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Abstract

This paper presents an experimental study of damage detection and quantification in riveted

lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors

are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical

loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue

crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a

proper time window in which the received signal contains the damage information. It is found

that the fatigue crack lengths are correlated with three main features of the signal,

i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a

single feature cannot be used to quantify the damage among different specimens since a

considerable variability was observed in the response from different specimens. A

multi-feature integration method based on a second-order multivariate regression analysis is

proposed for the prediction of fatigue crack lengths using sensor measurements. The model

parameters are obtained using training datasets from five specimens. The effectiveness of the

proposed methodology is demonstrated using several lap joint specimens from different

manufactures and under different loading conditions.

(Some figures may appear in colour only in the online journal)

1. Introduction

Guided ultrasonic waves have shown great potential in

non-destructive evaluations (NDE) and structural health

monitoring (SHM) systems. Use of guided ultrasonic waves

allows for the inspection of a large area in a short time

scale for both isotropic and anisotropic materials [1, 2].

Commercially available low-cost sensors enable the use of

guided Lamb wave inspection technique in many disciplines

for health monitoring. Lamb waves are a form of elastic

perturbation, which can be used to interrogate the integrity

of a target system [3]. Their dispersion characteristics in a

plate have been studied by the Rayleigh–Lamb equation [4, 5].

Lamb wave propagation and speed are sensitive to plate

thickness and are expected to change due to the existence

of structural defects [6–8]. A large number of publica-

tions have reported on damage identification using Lamb

waves [2, 9–16]. Techniques for damage identification using

Lamb waves can be classified into two categories [15]:

the pulse–echo method and the pitch–catch method. In the

pulse–echo method, a narrow bandwidth pulse excites the

system and a sensor is used to sense echoes of the pulse
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generated by material discontinuities. In the pitch–catch

method, a pulse signal is sent across the specimen to

interrogate the integrity of the specimen. At the same time, a

sensor is placed at the other end of the specimen to receive the

signal. In both methods, damage-sensitive features might be

obtained from the measurement data using signal processing

algorithms. Characteristics such as the attenuation and phase

shift can be used to extract the damage information [15] of the

system being inspected.

In recent years, the generation of Lamb waves with

piezoelectric (PZT) ceramic wafers has drawn intensive

attention from the SHM community [17–23]. PZT wafers

are inexpensive, non-intrusive, and can be permanently

attached to a structure. Many studies have been reported

on practical applications of PZT wafers to specific target

systems, for example, plates [14, 17, 24–26] and beam

structures [1, 27]. The Lamb wave propagation results in

splitting of the wave energy into several modes, which

are analyzed to look for internal features of the composite

material. The characteristics of three transmission modes

(S0, A0 and A1 modes) propagating in adhesively bonded

lap joints were investigated in [28], where finite element

analysis was used to calculate transmission coefficients for

the three modes. The study provided a basis for mode

selection for the Lamb wave NDE of the bond region in

a lap joint [28]. An analytical and experimental study of

the PZT damage identification performance was reported

in [17], where theoretical developments were studied in

order to clarify the mechanism through which PZT sensors

can be manipulated to excite ideal modes, and experimental

damage detection was performed in aircraft panels adjacent

to rivet heads. The pulse–echo method was used to detect

a crack (12.7 mm) that was artificially inserted into the

panel. Detection of the crack in a lap joint using raw

pulse–echo measurement data might be difficult because

echoes from the rivet and from the crack are superimposed.

This difficulty can be reduced by subtracting a baseline

signal recorded on the undamaged structure from the signal

recorded on the damage structure [17]. Signal processing

techniques, such as Hilbert transforms and time-frequency

analysis have been proposed to interpret the signal collected

from PZT sensors in riveted aluminum strap joints [29].

Grondel et al [29] also used an acoustic emission system to

make a comparison with the results obtained from Lamb wave

analysis. The result showed that the Lamb wave technique has

the capability of monitoring crack initiation and locating the

crack damage. Numerical simulations for damage detection

in 2D and 3D lap joints using the Lamb wave method

is proposed in [30], where propagation of the S0 mode

and its interaction with discontinuities were studied using

the finite difference method and the finite element method.

