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A Scalable Local Algorithm for Distributed
Multivariate Regression

Kanishka Bhaduri, Hillol Kargupta

Abstract— This paper offers a local distributed algo-
rithm for multivariate regression in large peer-to-peer
environments. The algorithm can be used for distributed
inferencing, data compaction, data modeling and classifi-
cation tasks in many emerging peer-to-peer applications
for bioinformatics, astronomy, social networking, sensor
networks and web mining. Computing a global regression
model from data available at the different peer-nodes using
a traditional centralized algorithm for regression can be
very costly and impractical because of the large number
of data sources, the asynchronous nature of the peer-to-
peer networks, and dynamic nature of the data/network.
This paper proposes a two-step approach to deal with this
problem. First, it offers an efficient local distributed algo-
rithm that monitors the “quality” of the current regression
model. If the model is outdated, it uses this algorithm
as a feedback mechanism for rebuilding the model. The
local nature of the monitoring algorithm guarantees low
monitoring cost. Experimental results presented in this
paper strongly support the theoretical claims.

Index Terms— peer-to-peer, data mining, decision trees

I. INTRODUCTION

Multivariate Regression (MR) is a powerful sta-
tistical and machine learning tool that is widely used
for prediction, classification, and data compression.
Multivariate regression is relatively well understood
given a sample of the data (input variables and
corresponding target output values) at a single loca-
tion. However, there are many emerging scenarios
where data is distributed over a network of ma-
chines. Peer-to-Peer (P2P) networks offer one such
scenario. P2P systems such as Gnutella, BitTor-
rents, e-Mule, Kazaa, and Freenet are increasingly
becoming popular for many applications that go
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beyond downloading music without paying for it.
Examples include P2P systems for network storage,
web caching, searching and indexing of relevant
documents and distributed network-threat analysis.
The next generation of advanced P2P applications
for bioinformatics [1] and client-side web mining
[2][3] are likely to need support for advanced data
analysis and mining. Performing basic operations
like regression is very challenging in a P2P net-
work because of the large number of data sources,
the asynchronous nature of the P2P networks, and
dynamic nature of the data.

This paper offers a local distributed algorithm for
performing multivariate regression and monitoring
the model in a P2P network. The approach is scal-
able, decentralized, asynchronous, and inherently
based on in-network computation. The algorithmic
framework is local, in the sense that the computation
and communication load at each node is indepen-
dent of the size or the number of nodes of the
network. This is very important for the scalability of
the algorithm in large P2P networks. The proposed
methodology takes a two-step approach for building
and maintaining MR models in P2P networks. The
first step in our algorithm is themonitoring phase
in which, given an estimate of the MR model to
all the peers, they asynchronously track any change
between the model and the global data using a
provably correct local algorithm. The second step,
known as thecomputation phase, uses the monitor-
ing algorithm as a feedback loop for triggering a
new round of MR model-building if necessary. The
algorithm guarantees that as long as the MR model
correctly represents the data, little computing and
communication resources are spent for monitoring
the environment. When the data undergoes a change
in the underlying distribution and the MR model no
longer represents it, the feedback loop indicates this
and the model is rebuilt. Moreover, we also show
that all the data need not be centralized to recom-
pute the MR coefficients. We can do in-network
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aggregation for finding them; thereby using far
less resources than brute force centralization. The
specific contributions of this paper are as follows:

• To the best of the authors’ knowledge this is
one of the first attempts on developing a com-
pletely asynchronous and local algorithm for
doing multi-variate regression in P2P networks
which is robust to data and network changes.

• Besides this, we have also derived an upper
bound on the total number messages exchanged
between the peers in the worst case.

• Most of the previous work in the literature
focuses on linear regression in distributed en-
vironments. Our technique can be applied to
most types of common multivariate regression.

The rest of the paper is organized as follows.
Related background material is presented in Sec-
tion II. Section III introduces the notations and
problem definition. Section IV presents the MR
monitoring algorithm, while Section V discusses
the MR computation problem. Experimental results
are presented in Section VII. Finally, Section VIII
concludes this paper.

II. BACKGROUND

This section provides the necessary background
material.

