should be done in C or C++. SHINE rules should only be used for tasks that naturally

fit the rule-based paradigm, such as some of the more complex event identification rules.

American Institute of Aeronautics and Astronautics

10

D. TEAMS modeling lessons learned

The process of modeling the TVC and HSS in TEAMS and integrating the two models has resulted in several

lessons learned. First, our experience highlights the need for a comprehensive Interface Control Document (ICD)

for each subsystem that is modeled in TEAMS-Designer. Without an ICD that is agreed upon prior to the start of

the modeling tasks, the model designer will likely spend many hours modifying the models to allow the proper

propagation of information between interacting subsystems.

Second, the testability analysis of the individual models revealed the disparity between the usefulness of the fault

isolation for different types of subsystems. There is better fault isolation in the TVC model than the HSS as a result

of how the subsystems have been designed and are operated. (Flight systems generally have more instrumentation

than ground systems, resulting in better fault isolation.) In the future, criteria related to the degree of automation in

the system along with instrumentation placement may aid in deciding which subsystems should be modeled for the

greatest benefit to an automated fault detection and isolation application.

Finally, the model integration process between the TVC and HSS demonstrated the need for a common approach

regarding the use of functions and test points. There are several strategies for naming and using functions in the

context of local and global failure propagation, bidirectional flow, switches, and function mapping. A set of

modeling conventions for TEAMS has been developed which addresses common look and feel considerations for

the model, but the conventions have so far left function naming and usage to the discretion of the modeler. In the

future, a standard convention for the usage of functions and test points should be developed, and all ground and

vehicle models intended to be used in an integrated fashion to perform fault isolation should be required to follow

the new convention.

E. Appropriate roles of model-based diagnosis and anomaly detection

Each tool should be leveraged to promote its strengths rather than re-adapting the tool to solve a problem that is

outside of its domain of relevance. Model-based systems such as TEAMS work very well for detecting and

diagnosing the known failures that have been modeled. As we mentioned in the Introduction, we believe that the

value of including a one-class anomaly detection algorithm such as IMS alongside a model-based diagnosis system

such as TEAMS in a diagnostic system is that the anomaly detection system has the potential to detect anomalies

that cannot be detected by the model-based diagnosis system, either because they are unknown failures and therefore

unmodeled, or because they are not failures. Furthermore, IMS may detect known failures in advance of the time

that TEAMS would detect them, and in general IMS requires less modeling effort than TEAMS (although it does

require a sufficient quantity of historical and/or simulated training data). But anomaly detection methods such as

IMS are not well suited for detecting some types of failures. As we mentioned in the IMS section, we used

simulations of known failure modes to test IMS. For some of these simulated failures, we expended a lot of effort in

tuning IMS to get IMS to detect the simulated failures.
7
 This tuning process included reducing the set of

measurements that were used to train IMS.

With IMS, we know that its strengths lie in a great potential to detect faults that are unknown or that otherwise

have not been modeled and to detect anomalies that are precursors of faults before a model-based system detects the

fault. We believe that it would be better to rely on TEAMS to detect certain known failure modes, rather than tuning

IMS to detect them. Reducing the set of measurements that are used to train IMS did allow IMS to successfully

detect the simulated failures, but it reduced IMS’ potential to detect other unknown failures.

F. Metrics

We had a lot of discussions about the appropriate metrics for measuring the accuracy of diagnosis and anomaly

detection. We considered different ways of defining false positives and false negatives in both cases. We ended up

using the Area under the ROC curve (AUC) to measure the performance of IMS and enumerating the false alarms to

assess the performance of TEAMS. Any future operational deployment of diagnostic technology will require careful

consideration of metrics.

X. Conclusion

Automated pre-launch diagnostics can help increase safety, reduce cost, and reduce launch delays. The Ares I-X

Ground Diagnostic Prototype helped to demonstrate and mature automated fault detection and diagnostic software

that can be used in future missions. GDP successfully demonstrated the feasibility of integrating three very different

fault detection and diagnostic methods, and of integrating diagnosis of the vehicle with diagnosis of the ground

systems.