In [31] a support vector machines (SVM)-based classifier

was used to detect the crack damage on single lap bolted

joints caused by torque loss. 100% torque case, 50% torque

case and 0% torque case were studied. The result indicated

that the method can detect completely loose bolts but certain

changes in torque can introduce non-unique solutions under

certain conditions. In [32] Lindgren et al reported the

effect of varying the boundary conditions in a multi-layered

metallic structure (consisting of 2–4 total layers) on the

propagation of ultrasonic plate waves. The variation of the

boundary conditions was simulated by applying various

loading on the surface of each layer. The experimental and

theoretical work indicated the interface condition between

the layers affects the ultrasonic wave propagation. Therefore,

changes of the interface condition must be considered when

performing damage detection using ultrasonic plate waves for

multi-layered structures [32]. In [33] a tomography algorithm

was proposed to detect and locate the fatigue crack in an

aluminum plate. Amplitude ratio of the S0 Lamb wave mode

and signal difference coefficient were used to size the crack.

The results showed that both an amplitude ratio and the

signal difference coefficient are sensitive to a fatigue crack

emanating from 12.7 mm diameter fastener hole [33].

Despite several advancements reported on this topic,

there are still several challenges in Lamb wave-based damage

detection and quantification. Most studies have so far focused

on the simple geometry of plate structures with a hole or a

cut to represent the damage. Realistic fatigue cracks initiated

from structural components with complex local geometries

are rarely investigated. In addition, the subtle variability

between different specimens may cause uncertainties for

damage detection. For example, different manufacturing

and environmental conditions will lead to variability of

components/structures even when they are designed to be

identical. The uncertainties must be carefully investigated for

realistic applications. The study reported here investigates

damage detection for naturally initiated fatigue cracks in

fuselage lap joint specimens instead of using artificially

inserted crack-like defects. Multiple specimens from different

manufactures and under different loadings are tested to

investigate the variability effect on damage detection. A

multi-feature integration method is proposed to quantify the

crack size with measurement data.

The paper is organized as follows. First, the experiment

design is introduced briefly. Undamaged specimens are used

to understand and characterize the Lamb wave generation, and

verify the group velocity dispersion curve. Next, fatigue tests

are performed on aircraft lap joint specimens. PZT sensors are

installed on the specimens, and are used to collect data for the

riveted regions. Following this, measured data are processed

using band-pass filtering to reduce the effect of measurement

noise for damage feature extraction. Three damage features

and a multivariate regression model are proposed to correlate

the damage features to the actual crack size. Experimental

testing data from five specimens are used to estimate model

parameters and two additional specimens are used to validate

the effectiveness of the model. Finally, conclusions are drawn

based on the current investigation.

2. Experiment design

The underlying mechanism for Lamb wave detection is to

monitor the changes of the characteristics of the transmit-

ted/deflected waves. The changes of the characteristic are

due to discontinuities introduced by material defects such
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Figure 1. A tone burst signal of 3.5 cycles and 200 kHz central
frequency. This signal is used as the excitation signal in this study.

as cracks and voids in the path of wave propagation. The

discontinuities can disperse and reflect energy of the original

Lamb wave and cause changes in wave characteristics. The

changes, in principle, can be detected and used to locate

the damage and quantify the severity [34]. Existing literature

shows that at lower frequencies, fewer Lamb modes are ex-

cited so the response signal is more distinguishable [2, 3, 17].

In addition, the detection of through thickness cracks is much

better with the S0 mode than with the A0 mode [18]. The

tuning of desired modes at certain frequencies can be achieved

based on the fact that wavelengths of Lamb wave modes vary

with frequency. Giurgiutiu reported that 300 kHz is a proper

frequency for the S0 mode when using a 7 mm diameter PZT

sensor attached to a 1 mm-thick aluminum plate [18]. The

velocity of the Lamb wave is a function of the product of

frequency f and plate thickness d (fd, expressed in MHz mm).