A. Approach

Statistical models can be built and updated from
distributed data in various ways. Theperiodic ap-
proach is to simply rebuild the model from time
to time. The incremental approach is to update
the model whenever the data changes. Lastly, the
reactive approach, what we propose here, is to
monitor the change, and rebuild the model only
when it no longer suits the data. Theperiodic
approach can be highly inefficient since, there is
the risk of wasting resources even if the data is
stationary and also the risk of model inaccuracy if
the updating is delayed.Incrementalalgorithms can
be very efficient; however their major drawback is
that a separate algorithm needs to be handcrafted
for every problem. Data drivenreactivealgorithms
are efficient, simple and can accommodate a wide
variety of function computation. This is because the
algorithm only reacts and rebuilds the model if the
data changes — in other cases, the algorithm does
nothing and saves unnecessary communication.

The work presented in this paper considers build-
ing and updating regression models from data dis-
tributed over a P2P network where each peer con-
tains a subset of the data tuples. In the distributed
data mining literature, this is usually called the hor-
izontally partitioned or homogeneously distributed
data scenario. Building a global regression model
(defined on the union of all the data of all the
peers) in large-scale networks and maintaining it
is a vital task. Consider a network where there
are a number of nodes (by node we mean peers,
sensors, grid components etc.) and each node gets
a stream of tuples (can be sensor readings, music
files etc.) frequently. We may wish to build a
regression model on the global data to (1) compactly
represent the data and (2) predict the value of
a target variable. This is difficult since the data
is distributed and more so because it is dynamic.
Centralization obviously does not work because the
data may change at a faster rate than the rate at
which it can be centralized. Local algorithms are
an excellent choice in such scenarios since in a
local algorithm, each peer computes the result based
on the information from only a handful of nearby
neighbors. Hence local algorithms are highly scal-
able and offer bounded communication complexity
per peer. Therefore, such an algorithm will enable
the user to monitor regression models using low
resources.

B. Related Work

The work presented in this paper is related to two
main bodies of literature - multivariate regression
and computation in large distributed environments.

1) Distributed Multi-variate Regression:The
problem of distributed multivariate regression has
been addressed by many researchers till date. Her-
shberger et al. [4] considered the problem of per-
forming global MR in a vertically partitioned data
distribution scenario. The authors propose a wavelet
transform of the data such that, after the transfor-
mation, effect of the cross terms can be dealt with
easily. The local MR models are then transported to
the central site and combined to form the global MR
model. Such synchronized techniques are unlikely
to scale in large, asynchronous systems such as
modern P2P networks.

Many researchers have looked into the problem
of doing distributed MR using distributed kernel
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regression techniques such as Guestrin et al. [5]
and Predd et al. [6]. The algorithm presented by
Guestrin et al. [5] performs linear regression in
a network of sensors using in-network processing
of messages. Instead of transmitting the raw data,
the proposed technique transmits constraints only,
thereby reducing the communication complexity
drastically. Similar to the work proposed here, their
work also uses local rules to prune messages. How-
ever the major drawback is that their algorithm is
not suitable for dynamic data. It will be very costly
if the data changes since, as the authors point out,
two passes are required over the entire network to
make sure that the effect of the measurements of
each node are propagated to every other node. More-
over, contrary to the broad class of problems that
we can solve using our technique, their technique
is only applicable for solving the linear regression
problem.

Meta-learning is an interesting class of algorithms
typically used for supervised learning. In a meta
learning, such as bagging [7] or boosting [8] many
models are induced from different partitions of the
data and these “weak” models are combined using
a second level algorithm which can be as simple as
taking the average output of the models for any new
sample. Such a technique is suitable for inducing
models from distributed data as proposed by Stolfo
et al. [9]. The basic idea is to learn a model at
each site locally (no communication at all) and
then, when a new sample comes, predict the output
by simply taking an average of the local outputs.
Xing et al. [10] present such a framework for doing
regression in heterogenous datasets. However, these
techniques perform poorly as the number of such
data partitions increases to millions – as in typical
P2P systems.

A closely related topic is classification in which
the output is discrete instead of real-valued. Sev-
eral algorithms have been proposed for distributed
classification. Here we present only a few of them.

Carageaet al. [11] presented a decision tree
induction algorithm for both horizontally and verti-
cally distributed data. Noting that the crux of any
decision tree algorithm is the use of an effective
splitting criteria, the authors propose a method by
which this criteria can be evaluated in a distributed
fashion. Their system is available as part of the
INDUS system. A different approach was taken by
Giannellaet al. [12] and Olsen [13] for inducing

decision tree in vertically partitioned data. They
used Gini information gain as the impurity measure
and showed that Gini between two attributes can
be formulated as a dot product between two binary
vectors. To reduce the communication cost, the
authors evaluated the dot product after projecting
the vectors in a random smaller subspace. The major
disadvantages of these techniques are (1) strong
synchronization requirements and (2) inability to
adapt to changes in data or network.

