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ABSTRACT

In this work, a prognostics framework to predict the evolu-
tion of damage in fiber-reinforced composites materials un-
der fatigue loads is proposed. The assessment of internal
damage thresholds is a challenge for fatigue prognostics in
composites due to inherent uncertainties, existence of mul-
tiple damage modes, and their complex interactions. Our
framework, considers predicting the balance of release strain
energies from competing damage modes to establish a refer-
ence threshold for prognostics. The approach is demonstrated
on data collected from a run-to-failure tension-tension fa-
tigue experiment measuring the evolution of fatigue damage
in carbon-fiber-reinforced polymer (CFRP) cross-ply lami-
nates. Results are presented for the prediction of expected
degradation by micro-cracks for a given panel with the asso-
ciated uncertainty estimates.

1. INTRODUCTION

Composites are high-performance materials with a wide
range of engineering applications like aerospace, automo-
tive, and construction because of their high specific stiffness
and strength in relation to their weight. Most of these ap-
plications involve components subject to cyclic loadings that
make them susceptible to fatigue degradation. Unlike met-
als, fatigue damage degradation in composites is a complex
multi-scale process driven by several internal fracture mech-
anisms such as matrix-cracks, local and global delaminations,
fiber breakage, etc. The progression of these damage modes
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and their interactions are significantly influenced by the ma-
terial properties, stacking sequence, stress level and other
loading conditions (Reifsnider & Talug, 1980; R. D. Jami-
son, Schulte, Reifsnider, & Stinchcomb, 1984; Beaumont,
Dimant, & Shercliff, 2006). Among them, transverse matrix
cracking1 holds a central position as a precursor of other dam-
age modes in adjacent plies, such us local delaminations2 and
fiber breakage (Lee, Allen, & Harris, 1989; Beaumont et al.,
2006). It is generally accepted that the matrix crack density in
off-axis plies tends asymptotically to an upper bounded value
corresponding to a spacing of aspect ratio unity3, termed
as Characteristic Damage State (CDS) (Reifsnider & Talug,
1980). This state is usually concomitant with more severe
damage scenarios that may lead to a subsequent catastrophic
failure.

In addition to the CDS, damage progression may exceed
other “subcritical damage states” before ultimate failure, cor-
responding for instance with the onset of local delaminations
or global delaminations respectively. These damage states de-
fine tolerance limits that can be used as thresholds for prog-
nostics. However, establishing a deterministic damage pro-
gression path to these subcritical states is not an easy task
because of the uncertainties in the growth and interactions of
internal fracture modes. It is exactly in this context, where the
benefits of the proposed prognostic framework can be fully
exploited to deal with the uncertainty of the damage accumu-
lation process during fatigue conditions. This framework al-

1The terms matrix micro-cracks, transverse cracks or intralaminar cracks can
be invariably used to refer to the cracks growing along fiber directions in
off-axis plies.

2Local delaminations are small inter-laminar fractures growing from the tips
of matrix cracks.

3Ratio between average crack spacing (2l) and ply thickness, t.
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lows us to sequentially update the information about the exist-
ing damage modes by fusing probabilistic information from
sensors and models and, ultimately, redefining the path to the
subsequent subcritical damage states.

Prognostics is concerned with determining the health of sys-
tem components and making end of life (EOL) predictions
based on meeting specific critical thresholds, given an evo-
lutionary damage model. As with diagnostics, prognostics
methods are typically categorized as either model-based or
data-driven, depending on whether the damage evolution
model is based on physical first principles, or, alternatively
uses run-to-failure data to capture trends of degradation. In
the recent decades, a large number of articles have been re-
ported to cover data-driven approaches for damage evolution
under the topics of stochastic modeling of fatigue damage
growth for several applications (Wu & Ni, 2004). First at-
tempts involve modeling the damage evolution as a Markov
process (Lin & Yang, 1983). Rowatt and Spanos (1998);
Ganesan (2000); Wei, Johnson, and Haj-Ali (2010) pro-
posed Markov chain models to describe the progression of
fatigue degradation in composites from laminate compliance
measurements, as an extension of the pioneering work of
Bogdanoff and Kozin (1985). More recently Chiachio, Chi-
achio, and Rus (2011) proposed an enhancement of (Rowatt
& Spanos, 1998) by a model parameterization that allows ac-
counting for the non-stationarity of the damage process.