American Institute of Aeronautics and Astronautics

11

Although the prototype had a small number of false alarms in TEAMS, we believe that an operational system

could have avoided these false alarms by having mode identification provided by the system, and by having a formal

verification and validation process. As an anomaly detection system, IMS can be expected to have some false alarms

(since not all anomalies are failures), but we expect that the number of false alarms will decrease over time as more

data becomes available for training IMS.

Acknowledgments

We thank all current and past members of the Ares I-X GDP team, including Charles Lee (SGT at ARC), Vijay

Baskaran (SGT at ARC), Pedro Vazquez (ASRC at KSC), Peter Robinson (ARC), Robert Trent (ARC), Mark James

(JPL), Pat Chang (JPL), John Wallerius (formerly QSS at ARC), Larry Markosian (SGT at ARC), Martin Feather

(JPL), Tim Taylor (Analex at MSFC), Andrew Riddle (Wright State University), and Gloria Floyd (formerly Miltec

at KSC).

We thank the people who have helped us interact with our intended future customers and with other related

tasks, including Barbara Brown (ARC at KSC), Stephen Johnson (MSFC), and Mike Watson (MSFC).

We thank Nate Wood (KSC) for helping us interface our prototype with the WinPlot Archive Server in Hangar

AE.

We thank the domain experts who helped us to obtain relevant data and to understand the systems that we

modeled, including Roland Lebon (USA at KSC), Ben Hayashida (MSFC), and Jim Herndon (KSC).

We thank Dave Iverson (ARC) for providing IMS and for helping us with IMS.

We thank Somnath Deb, Sudipto Ghoshal, Venkat Malepati, Chuck Domagala, and Mohammed Azam of QSI

for their help with TEAMS.

We thank the people who have provided useful feedback during discussions about the prototype, including Lilly

Spirkovska (ARC), David Hall (SGT at ARC), Bob Ferrell (KSC), and Ryan Mackey (JPL).

We thank Lilly Spirkovska (ARC) for designing the concept and the human factors elements of the GDP Java

Display.

We thank the managers who helped get the task started and who helped guide it, including Serdar Uckun

(formerly ARC), Ann Patterson-Hine (ARC), David Korsmeyer (ARC), Dwight Sanderfer (ARC), Dougal Maclise

(ARC), and George Sarver (ARC).

We thank Lilly Spirkovska and Ann Patterson-Hine for reviewing a draft of this paper and providing valuable

feedback.

Ares I-X GDP was funded by the NASA Constellation Program, by the NASA Exploration Technology

Development Program, and by the NASA KSC Ground Operations Project.

References
1Davis, S. R., “Ares I-X Flight Test - The Future Begins Here,” AIAA SPACE Conference, 2008.
2James, M. and Atkinson, D., “Software for Development of Expert Systems,” NASA Technology Briefs, vol. 14, no. 6,

1990.
3D. L. Iverson, R. Martin, M. Schwabacher, L. Spirkovska, W. Taylor, R. Mackey, and J. P. Castle, “General Purpose Data-

Driven System Monitoring for Space Operations,” AIAA Infotech@Aerospace Conference, 2009.
4M. Schwabacher and R. Waterman, “Pre-Launch Diagnostics for Launch Vehicles,” IEEE Aerospace Conference, 2008.
5R. Martin, M. Schwabacher, and B. Matthews, “Investigation of Data-Driven Anomaly Detection Performance for

Simulated Thrust Vector Control System Failures ,” In Proceedings of the 57th Joint Army-Navy-NASA-Air Force Propulsion

Meeting, Colorado Springs, CO, May 2010. To appear.
6Bradley, A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern

Recognition, 30(7):1145 – 1159, 1997.
7Rodney A. Martin. “Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations”,

chapter in Aerospace Technologies Advancements, pages 141–164. IN-TECH, January 2010.