Distributed probabilistic classification on het-
erogenous data sites have also been discussed by
Merugu and Ghosh [14]. Similarly, Parket al.
have proposed a fourier spectrum-based approach
for decision tree induction in vertically partitioned
datasets [15].

Meta-classification from horizontally partitioned
data for large distributed systems have been pro-
posed by Lou et al. [16]. The system builds local
models which requires no communication at all.
When a new tuple arrives, it is broadcast to all
the nodes and the output is determined using a
variation of the majority voting scheme which the
authors term as distributed plurality voting (DPV).
Two disadvantages of this method are as follows.
The tuple to be classified needs to be flooded in the
network. Similar to other meta-learning techniques,
the quality of such algorithms degrade as the size
of the systems increases to millions of peers.

A robust, completely asynchronous and commu-
nication efficient algorithm for decision tree induc-
tion from horizontally partitioned data distributed in
large P2P systems has been proposed by Bhaduri et
al. [17]. The algorithm is eventually correct which
means the decision tree inducted by our algorithm
is the same that would be induced given all the data
at a central location. The algorithm also seamlessly
handles changes in the data and the network. Exper-
imental results show the low cost of building and
maintaining the decision trees even when the data
changes.

2) Computation in large distributed (P2P) sys-
tems: Computation for P2P networks span three
main areas: (1) best effort heuristics, (2) gossip
based computations, (3) broadcast-based systems
and (4) local algorithms. For a detailed survey
interested readers can refer to [18].

Algorithms using best effort heuristics have been
developed for large distributed systems. The P2Pk-
Means algorithm by Bandyopadhyay et al. [19] is
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one such example. Typically for such algorithms, a
peer collects some samples from its own data and
its neighbors and builds a model on this sample.
The samples are generally collected using some
variations of random walk-based techniques. These
algorithms can be classified as probabilistic approx-
imate algorithms since the results are bounded only
on average. A different class is the set of determin-
istic approximate algorithms such as the inferenc-
ing problem in sensor networks using variational
approximation technique proposed by Mukherjee et
al. [20].

Gossip algorithms rely on the properties of ran-
dom samples to provide probabilistic guarantees
on the accuracy of the results. Researchers have
developed different approaches for performing basic
operations (e.g. average, sum, max, random sam-
pling) on P2P networks using gossip techniques.
Kempeet al. [21] and Boydet al. [22] present such
primitives. In gossip protocols, a peer exchanges
data or statistics with a random peer. However,
they can still be quite costly – requiring hundreds
of messages per peer for the computation of just
one statistic. Another closely related technique is
to use deterministic gossip or flooding. In flooding,
every peer floods/broadcasts the data and therefore,
eventually the data/statistic is propagated through
the entire network. Here again the major drawback
is scalability and the answer to dynamic data.

Communication-efficient broadcast-based algo-
rithms have been also developed for large clusters
such as the one developed by Sharfman et al. [23].
Since these algorithms rely on broadcasts as their
mode of communication, the cost quickly increases
with increasing system size.

Local algorithms are a good choice for data
mining in P2P networks since in a local algorithm,
the result is generally computed by communicating
with a handful of nearby neighbors and the total
communication per peer is also bounded. Local
algorithms rely on data dependent conditions which
we refer to as local rules, to stop propagating mes-
sages. This means that if the data distribution does
not change, the communication overhead is very
low. On the other hand, the local rules are violated
when the distribution changes. On one hand, local
algorithms are highly efficient (and hence scalable).
The exact local algorithms we consider in this paper
guarantee eventual convergence to theexact result
(equal to that which would be computed given the

entire data). This feature makes local algorithms
exceptionally suitable for P2P networks as well as
to wireless sensor networks.

The idea of using local rules for algorithms dates
back to the seventies. John Holland described such
rules for non-linear adaptive systems and genetic al-
gorithms in his seminal work for biological systems
[24]. Local evolutionary rules for grid-based cellular
automaton were first introduced in 1950’s by John
Von Neumann [25] and later adopted in many fields
such as artificial agents, VLSI testing, physical
simulations to mention a few. In the context of
graph theory, local algorithms were used in the early
nineties by Afeket al. [26] and Linial [27]. Naor
and Stockmeyer [28] asked what properties of a
graph can be computed in constant time independent
of the graph size. Kutten and Peleg [29] have intro-
duced local algorithms for fault-detection in which
the cost depends only on the unknown number of
faults and not on the entire graph size. They have
developed solutions for some key problems such
as the maximal independent set (MIS) and graph
coloring. Kuhnet al. [30] have suggested that some
properties of graphs cannot be computed locally.