On the other hand, model-based approaches provide EOL es-
timates that are more accurate and precise than data-driven
approaches, if good models are available (M. Daigle &
Goebel, 2010). Specifically, these models have the ability
to adapt to different systems (specimen, materials, condi-
tions, etc.) without much training, they are transparent to
human understanding, and furthermore, they can incorporate
monitoring data in a Structural Health Monitoring (SHM)
context. Particularly in composites, where multiple fracture
modes may co-exist, a model-based prognostics framework
allows dynamically assessing the dominant damage mode and
establishing the thresholds of each of the competing damage
modes, by means of a comparison of the energy spent by each
single mode (Nairn & Hu, 1992).

In this work, a model-based prognostic framework is formu-
lated to predict in real time the accumulation of damage in
composites under fatigue conditions. A tension-tension fa-
tigue experiment in a cross-ply CFRP laminate is used for
case study, measuring the evolution of matrix-cracks den-
sity. Damage thresholds for remaining useful life (RUL) pre-
diction are sequentially updated by means of a model parame-
terization of the energy release rate due to microcracking. To
this end, a particle filter algorithm (Arulampalam, Maskell,
Gordon, & Clapp, 2002; Cappé, Godsill, & Moulines, 2007),
is used for the joint state-parameter sequential estimation.

The rest of the paper is organized as follows. Section 2 de-

scribes the model of damage propagation and introduces the
basis for establishing damage thresholds based on energy re-
lease. The transformation of the physics-based evolutionary
model into a probabilistic state space model is covered in Sec-
tion 3. Section 4 formally defines the prognostics problem
and describes the algorithmic architecture. Section 5 presents
the demonstration of the approach on real data of fatigue con-
sidering a cross-ply CFRP laminate. Finally, some conclud-
ing remarks are presented in Section 6.

2. DAMAGE PROPAGATION MODELS

Behind the versatility of the Markov chain models and other
stochastic models for fatigue damage evolution, their lack of
physical meaning has been the main source of criticism. In-
stead, the Paris’ law4 (Paris, Gomez, & Anderson, 1961),
which relates the crack growth rate to the range in applied
stress intensity factor, has been widely used for being bet-
ter associated with the physics of the damage growth process.
However in contrast to metals, there is no observation of a sin-
gle crack growth in composites under fatigue loadings but a
densification of multiple interlaminar and intralaminar micro-
cracks. The crack tip stress intensity factor is therefore mean-
ingless, instead, the range in microcracking energy release
rate (∆G) can be incorporated within the “traditional” power
law formulation, leading to the modified Paris’ Law (Nairn &
Hu, 1992):

dρ
dn

= A(∆G)α (1)

In the equation above, ρ is the crack density which increases
with the fatigue cycles n, and A and α are fitting parame-
ters. The energy release rate ∆G represents the energy re-
leased due to the formation of a new crack between two ex-
isting cracks for a specific stress amplitude: ∆G = G|σmax−
G|σmin . This energy is intimately connected with the effective
laminate stiffness, i.e. the stiffness due to the current damage
state, which requires a number of theoretical assumptions to
be made for composite materials and needs the hard to get
information about the geometrical crack pattern per ply, dam-
age extension, etc (Talreja & Singh, 2012). See the next sec-
tion for further information. It follows that analytical expres-
sions for ∆G are quiet complex, hence a closed-form solution
for the modified Paris’ Law is difficult to obtain. To overcome
this drawback, the resulting differential equation is solved by
approximating the derivative by finite differences as:

∆ρ

∆n
=
ρn − ρn−1

1
= A (∆G(ρn−1))

α (2)

hence
ρn = ρn−1 +A (∆G(ρn−1))

α (3)