Ideally, the S0 mode is sensitive to small damage and is best

exploited at very low value of fd [2, 17, 28–30]. Based on the

previous experience, the product of the frequency and plate

thickness is chosen to be 0.32 MHz mm. In the vicinity of

0.32 MHz mm, the S0 wave is highly non-dispersive with

a group velocity that is almost constant and the A0 wave

is highly dispersive. The specimens employed in this study

have a thickness of 1.6 mm and the central frequency is set

to be 200 kHz. A Hamming-windowed sinusoidal tone burst

with 3.5 cycles is used as the excitation signal, as shown in

figure 1.

2.1. Specimens: material and geometry

The riveted panels are made of 1.6 mm thickness aircraft

grade 2024-T3 aluminum sheets and were originally provided

by the National Research Council (NRC) Canada [35]. For

repeatability, additional coupons were manufactured at NASA

Dryden Flight Research Center. All the specimens have the

same geometry and were made of the same material. The

specimens are three rivet rows by five rivets wide lap joints,

consisting of two aluminum panels. The top panel has a

countersunk hole and the bottom panel has a straight hole,

as shown in figure 3. The detailed geometry of the specimen

is shown in figure 2. The yield strength of the material is

360 MPa, the ultimate strength is 490 MPa, and the Young’s

modulus is 72 000 MPa. Results from existing data indicate

Figure 2. Geometry of the lap joint specimen.
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Figure 3. Detailed local geometry of the bolt connection.

that the countersunk hole has a larger stress concentration and

the first row of the rivet at the top panel is the most probable

location (hot spot) to develop fatigue damage.

2.2. Experimental setup

The overall experimental setup of the structural health

monitoring system for riveted lap joint consists of three

major parts: sensing and data acquisition system, fatigue crack

optical measurement system, and fatigue cycling system. A

schematic of the overall procedure is shown in figure 4.

Sensing and data acquisition system generates an excitation

signal and senses the wave propagating though the specimen

including damaged regions. The excitation signal was a

3.5 cycle tone burst generated by a function generator. A

multi-channel digital oscilloscope is used to record both

the received signal and the excitation signal. PZT (SM412)

sensors from Steaming company is used as the actuator to

excite guided Lamb waves, as well as the sensor to acquire

guided wave signal. The chosen PZT has a dimension of 7 mm

diameter × 0.2 mm thickness, and the resonant frequency is

300 kHz ± 10 kHz. Regions vulnerable to fatigue damage

are monitored by a traveling optical microscope with a CCD

camera during the fatigue testing process. Fatigue testing

is conducted using a hydraulic MTS machine with 5 Hz

cycling frequency and at room temperature. Both constant

fatigue loading and variable fatigue loading cases are studied.

Figures 5(a) and (b) presents the constant and variable

amplitude loading spectra used in this study, respectively. The

overall experimental setup is shown in figure 6.

2.3. Group velocity test

The group velocity is estimated to select an appropriate time

window during which signal properties may change due to any

discontinuity in the fatigue-vulnerable region of the specimen.

The group velocity of the generated Lamb wave at a particular

frequency can be verified in an undamaged specimen by

measuring the time-of-flight (TOF) between two sensors with

known separation. As shown in figure 7, the black line

represents the guided Lamb wave sent by the actuator at one

location and the red line represents the signal received by the

receiver at another location. The calculated group velocity of

the wave was estimated at 4755.4 m s−1.

2.4. Sensor network design

The sensor network design is critical for damage detection

using the Lamb wave. In the pulse–echo configuration,

the actuator and receiver are placed on the same side of

the potential damage region under interrogation. In the

pitch–catch configuration, the actuator and the receiver are

placed across the potential damage region. One limitation

for the pulse–echo configuration is that it may not be

sensitive to damage at a remote location. Comparing with the

pitch–catch configuration, the signal in pulse–echo method

travels a relatively longer distance and may lose substantial

information for damage feature extraction [36]. The first

Figure 4. Systematic flowchart for the health monitoring system for riveted lap joints.
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Figure 5. Fatigue loading spectra for riveted lap joints. (a) Constant loading spectra and (b) variable loading spectra.