More recently, local algorithms have been de-
veloped for several data mining problems: associ-
ation rule mining [31], facility location [32], L2
Thresholding [33], outliers detection [34], meta-
classification [16] and decision tree induction [17].
Researchers have also looked at the complexity of
local algorithms using the concept of veracity radius
[35].

III. N OTATIONS AND PROBLEM DEFINITION

A. Notations

Let V = {P1, . . . , Pn} be a set of peers con-
nected to one another via an underlying commu-
nication infrastructure such that the set ofPi’s
neighbors,Γi, is known to Pi. Additionally, at a
time t, Pi is given a stream of data vectors in
R

d. The local data of peerPi at time t is Si =[(−→
xi

1, f(
−→
xi

1)
)

,
(−→
xi

2, f(
−→
xi

2)
)

, . . .
]
, where each

−→
xi

j is

a (d-1)-dimensional data point
[
xi

j1x
i
j2 . . . xi

j(d−1)

]

and f is a function fromR
d−1 → R. Every data

point can be viewed as an input and output pair.
Below we define the global knowledge which is the
union of all the data of all the peers.
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Definition 3.1 (Global knowledge):The global
knowledge is the set of all inputs at timet and
is denoted byG =

⋃

i=1,...,n

Si.

Henceforth we will drop the indices inG.
In MR, the task is to learn the function̂f(−→x )

which “best” approximatesf(−→x ) according to some
measure such as least square. Now depending on
the representation chosen for̂f(−→x ), various types
of regression models (linear or nonlinear) can be
developed. We leave this type specification as part
of the problem statement for our algorithm, rather
than an assumption.

For each data point(−→x , f(−→x )), the error be-
tween f̂(−→x ) and f(−→x ) can be computed as[
f(−→x )− f̂(−→x )

]2

. Normally we require the error
to be zero. However, since we have a dynamic data
change scenario we relax this assumption and con-
sider a solution to be admissible if the global error
is less thanǫ, whereǫ is a user chosen threshold.
For peerPi, this errorEi is a set of points inR i.e.

Ei =

{[
f(
−→
xi

1)− f̂(
−→
xi

1)
]2

,
[
f(
−→
xi

2)− f̂(
−→
xi

2)
]2

, . . .

}
.

The average error forPi is denoted byEi =
1

|Ei|

∑
j

[
f(
−→
xi

j )− f̂(
−→
xi

j )
]2

.

Moreover, in our scenario, this error value is
distributed across the peers — therefore a good
estimate of the global error is the global average
error i.e. EG = 1

n

∑
i Ei over all the points inG.

Peers communicate with one another by sending
sets of points inR or statistics as defined in Section
III-B. Let Xi,j denote the last sets of points sent by
peerPi to Pj. Assuming reliable messaging, once a
message is delivered bothPi andPj know Xi,j and
Xj,i. Our next definition formally defines a message.

Definition 3.2 (Message):Themessagethat peer
Pi needs to send toPj consists of a set of vectors
and is denoted byXi,j. Each vector is inR and
the size of the set depends on the data that peerPi

needs to send toPj.
Below we show that for our case, sending the

statistics of the set (such as mean and size) is
sufficient. Now we define four entities which are
crucial to our algorithm.

Definition 3.3 (Knowledge):The knowledge of
Pi is the union ofEi with Xj,i for all Pj ∈ Γi and
is denoted byKi = Ei ∪

⋃

Pj∈Γi

Xj,i.

Definition 3.4 (Agreement):The agreement of
Pi and any of its neighborsPj is Ai,j = Xi,j ∪Xj,i.

Definition 3.5 (Withheld knowledge):The
subtraction of the agreement from the knowledge
is thewithheld knowledge of Pi with respect to a
neighborPj i.e.Wi,j = Ki \ Ai,j.

We are interested in computing regression models
defined onG. Note that no peer has the global error
or EG. Therefore each peer will estimateEG based
on only its local knowledgeKi. These sets can be
arbitrarily large. Hence in order to represent these
sets efficiently, we define two statistics on each set:
(1) theaveragewhich is the average of all the points
in the respective sets (e.g.Ki, Ai,j, Wi,j , Xi,j, Xj,i

and EG), and (2) thesizesof the sets denoted by
|Xi,j |, |Xj,i|, |Ki|, |Ai,j|, |Wi,j|, and

∣∣EG
∣∣. Instead

of communicating the entire sets of points, each peer
can communicate only these two statistics for each
set which is sufficient to represent them.