4 dl
dn = A(∆K)α, where l: crack length, A and α: fitting parameters, and
∆K: stress intensity factor.
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2.1. Energy release rate

Several families of models can be found in the composites
literature addressing the relation between the (macro-scale)
effective stiffness E, and the (micro-scale) matrix-crack den-
sity ρ, which essentially forms the basis for the underlying
physics behind the energy release rate, ∆G. Therefore, there
is a closed connection between micro-scale damage prop-
agation models (i.e., the modified Paris’ Law) and macro-
scale stiffness models. These models are generally classi-
fied as 1) computational methods, 2) semi-analytical meth-
ods and 3) analytical methods. The recent work of Talreja
and Singh (2012) provides a thorough review on this topic.
The computational models are mostly based on the finite ele-
ment method (FEM), the finite difference method (FDM), and
the boundary element method (BEM). In all these models, a
homogenization approach is needed to incorporate the micro-
structure of damage within the formulation of the numerical
element, which requires several assumptions to be adopted.
The main drawback of this kind of models from the prog-
nostic point of view, is that they are very demanding compu-
tationally. Surrogate models may alleviate that problem by
adopting data-driven techniques but are beyond the scope of
this work. The aim of semi-analytical methods relies on im-
proving the numerical predictions of the former by means of
adding experimentally-fitted parameters, or by using numeri-
cal expansion of some of the model coefficients (Aboudi, Lee,
& Herakovich, 1988; Lee & Hong, 1993). However, these ap-
proaches are mostly extensions of the previously developed
ideas (Talreja & Singh, 2012), and also, the computational
cost is still high. The details of these methods are not relevant
to the discussions in this paper and the readers are referred to
the cited articles and in particular to the critical review pro-
vided in Talreja and Singh (2012) and Talreja (2008).

The analytical models are expressed through closed-form re-
lations grounded in the physics of the stress-strain relation-
ships in the presence of damage. Some assumptions about
damage distribution are used such as crack pattern, inter-
action between plies and the presence of local delamina-
tion among others. Depending on the level of assumptions,
the body of literature classifies them into shear-lag models
(1D), variational models (2D), and crack opening displace-
ment models (3D). Among them the variational models are
presumably the most referred ones in the literature, because
of their efficiency in accounting for the complexity of damage
in relation to the assumptions adopted, compared to the rest
of cited analytical models. Additionally, this class of models
allows considering the interaction between different damage
modes, such as matrix cracks, local and global delaminations.
Therefore, they are adopted in this work to study the energy
release rate term in the Paris’ Law, ∆G.

Originally proposed by Hashin (1985), these models estab-
lish the relationship between stresses and strains consider-

ing a two-dimensional damage pattern of matrix cracks, local
delamination, and global delamination (Nairn & Hu, 1992).
The released energy is further obtained by integrating the
stresses and strains fields over the laminate volume. Equa-
tions 4a and 4b provide analytical expressions for the energy
release rate for (a) the formation of a new microcrack between
two cracks separated an average dimensionless distance of l̄,
and (b) the growth of local delamination with a dimension-
less length δ between two existing microcracks separated by
a distance l̄.

∆GTC = C3t90

(
E

(90)
x

E0
∆σ0

)2 (
2χ (l̄/2)− χ

(
l̄
))

(4a)

∆GLD = C3t90

(
E

(90)
x

E0
∆σ0

)2(
χ′(0)− χ′(l̄ − δ)

2

)

(4b)

For the case of global delamination, the model for the energy
release rate is adopted from Nairn and Hu (1992) and (Hosoi,
Takamura, Sato, & Kawada, 2011):

∆GGD = h

(
∆σ0

Eeff

)2 (
E(center)
x − E(edge)

x

)
(5)

See a detailed description of all the terms in these equations
in the Nomenclature section. The functions χ, χ′ and C3 are
defined in the Appendix. Notice that ∆GLD depends on the
magnitude (l̄ − δ), which expresses the separation between
the tips of two growing delaminations starting from the tips of
the matrix micro-cracks. Without lack of generality, thermal
stresses are not considered in Eq. 4 and 5, given that the data
used in this paper were collected in a temperature controlled
environment.