Figure 6. Experimental setup for the riveted lap joint fatigue testing and data acquisition.

Figure 7. Group velocity test using an actuator (signal in black)
and a receiver (signal in red) at known locations.

and third rows are possible locations for crack initiation

according to the principle of design. According to the existing

experimental data from NRC Canada and our in-house testing,

the crack usually initiates at the countersunk hole in the first

row. The crack will connect these holes and finally break the

specimen. As a result, the countersunk hole in the first row is

marked as the target area in this study (see figure 8). It can

be seen from the illustration that the target region is close

to the boundary where two aluminum panels are connected.

For the pulse–echo configuration, the echo from the boundary

and the echo from the possible discontinuity introduced by the

damage are difficult to be separated due to superposition of the

two echoes. Considering that, the pitch–catch configuration is

employed in this study. The sensor placement layout is shown

in figure 8, where red dots represent actuators and the green

dots represent receivers near the target region. For each row

of the rivet hole lines (five lines in total), two PZT sensors are

placed on each side of the line.

2.5. Time window calculation

With the knowledge of group velocity and physical distance

between the target region and the actuator, an appropriate time

window is chosen to extract signal features from measured

time series. The calculation of the time window is based on

equations (1) and (2). T1 is the starting point chosen from

the actuator signal and it represents the beginning of a wave

sent from an actuator. T2 is the time duration for the Lamb

wave to travel from an actuator to the target region (see

figure 9). In equation (2), Tstart represents the time point at

which the first Lamb wave package arrives at the target area,

and Tend represents the time point at which the Lamb wave

passes through the target region. The time duration between

Tstart and Tend is the desired time window during which

one Lamb wave package travels through the target region.
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Figure 8. PZT sensor layout for damage detection in riveted lap joints.

Figure 9. Schematic illustration for the time window calculation.

Characteristics of the measurement data in this time window

are expected to change due to any discontinuity introduced by

fatigue damage.

Tstart = T1 + T2. (1)

Tend = Tstart + 1/200 000 × 3.5. (2)

3. Experimental results and the signal processing
technique

Seven specimens are used for testing. Fatigue cracks

are naturally generated during fatigue testing. Detailed

information on fatigue loading spectra and the location of

resulting cracks is presented in table 1. Specimens T1–T6

were manufactured at NASA Dryden Flight Research Center

and N1 is the specimen manufactured at NRC Canada.

Figure 10 shows a plot of the number of load cycles

versus the crack length for all the specimens. The crack

length measurement obtained using a traveling microscope is

considered as the ground truth size of the crack. A significant

variability among specimens is observed from figure 10 and

table 1.

Table 1. Riveted lap joints fatigue testing summary.

Specimen
no.

Fatigue life
(cycles)

Crack initiation
location

Loading
spectrum

T1 70 766 Sensor no. 4 Constant
T2 72 127 Sensor no. 8 Constant
T3 67 401 Sensor no. 6 Constant
T4 100 774 Sensor no. 2 Block loading
T5 75 045 Sensor no. 9 Constant
T6 49 448 Sensor no. 4 Constant
N1 55 031 Sensor no. 8 Constant

At each of the measurement points shown in figure 10,

the fatigue testing experiment was paused for data acquisition.

Lamb waves were generated by the actuator and the

transmitted waves are collected by the sensors. The Lamb

wave data acquisition process is repeated twice to eliminate

the operation error during each of the pauses. At the mean

time, the microscopic imaging is carried out to record the

crack size. Fatigue testing is resumed after data acquisition.

For demonstration purposes, the raw measurement data for

one of the recorded points plotted in figure 10 (specimen T1

indicated by the arrow) are presented in figure 11(a). It can

be observed that the two repeated measurements exhibit some

6
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Figure 10. Fatigue testing data.