B. Sufficient Statistics

Our algorithm relies on the fact that points sent
by any peerPi to Pj are never sent back toPi.
This can be done in several different ways such
as message indexing, tagging and ensuring that the
graph topology has no cycles. In this paper we take a
simpler approach — we assume that a tree topology
is imposed over the network. We could get around
this assumption in one of two ways:

1) We can use a similar technique as proposed by
Liss et al. [36] which extends the original ma-
jority voting algorithm for arbitrary network
topology.

2) There exist several techniques in the literature
for maintaining tree communication topology
such as [37] (for wired networks) or [38] (for
wireless networks).

If we assume that communication always takes
place in an overlay tree topology, we can write the
following expressions for the sizes of the sets:
1. |Ai,j| = |Xi,j|+ |Xj,i|
2. |Ki| = |Ei|+

∑

Pj∈Γi

|Xj,i|, and

3. |Wi,j | = |Ki| − |Ai,j|.
Similarly for the average of the sets we can write,

1. Ai,j =
|Xi,j |

|Ai,j |
Xi,j +

|Xj,i|

|Ai,j |
Xj,i

2. Ki = |Ei|
|Ki|
Ei +

∑

Pj∈Γi

|Xj,i|
|Ki|

Xj,i
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3.Wi,j = |Ki|
|Wi,j |
Ki − |Ai,j |

|Wi,j |
Ai,j

Note that, for any peer, any of these quantities
can be computed based solely on its local data and
what it gets from its immediate neighbors.

Next we formally state the problem definition.

C. Problem Definition

Problem 1. [MR Problem] Given a time varying
dataset Si, a user-defined thresholdǫ and
f̂(−→x ) : R

d−1 → R to all the peers, the MR
problem is to maintain âf(−→x ) at each peer such
that, at any timet, EG < ǫ.

For ease of explanation, we decompose this task
into two subtasks. First, given a representation
of f̂(−→x ) to all the peers, we want to raise an
alarm wheneverEG > ǫ, whereǫ is a user-defined
threshold. This is themodel monitoring problem.
Now if f̂(−→x ) no longer representsf (−→x ), we
sample from the network (or even better do
an in-network aggregation) to find an updated
f̂(−→x ). This is the model computation problem.
Mathematically, the subproblems can be formalized
as follows.

Problem 2.[Monitoring Problem ] Given Si, and
f̂(−→x ) to all the peers, the monitoring problem is
to output 0 ifEG < ǫ, and 1 otherwise, at any timet.

Problem 3.[Computation Problem] The model
computation problem is to find a neŵf(−→x ) based
on a sample of the data collected from the network.

Also note that the case for which the
output is 0 can be defined as the region
C−

ω = {x ∈ R : 0 < x < ǫ}. The region in
which the output is 1 can be defined as
C+

ω = {x ∈ R : ǫ < x <∞} Further, let
Cω = {C+

ω , C−
ω }. In order to ensure global

correctness of the monitoring algorithm, we
have transformed the thresholding problem to a
geometric problem: we check if the global average
error lies inC−

ω . In Section IV, we discuss a lemma
relying on Cω which will guarantee correctness of
the monitoring algorithm.

D. Example

In this section we illustrate the P2P MR algo-
rithm. Let there be two peersPi and Pj. Let the

regression model be linear in the regression coeffi-
cients:a0 +a1x1 +a2x2, wherea0, a1 anda2 are the
regression coefficients having values 1, 2 and -2 re-
spectively andx1 andx2 are the two attributes of the
data. The coefficients are given to all the peers. The
data of peerPi is Si = {(3, 1, 3.9), (0,−1, 3.6)},
where the third entry of each data point is the
output generated according to the regression model.
To this, we add 30% noise. Similarly, for peer
Pj, Sj = {(1, 4,−6.5), (−3, 2,−9.1)}. Now for
peerPi, the squared error for each point is:Ei =
{(0.9)2, (0.6)2}. Similarly for Pj , the errors are

Ej = {(1.5)2, (2.1)2}. HenceEi =
{

(0.9)2+(0.6)2

2

}
=

{0.585} and Ej =
{

(1.5)2+(2.1)2

2

}
= {3.33}. As-

suming Xi,j = Xj,i = 0, for peer Pi, Ki =
Ei = {0.585}. Similarly for peerPj , Kj = Ej =
{3.33}. Also the global average error isEG ={

(0.9)2+(0.6)2+(1.5)2+(2.1)2

4

}
= {1.9575}. In R, the

task is to determine if1.9575 > ǫ for a user defined
ǫ.