2.2. Competing damage modes

Due to the dependency upon the laminate stacking sequence,
ply properties and experimental conditions for the damage
progression, an energy-based framework is used to establish
thresholds of damage without much previous experimental
evidences. Matrix microcracks are the most plausible dam-
age mode in the first stages of fatigue damage for angle-ply,
quasi-isotropic and cross-ply laminates (R. Jamison, 1985).
Hence, we focus on predicting the saturation of matrix micro-
cracks and the onset of the subsequent damage mode, which
is a priori unknown.

Based on a balance of energies between different plausible
damage modes by Eq. 4 and 5, one can address the question
of whether the next increment in damage will be through an-
other transverse crack or a different damage mode (i.e., local
delamination, global delamination, etc) induced by the exist-
ing microcracks (Nairn & Hu, 1992). Figure 1 illustrates this
concept through a case study for a cross-ply laminate. See the
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Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Out-of-plane-Shear modulus Thickness
Ex [GPa] Ey [GPa] νxy νyz Gxy [GPa] Gyz [GPa] t [mm]
137.5 8.4 0.309 0.5 6.2 3.092 0.132

Table 1. Ply properties used in the calculations.

material parameters used for this exercise in Table 1. Observe
that initially, the energy release for transverse cracks is larger
than the rest of damage modes. Therefore, matrix microc-
racks are expected to accumulate at a faster rate at earlier cy-
cles. Results also show that until the final stage of the process,
the local delamination mode of damage releases more strain
energy than the global delamination mode. Therefore, local
delaminations are expected much earlier than global delami-
nations along the fatigue damage process. These conclusions
agree with the experimental evidence obtained for cross-ply
laminates (R. Jamison, 1985). Observe also that the point
where TC and LD curves intersect defines a critical value for
the matrix-crack density. At this point local delaminations are
more likely to appear than another matrix crack. This point
can be computed from Equation 4b using δ = 0. Another
important reference-point is the intersection of the LD and
GD curves, where local delaminations are supposed to cease
starting a global delamination process. Notice that global de-
lamination is unlikely to appear since the energy release rate
associated to its growth is too small. Therefore, the required
damage for global delamination onset is so severe, that the
specimen usually fail before that point.

Based on this reasoning, prognostic thresholds can be estab-
lish by predicting the position of these reference points as
the fatigue process continues. It is important to remark that
the energy term ∆G depends on model parameters which are
sequentially updated as new data arrives. Hence, the inter-
section points defining the thresholds dynamically shift their
position until a convergence stage. All these aspects are cov-
ered in the next sections.

3. STOCHASTIC EMBEDDING

Let assume a physical system that may be idealized by an I/O
model as:

xn = g(xn−1,un,θn) + vn (6a)
yn = h(xn) + wn (6b)

where g and h are the state equation and observation equa-
tion, respectively; xn ∈ Rnx is the state vector, un ∈ Rnu
is the input vector and θ ∈ Rnθ is the model parameter vec-
tor. vn and wn are the process noise vector and measure-
ment noise vector, which can be defined5 as zero mean Gaus-

5A rational way to define a probability model for the error term could be
to select it such that it produces the most uncertainty (largest Shannon en-
tropy). The maximum-entropy PDF for an unbounded variable given its
mean and variance is a Gaussian distribution.
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Figure 1. Energy release rate term as a function of the ma-
trix crack density. TC, LD and GD are referring to transverse
cracks, local delamination and global delamination, respec-
tively. The two markers correspond to the points where a
change in the dominant fracture mode is expected.

sians, N (0, σvn) and N (0, σwn) respectively.