Figure 11. Measurements taken from the same transducer. (a) Raw
signals and (b) de-noised signals.

differences due to measurement noise, which can be caused by

various sources, such as environmental conditions, specimen

boundary conditions, vibration introduced noise, sensitivity of

the electronic system and electric fluctuations, etc. In order to

extract useful Lamb wave data from the raw data, a band-pass

filter is designed and used for data de-noising. The pass-band

Figure 12. Raw signal data from sensor at different loading cycles
for specimen T3.

Figure 13. Crack size measurement at different loading cycles for
specimen T3.

corner frequency is [100 200] kHz and the stop-band corner

frequency is [250 450] kHz. As shown in figure 11(b), the two

sets of de-noised data acquired by the same sensor are almost

identical (the correlation coefficient between the two sets of

data is 0.9997).

In fatigue testing, the baseline signals are collected prior

to any fatigue damage in the specimens. The baseline signal

is used as a reference for comparison with damage signals

for damage feature extraction. Fatigue crack initiation and

growth are tracked using microscopic imaging. The crack

length measurement results (obtained by image registration

technique with microscopic imaging) and the extracted

damage features are used to develop a damage model

that correlates the crack length and the measurement data.

Measurement data for specimen T3 are selected here for

demonstration. Figure 12 presents the raw measurement data

from the PZT sensors at different crack lengths. Figure 13

presents the fatigue testing data points. It is difficult to

visually identify changes introduced by the initiation and

propagation of cracks from the raw data (figure 12). The

application of band-pass filter can be helpful to reduce the

effect of measurement noise and uncertainty. Figure 14 shows

the measurement data after filtering. The quality of the

measurement data is significantly improved.
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Figure 14. Filtered signal data from the sensor at different loading
cycles for specimen T3.

Figure 15. Filtered signal data clipped to the calculated time
window (specimen T3).

As mentioned before, the desired time window is

calculated based on equations (1) and (2). Figure 15 shows

the first Lamb wave package arriving at the target area.

In addition to the PZT data acquisition, crack length

information is also recorded using microscopic imaging. A

digital image processing software is employed to measure the

crack length using the image registration technique from the

recorded images. A representative example of observed crack

through the microscope at 66 510 loading cycles is shown in

figure 16.

Direct use of the measured signal for estimating crack

size is difficult and data reduction is generally required to

extract the damage feature. Three possible damage features

from the measurement data to characterize the damage are

investigated, namely, the correlation coefficient, normalized

Figure 16. Crack observed from the microscope at 66 510 loading
cycles (specimen T3).

amplitude, and phase change between the damage signal

and the baseline signal. Mechanisms for choosing these

three features are illustrated in figure 17. The correlation

coefficient depends only on signal shape changes [37].

When Lamb waves pass through a region with cracks or

discontinuities, the transmitted waves are modified because

of forward scattering [34, 23, 37, 38]. The signal from the

actuator–sensor path that has discontinuities is affected by

the presence of the damage, and the correlation coefficient

between the baseline signal and the signal from the damaged

specimen changes. As shown in figure 17(a), the signal

from actuator–sensor paths without damage would remain

intact [38]. As the damage size increases, the correlation

coefficient is expected to be reduced from that of the

undamaged specimen [38], and dissimilar intensities of

signal changes can be an indicator of the damage area.

Another feature used here is the amplitude change. The wave

amplitude reflects the energy carried by the signal. Due to

reflection and scattering at the crack location, the energy

of the received signal reduces as the crack size increases

(figure 17(b)). Thus, amplitude change can serve as a potential

feature for crack size increment. An additional feature is the

phase change in the signal due to the fact that the traveling

distance of the wave is different for different crack sizes

(figure 17(c)). The TOF of the received signal for different

crack sizes increases with the crack size. Based on the

mechanisms discussed above, the three features are expected

to show a monotonic trend with respect to the crack size. It

should be noted that complex wave propagation and boundary

reflections also contaminate the received signal. Uncertainties

in the local damage geometry also affect the received signal.