E. Local Algorithm

Local algorithms, as defined by Das et al. [3], are
parameterized by two quantities: (1)α – which is
the number of neighbors a peer contacts in order to
find answers to a query and (2)γ – which is the
total size of the response which a peer receives as
the answer to all the queries executed throughout
the lifetime of the algorithm.α can be a constant or
a function parameterized by the size of the network
while γ can be parameterized by both the size of
the data of a peer and the size of the network. Here
we present the definition proposed by Das et al. [3].

Definition 3.6 (α-neighborhood of a vertex):
Let G = (V, E) be the graph representing the
network whereV denotes the set of nodes andE
represents the edges between the nodes. Theα-
neighborhood of a vertexv ∈ V is the collection
of vertices at distanceα or less from it in G:
Γv(α, v, V ) = {u|dist(u, v) ≤ α}, wheredist(u, v)
denotes the length of the shortest path in between
u and v and the length of a path is defined as the
number of edges in it.

Definition 3.7 (α-local query): Let G = (V, E)
be a graph as defined in last definition. Let each
nodev ∈ V store a data setXv. An α-local query
by some vertexv is a query whose response can
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be computed using some functionf(Xα(v)) where
Xα(v) = {Xv|v ∈ Γv(α, v, V )}.

Definition 3.8 ((α, γ)-local algorithm): An
algorithm is called(α, γ)-local if it never requires
computation of aβ-local query such thatβ > α
and the total size of the response to all suchα-local
queries sent out by a peer is bounded byγ. α can
be a constant or a function parameterized by the
size of the network whileγ can be parameterized
by both the size of the data of a peer and the size
of the network.

The idea is to design algorithms that offers
bounded total communication cost per node and
also spatially localized communication among the
neighbors. We call such an (α, γ)-local algorithm
efficient if both α andγ are either small constants
or some slow growing functions (sublinear) with
respect to its parameters. We prove that the regres-
sion monitoring algorithm is(O(1), O(n))-local in
Section IV-B.

IV. STEP 1: MONITORING REGRESSIONMODEL

In MR monitoring problem, each peer is given
a datasetSi and an estimatêf(−→x ). Our goal is to
monitor EG.

We present here a local algorithm which monitors
the regression coefficients by thresholding the aver-
age error. In our earlier work [33], we presented an
algorithm for monitoring the L2 norm of the average
vector distributed across a large number of peers.
The algorithm outputs 0 if

∣∣∣
∣∣∣
−→G

∣∣∣
∣∣∣ < ǫ and 1 other-

wise. The algorithm presented in [33] is prone to
noise in the data since it communicates all the data
for every data change. In this paper, we take care
of that problem by applying a different condition
for sending messages and ensuring that all data is
not sent whenever a peer communicates. Rather, we
keep some data (in the form of withheld knowledge)
so that if the data changes later, the change is less
noisy. Here we use a similar algorithm but inR
and use a different set of conditions for sending
messages in order to reduce the communication
overhead in dynamically changing environments.

The regression monitoring algorithm guarantees
eventual correctness, which means that once com-
putation terminates, each peer computes the correct
result as compared to a centralized setting. In a
termination state, no messages traverse the network,
and hence a peer can decide solely based onKi,

Ai,j, andWi,j , if EG is greater than or less than
ǫ. As stated by the Theorem below, if the following
condition holds, the peer can stop sending messages
and determine the correct output based solely on its
local averages.

Theorem 4.1:[Stopping Rule] Let P1, . . . , Pn

be a set of peers connected to each other over a
spanning treeG (V, E). Let EG, Ki, Ai,j, andWi,j

be as defined in the previous section. LetR be any
region inCω. If at time t no messages traverse the
network, and for eachPi, Ki ∈ R and for every
Pj ∈ Γi, Ai,j ∈ R and eitherWi,j ∈ R orWi,j = ∅,
thenEG ∈ R.