The model g is dependent upon a set θ of model parame-
ters that can be updated to sequentially improve the model
predictability as more experimental data are available. In
this context, standard Sequential Monte Carlo (SMC) meth-
ods (Doucet, De Freitas, & Gordon, 2001) fail and it is neces-
sary to rely on more sophisticated algorithms. Although this
problem is still open in the specific literature (Liu & West,
2001; Storvik, 2002; Kantas, Doucet, Singh, & Maciejowski,
2009; Patwardhan, Narasimhan, Jagadeesan, Gopaluni, &
Shah, 2012), here we choose the “artificial dynamics” ap-
proach (Liu & West, 2001) due to its pragmatism and sim-
plicity, by which model parameters performs a random walk
by introducing a small (and decreasing with n) artificial noise
term, ξn, as:

θn = θn−1 + ξn (7)

To sequentially reduce the variance of this artificial error se-
quence ξn, there are many alternative methods (Kantas et al.,
2009), however the recent method proposed by (M. Daigle &
Goebel, 2010; M. J. Daigle & Goebel, 2013) is chosen by its
efficiency. In our problem, the damage state variable is de-
fined as: xn = ρn, where ρn is the matrix crack density at

4
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cycle n, i.e, ρn = 1/2ln, being ln the half-separation between
cracks at cycle n, expressed in millimeters. Hence Eq. 6 can
be rewritten as:

ρn = g(ρn−1,un,θn) + vn (8a)
ρ̂n = ρn + wn (8b)

where g(ρn−1,un,θn) is the modified Paris’ law. Given that
for a particular cycle n the error term vn is a Gaussian PDF,
the probability model for the state transition equation (Eq. 8a)
will be also a Gaussian:

p(ρn|ρn−1,un,θn) = N (g(ρn−1,un,θn), σvn) (9a)

Similarly, the expression for measurement equation (8b) and
the artificial evolution of parameters are obtained as follows:

p(ρ̂n|ρn) = N (ρn, σwn) (10a)
p(θn|θn−1) = N (θn−1, ξn) (10b)

Finally, to select the set of most sensitive model parameters θ
among the set of parameters that defines the modified Paris’
law, a global sensitivity analysis was done following the
methodology proposed by (Saltelli et al., 2008). By means
of this study, the ply properties {Ex, Ey, t} together with the
Paris’ law fitting parameters {A,α} emerged as the key pa-
rameters in terms of model output uncertainty. Then the set
of updatable parameters was defined by adding the standard
deviation of the model error and measurement error to the last
choice, i.e., θ = {A,α,Ex, Ey, t, σv, σw}. The rest mechan-
ical and geometrical parameters act as static non-updatable
input parameters, i.e., u = {σ0, B,Gxy, Gyz, νxy, νyz}.

4. DAMAGE PROGNOSTICS

For predicting remaining useful life (RUL) of a compos-
ite structure, we are interested in predicting the time when
the damage grows beyond a predefined acceptable thresh-
old (Saxena, Celaya, Saha, Saha, & Goebel, 2010). The
time at which it occurs is known as the expected end of
life (EOL). Using the most current knowledge of the system
state at cycle n estimated by particle filters (Eq. 11), the goal
now is to estimate the EOLn, as probability: p(EOLn|yn).
The particle filter computes the joint state-parameter distribu-
tion p(ρn,θn|yn,un), which can be approximated by a set of
N discrete weighted particles, {

(
ρin,θ

i
n

)
, ωin}Ni=1, as

p(ρn,θn|yn) ≈
N∑

i=1

ωinδ(ρn − ρin)δ(θn − θin) (11)

In our problem, we consider a sequence of measurements,
yn = ρ̂0:n, where ρ̂0:n = {ρ̂0, ρ̂1, . . . , ρ̂n}. Hence, Eq. 11
can be rewritten as:

p(ρn,θn|ρ̂0:n) ≈
N∑

i=1

ωinδ(ρn − ρin)δ(θn − θin) (12)

For simpler notation the conditioning on the model input un
is dropped from Eq. 11. Applying Bayes’ Theorem, the im-
portance weights ωin can be updated as:

ωin ∝ p(ρ̂n|ρn)ωin−1 (13)

Here we assume that the system model is Markovian of order
one and that the observations are conditionally independents
of the state. To this end, we use the sampling importance
resampling (SIR) particle filter, using systematic resampling
(M. Daigle & Goebel, 2010).