Figure 17. Illustration of changes for Lamb waves passing through a rivet hole with cracks. (a) Signal time series, (b) signal maximum
amplitudes, and (c) signal phase.
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Table 2. Experimental results (specimen T3) of crack size
measurement, and the change in the three characteristic variables
(correlation coefficient, amplitude, and phase change) introduced by
the change of crack size.

Number of
load cycles

Crack length
(mm)

Correlation
coefficient

Amplitude
change (V)

Phase
change (ms)

0 0 1 0.0180 0
57 038 2.57 0.9527 0.0167 0.25
60 035 4.02 0.8401 0.0161 0.5
62 017 4.72 0.7511 0.0142 0.65
64 019 5.49 0.7139 0.0127 0.7
65 029 5.90 0.6013 0.0118 0.85
66 012 6.52 0.3884 0.0105 1.05
66 510 6.93 0.3259 0.0098 1.15

The discussion on feature extraction above only serves as a

general guideline for feature selection and extra care in using

the three features must be taken for different applications.

Table 2 presents experimental results of the crack size

versus the number of load cycles (columns 1 and 2). The

measurement data labeled as zero cycle is used as the

baseline signal, i.e., data for the plate without fatigue damage.

Results for the three features: the correlation coefficient,

the (peak) normalized amplitude, and the phase change

are shown in table 2, columns 3–5. As indicated by the

results, the correlation coefficient decreases as the crack

length increases, the normalized amplitude also decreases

with the increasing crack length, and the phase change goes

up as the crack length increases. Observed trends agree with

the previously discussed mechanisms for the three features,

indicating that the proposed features are appropriate for crack

size quantification.

4. Feature integration

The experimental procedure and signal processing technique

described above are carried out for all seven specimens.

The crack length versus the three features are presented in

figures 18, 19 and 20. Taking specimen T1 in figure 18

as an example, cycle numbers are labeled next to the

data points to show how the trend varies as the number

of fatigue loading cycle increases. It is observed that the

general monotonic trends are valid for all specimens under

different loading conditions, which further confirms the

effectiveness of the three features. It is also observed that

each specimen has a unique trend that does not overlap

with trends of other specimens. Due to manufacturing

and loading variability, each specimen may have unique

crack orientation, sensor variability, boundary conditions,

and sensor installation variability. The received signal

and extracted features from each of the specimens will

finally encode those uncertainties. This observation clearly

indicates that a single feature cannot be used to predict the

crack size for other specimens due to those uncertainties.

Bayesian updating can be used to reduce the uncertainties

[39, 40].

It is possible that the variability or uncertainty associated

with each of the specimens can be reduced by combining

Figure 18. Crack length versus correlation coefficient for all seven
riveted lap joint specimens.

Figure 19. Crack length versus amplitude curves for all seven
riveted lap joint specimens.

Figure 20. Crack length versus phase change curves for all seven
riveted lap joint specimens.

different features together. A multi-feature integration method

based on a second-order multivariate model is proposed. The

model is given in equation (3).

a = A + α1x + α2y + α3z + α4xy + α5xz + α6yz

+ α7x2 + α8y2 + α9z2 (3)

9
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Figure 21. Experimental data (training data and validation data,
discrete points) and the model predictions (solid line).

Table 3. Model parameter estimation results.

Coefficient Value

A 7.91
α1 −2.76
α1 −2.67
α1 −9.41
α1 0.52
α1 −5.18
α1 10.02
α1 6.21
α1 0.67
α1 3.49

where a is the crack length, x is the correlation coefficient, y is

the phase change, and z is the amplitude change. Regression

analysis with experimental data is made to estimate the model

parameters and validate the effectiveness of the model. In

this study, constant amplitude fatigue testing is performed

using NASA specimens (T1, T2, T3, T5 and T6) and the

results are used for model parameter estimation. Experimental

data from the NRC specimen under constant loading and the

specimen T4 under variable loading are used as validation

data since the two exhibit uncertainties due to loading

and manufacturing. The least squares method is used for

model parameter estimation and the results are presented

in table 3.