Proof: [Sketch]:We omit the formal proof here.
Simply speaking, the theorem can be proved by
taking any two arbitrary peers and exchanging all
of their withheld knowledge. We call this the uni-
fication step. After unifying all the peers it can be
shown thatEG ∈ R. Interested readers are referred
to [39].

The significance of Theorem 4.1 is that under the
condition describedPi can stop sending messages
to its neighbors and output ifKi < ǫ. The idea
is to ensure thatKi and EG finally reside in the
same region inCω. If the result of the theorem holds
for every peer, then Theorem 4.1 guarantees this
is the correct solution; else, there must either be
a message in transit, or some peerPk for whom
the condition does not hold. Then eitherPk will
send a message which will change its output or the
message will be received, leading to a change inKk

eventually. Thus eventual correctness is guaranteed.
We formally prove this in Section IV-A.

Algorithm 1 presents the pseudo-code. The inputs
to the algorithm areSi, Γi, ǫ and Cω and L. Each
peer initializes its local statisticsKi, Ai,j andWi,j .
A peer may need to send a message if its local
data changes, if it receives a message or if the
set of neighbors change. In any of these cases, the
peer checks if the condition of the theorem holds.
First peerPi finds the regionR ∈ Cω such that
Ki ∈ R. If, for all Pj ∈ Γi, both Ai,j ∈ R and
Wi,j ∈ R, Pi does nothing; else it needs to set
Xi,j and |Xi,j| and send those, such that after the
message is sent, the condition of the theorem holds
for this peer. As we already pointed out that if a peer
communicates all of its data, then if the data changes
again later, the change is far more noisy than the
original data. So we always setXi,j and |Xi,j| such
that some data is retained while still maintaining the
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Input : ǫ, Cω, Si, Γi andL
Output : 0 if Ki < ǫ, 1 otherwise
Initialization : Initialize vectors;
if MessageRecvdFrom

(
Pj, X, |X|

)
then

Xj,i ← X;
|Xj,i| ← |X|;
Update vectors;

end
if Si, Γi or Ki changesthen

forall Pj ∈ Γi do
if LastMsgSent > L time units ago
then

if R = ∅ then

Xi,j ← |Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|
;

|Xi,j| ← |Ki| − |Xj,i|;
end
if Ai,j 6∈ R or Wi,j 6∈ R then

SetXi,j and |Xi,j| such that
Ai,j andWi,j ∈ R;

end
SendMessage

(
Pj, Xi,j, |Xi,j|

)
;

LastMsgSent← L;
Update all vectors;

end
elseWait L time units and then check
again;

end
end

Algorithm 1 : Monitoring Regression Model.

conditions of the theorem. We do this by checking
with an exponentially decreasing set of values of
|Wi,j| until either all Ki, Ai,j andWi,j ∈ R, or
|Wi,j|=0, in which case we have to send everything.
Note that other than these two cases, a peer need
not send a message since the theorem guarantees
eventual correctness. Similarly, whenever it receives
a message (X and |X|), it sets Xj,i ← X and
|Xj,i| ← |X|. This may trigger another round of
communication since itsKi can now change.

To prevent message explosion, in our event-based
system we employ a “leaky bucket” mechanism
which ensures that no two messages are sent in a
period shorter than a constantL. Whenever a peer
needs to send a message it checks ifL time units
have passed since the last time it sent a message.
If yes, it simply sends the message and notes the
time. If not, it sets up a timer and initializes it to

the time difference betweenL and the time it had
sent the last message. When the timer expires, the
peer checks the conditions for sending messages and
decides accordingly. Note that this mechanism does
not enforce synchronization or affect correctness; at
most it might delay convergence. This technique has
been used elsewhere as well [33][17].

In the next two sections we discuss the cor-
rectness and locality of the multivariate regression
monitoring algorithm.

A. Correctness

In this section we prove that the regression mon-
itoring algorithm is eventually correct. Theorem 4.2
formally proves the claim.

Theorem 4.2:[Correctness] The regression
monitoring algorithm iseventually correct.

Proof: Each peer will continue to send mes-
sages and accumulate more and more ofEG in each
Ki until one of the two things happen: either for
every peer,Ki = EG or for everyPi, bothKi, Ai,j,
andWi,j are in the sameRℓ ∈ Cω. In the former
case,Ki = EG, so every peer obviously computes
the correct output. In the latter case, Theorem 4.1
dictates thatEG ∈ Rℓ. Since the function output (in
this case 0 or 1) does not change inside each of
these regions inCω, and EG andKi lie inside the
same region, the output of the testEG < ǫ will be
the same asKi < ǫ. Therefore in either of the cases,
the regression monitoring algorithm is correct.