4.1. Prognostics threshold

The damage space itself may be defined by means of a set
of thresholds C = {C1, . . . , Cc} on more than one critical
parameters. In such cases, these thresholds can be com-
bined into a threshold function TEOL = TEOL(ρ,θ), that
maps a given point in the joint state-parameter space to the
Boolean domain {0, 1} (M. Daigle & Goebel, 2011). For
instance, when a given particle i starting from cycle n per-
forms a random walk and hits any of the thresholds in C,
then T iEOL = 1, otherwise T iEOL = 0. The time n′ > n at
which that happens defines the EOLn for that particle. Math-
ematically:

EOLin = inf{n′ ∈ N : n′ > n∧T iEOL(xin′ ,θin′) = 1} (14)

Using the updated weights at the starting time n, a probabilis-
tic estimation of the EOL is given as:

p(EOLn|ρ̂0:n) ≈
N∑

i=1

ωinδ(EOLn − EOLin) (15)

Once EOLn is estimated, the remaining useful life can be
simply obtained as RULn = EOLn − n. An algorithmic
description of the prognostic procedure is provided as Algo-
rithm 1.

Algorithm 1 RUL prediction

1: Requires: {
(
ρin,θ

i
n

)
, ωin}Ni=1, C = {C1, . . . , Cc}

2: Output: {EOLin, ωin}Ni=1
3: for i = 1→ N do
4: Calculate: T iEOL

(
ρin,θ

i
n

)

5: while T iEOL = 0 do
6: Simulate: θin+1 ∼ p(·|θ

i
n); ρin+1 ∼ p(.|ρin,θ

i
n+1)

7: n← n+ 1
8:

(
ρin,θ

i
n

)
←
(
ρin+1,θ

i
n+1

)

9: end while
10: EOLin ← n
11: RULin = EOLin − n
12: end for

5
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5. RESULTS

The proposed framework is applied to fatigue cycling data
for cross-ply graphite-epoxy laminates. Torayca T700G uni-
directional carbon-prepreg material was used for 15.24 [cm] x
25.4 [cm] coupons with dogbone geometry. See the laminate
ply properties in Table 1.

The tests, as reported in (Saxena et al., 2011), were conducted
under load-controlled tension-tension fatigue loading with a
frequency of f = 5 [Hz], a maximum stress of 80% of their
ultimate stress, and a stress ratio R = 0.14. Lamb wave sig-
nals were periodically recorded using a PZT sensor network
to estimate internal micro-crack density. A mapping between
PZT raw data and micro-crack density was developed follow-
ing the methodology proposed in Larrosa and Chang (2012).

Results for sequential damage state estimation and prognos-
tics are presented in Figure 2. Based on the reasoning pro-
vided in Section 2.1, we initially expect for this laminate that
the matrix cracks should saturate around the value of 0.427
[mm]−1 (see Figure 1). Observe in Figure 2a that the thresh-
old of matrix cracks density converges from its initial value
to 0.419 [mm]−1, as model parameters θ are sequentially up-
dated with new data.

Figures 2b shows the filtered-estimation of matrix micro-
cracks together with the sequence of collected data. Every
time new data arrive, a damage magnitude is estimated and
the updated model is further used to propagate the damage
into the future to compute the RUL, calculated as: RULn =
EOLn − n, using the methodology described in Section 4.
These predictions are plotted against time in Figure 2c. Ob-
serve in Figure 2c that the RUL prediction is appreciably in-
accurate within the first stage of fatigue before the threshold
reaches its convergence value. In view of Figure 2a, this stage
corresponds to the interval of cycles required for data to train
model parameters. From this period, the prediction precision
clearly improves with time. We use the two shaded cones of
accuracy at 10% and 20% of true RUL, denoted as RUL∗ to
help evaluating the prediction accuracy and precision. Notice
also in Figure 2a that accuracy seems to depart from true RUL
at the final stage, which indicates that the model and its vari-
ance structure do not fully capture the damage dynamics to-
wards the end. Such behavior have been previously reported
in (Saxena et al., 2010) and may be related with the asymp-
totic behavior of the micro-crack evolution, which requires
more efficient algorithms for prognostics in such cases.