Figure 21 presents experimental data and model

predictions. It is observed that the proposed multi-feature

model agrees with the general trend for all specimens. To

further validate the prediction and fitting performance, median

and 95% bound predictions are shown in figure 22(a), where

the x-axis is the measured crack size and the y-axis is the

predicted crack size. In figure 22(a), all training data are

shown as circles and validation data are shown as solid squares

and triangles. It can be seen that the median prediction of the

model generally characterizes the crack length and most of the

data points are within the 95% prediction bounds.

To further investigate the performance improvement of

using the proposed multi-feature integration predictive model,

comparisons are made between the three single features

and multi-feature integration. The single feature models are

obtained by removing unrelated feature variables and their

coefficients from equation (3). For example, the single feature

model incorporating only the correlation coefficient is a(x) =

A + α1x + α7x2 (by removing terms involving y and z

from equation (3)). The same training data are used to

obtain model parameters using the resulting single feature

model. The NRC and variable loading specimen data are

still used for validations. For demonstration purposes, the

standard deviation of the prediction error for the validation

specimen data is used as a performance metric. A smaller

value of the standard deviation of the prediction error indicates

better predictive performance. Similar to figure 22(a), median

95% bound predictions are calculated. The results of the

three single feature models are presented in figures 22(b)–(d)

for correlation coefficient, phase change, and amplitude

change, respectively. Comparing with single feature models,

95% bound predictions using the multi-feature integration

model has the most compact scattering width. The fitting

performance in terms of R-square and standard error is shown

in the bottom-right corner of each figure. The multi-feature

integration model yields the largest R-square (0.96) and the

smallest standard error (0.51), indicating the best fitting

performance among all models. The standard deviations of

prediction error for the validation specimen data are shown

in figure 23, where the multi-feature integration model yields

the smallest value of 0.42. The standard deviations of the

prediction error for models using single feature correlation

coefficient, phase change, and amplitude change are 1.18,

1.53, 0.63, respectively.

5. Conclusions

The study presents an experimental and modeling study using

Lamb waves to predict crack size in riveted lap joints. Seven

specimens from different manufacturers and under different

loading conditions are used to obtain measurement data using

in situ fatigue testing and microscopic imaging techniques.

Experimental data are analyzed and three damage features

are proposed for coupling the crack length and the sensor

measurement data. Based on the three features, a multi-feature

integration method is proposed for crack size prediction using

sensor measurement data. Data from five specimens are used

for model parameter estimation and two specimens are used

for method validation. Several conclusion are drawn based on

the current study.

• Lamb wave based technique can be used to effectively

quantify naturally initiated fatigue cracks in fuselage lap

joints.

• Three damage features are proposed. (1) The correlation

coefficient between the damage state and the healthy state,

(2) the normalized amplitude between the damage state and

the healthy state, and (3) the phase change between the

damage state and the healthy state. The effectiveness of the

three features is validated using the testing data.

• The multi-feature integration method proposed in this

study can reduce the variability or uncertainty associated

with different specimens and is able to predict the

crack lengths for different specimens under different

10
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Figure 22. Median and bound predictions using the multi-feature model and single feature models. (a) Multi-feature integration, (b) single
feature: correlation coefficient, (c) single feature: phase change, and (d) single feature: amplitude change.

Figure 23. Comparison of model predictive performance using the
multi-feature integration model and single feature models.
Performance is defined as the standard deviation of the prediction
error on the validation specimen data. x-axis represents models and
y-axis represents the standard deviation of prediction error
(a smaller value indicates a better predictive performance).

loading conditions. A second-order multivariate regression

model can give satisfactory prediction performance and

outperform single feature models in terms of fitting and

prediction performance.

It should be noted that the current study assumes some

prior knowledge of the crack location. Future work will

address how to automatically detect the crack location from

a sensor network. In addition, the proposed second-order

multivariate regression is only meant to demonstrate the

basic idea for the multi-feature integration method. Optimal

selection and utilization of those features need further study.

The applicability of the proposed method to other structural

and material systems, such as composite skins, also needs

further investigation.
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