6. CONCLUSIONS

A model-based prognostics framework to predict the fatigue
damage evolution in composites is proposed. We consider
a stochastically embedded modified Paris’ law, as a phe-
nomenological model of damage evolution due to the benefits
of the physical meaning of ∆G for estimating the RUL. We

demonstrate the validity of this framework on data collected
from a tension-tension fatigue experiment using CFRP cross-
ply laminate. The following general concluding remarks are
extracted:

• By means of balance of energies between different dam-
age modes computed by ∆G, the more plausible damage
mode can be elucidate together with the threshold for this
mode.

• Due to the model parameterization, the threshold of dam-
age dynamically changes as new data arrives. Hence this
approach requires an initial period of cycles before the
predictions reach an acceptable accuracy.

• More research effort is need to achieve more efficient
prognostic algorithms to improve the accuracy at the final
stage of the process, where most of the damage modes in
composites typically accumulate in an asymptotic man-
ner.

APPENDIX

The function χ(l̄) in the equations 4a and 4b accounts the
change in the effective x-direction modulus caused by the for-
mation of a new micro-crack midway between two existing
micro-cracks. Expressions for χ(l̄) and its first derivate are
given by:

χ(l̄) = 2α1α2(α2
1 + α2

2)
cosh(2α1 l̄)− cos(2α2 l̄)

α2 sinh(2α1 l̄)− sin(2α2 l̄)

χ′(l̄) = 4α1α2(α2
1 + α2

2)2 sinh(2α1 l̄) sin(2α2 l̄)

α2 sinh(2α1 l̄) + α1 sin(2α2 l̄)
(16a)

χ(l̄) = α1α2(α2
1 − α2

2)
tanh(α2 l̄) tanh(α1 l̄)

α2 tanh(α2 l̄)− α1 tanh(α1 l̄)

χ′(l̄) = α2
1α

2
2(α2

1 − α2
2)

tanh(α2 l̄)

cosh2(α1 l̄)
− tanh(α1 l̄)

cosh2(α2 l̄)(
α2 tanh(α2 l̄)− α1 tanh(α1 l̄)

)2
(17a)

where α1 =

√
−p
2 +

√
p2

4 − q and α2 =

√
−p
2 −

√
p2

4 − q.

The Eq. 16a applies for the case of 4q
p2 > 1. Other-

wise, Eq. 17a should be consider. p and q are relations
of the ply properties and the stacking sequence defined by
p = (C2 − C4)/C3, q = C1/C3. The terms Ci, i : {1, . . . , 4},
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Figure 2. (a): Trace of the threshold value for crack density saturation over cycles. (b): Sequential estate estimation of micro-
crack density by the particle filter. At each cycle n, the estimation is calculated using the data available up to that cycle. (c):
Remaining useful life (RUL) prediction.

are known functions of the laminate properties defined as:

C1 =
1

Ex
+

1

λEy
(18a)

C2 =

(
λ+

2

3

)
νyz
Ey
− λνxy

3Ex
(18b)

C3 = (1 + λ)
(
3λ2 + 12λ+ 8

) 1

60Ey
(18c)

C4 =
1

3

(
1

Gyz
+

λ

Gxy

)
(18d)

The reader is referred to the Nomenclature section for infor-
mation of laminate constants involved in the last equations.
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NOMENCLATURE

h Laminate half-thickness
tS [S] sublaminate thickness
t90 [90n] sublaminate half-thickness

λ Ply thickness ratio λ = t0/t90
l̄ average dimensionless half spacing of cracks, l̄ = l

t90
B Laminate half-width
δ Average local delamination length, δ = d

t90
E90
x Undamaged x-direction [90n] sublaminate modulus

E0 Undamaged laminate Young’s modulus
Eeff Damaged x-direction laminate Young’s modulus
E

(center)
x Damaged Young modulus of sublaminate

from the center side.
E

(edge)
x Damaged Young modulus of sublaminate

from the edge side.
σ0 Applied stress
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