B. Locality

In this section we claim that the regression mon-
itoring algorithm is(O(1), O(n))-local. The art of
measuring(α, γ)-locality of algorithms is at its
infancy. An attempt has been made to define locality
with respect to theVeracity Radiusof an aggrega-
tion problem [35]. However this method does not
extend well to algorithms that contain randomness
(e.g., in message scheduling) or to dynamic data
and topology. Considering the (α, γ) framework we
defined earlier, there always exist problem instances
for which any eventually correct algorithm (e.g.
[16][31][33][40][41] and the one described in this
paper) will have worst caseγ = O(n) (as shown in
Theorem 4.4), wheren is the size of the network.
While O(n) is the upper bound on the communica-
tion complexity, more accurate bounds onγ can be
developed by identifying the specific problems and
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input instances. We feel that there is an intrinsic
relation betweenγ and ǫ. For example increasing
ǫ decreasesγ though it needs to be investigated
further.

Lemma 4.3:Considering a two node network,
Pi and Pj, the maximum number of messages
exchanged between them to come to a consensus
about the correct output is 2.

Proof: Using the notations defined earlier,
let Ki ∈ Rk, Kj ∈ Rℓ and EG ∈ Rm, where
Rm, Rk, Rℓ ∈ Cω and k 6= ℓ and m = k or ℓ.
Considering an initialization state, whereXi,j =
Xj,i = 0 such thatAi,j = 0 = Aj,i. In this case
the condition of Theorem 4.1 does not hold for
either Pi or Pj. Without loss of generality let us
assume that the conditions are violated atPi. It will
send all of its datai.e. Ki to Pj which will enable
Pj to correctly computeEG (sinceEG is a convex
combination ofKi andKj). On receivingKi from
Pi, Pj will apply the conditions of Theorem 4.1.
Since clearlyKj = EG ∈ Rm but Aj,i = Ki ∈ Rk,
the condition of the theorem dictates it to send a
message toPi and it will send all the data which
it has not received fromPi i.e. Kj . At this point
both Pi and Pj have bothKi andKj . Hence they
can computeEG correctly. Therefore the number of
messages exchanged is 2.

Our next theorem bounds the total number of
messages sent by the regression monitoring algo-
rithm. Because of the dependence on the data,
counting the number of messages in a data inde-
pendent manner for such an asynchronous algorithm
seems extremely difficult. Therefore in the follow-
ing theorem (Theorem 4.4), we find the upper bound
of the number of messages exchanged by any peer
when the data of all the peer changes.

Lemma 4.4:[Communication Complexity] Let
Dt be a state of the network at timet where for
every Pi, Ki ∈ Rℓ, Rℓ ∈ Cω. HenceEG ∈ Rℓ

as well and thus the peers have converged to the
correct result. Let at timet′ > t the data of each peer
changes. Without loss of generality, let us assume
that at timet′, Ki ∈ Ri where eachRi ∈ Cω. Let us
also assume thatEG ∈ Rg, whereg /∈ {1 . . . n}. The
maximum number of messages sent by any peerPi

is (n− 1)× (|Γi| − 1) in order to ensureKi ∈ Rg.
Proof: It is clear that the output of each peer

will be correct only when eachKi = EG. This will
only happen when eachPi has communicated with
all the peers in the network i.e.Ki =

∑n

i=1Ki. Since

the regression monitoring algorithm only communi-
cates with immediate neighbors, in the worst case
any peerPi will be updated with each value ofKj,
j 6= i one at a time. Every timePi gets oneKj, it
communicates with all its neighbors except the one
from which it gotKj . This process can be repeated
in the worst case for(n−1) times in order to get all
theKj ’s. At every such update,Pi will communicate
with |Γi|−1 neighbors. Therefore, the total number
of messages sent byPi is (n− 1)× (|Γi| − 1).

Our next theorem shows that the multivariate
regression monitoring algorithm is(O(1), O(n))-
local.

Theorem 4.5:[Locality] The multivariate regres-
sion monitoring algorithm is(O(1), O(n))-local.

Proof: The multivariate regression algorithm is
designed to work by communicating with immediate
neighbors of a peer only. Hence by design,α = 1.

From Lemma 4.4, we know thatγ = O(n).
Hence, the multivariate regression monitoring algo-
rithm is (O(1), O(n))-local.

Although the worst case communication com-
plexity γ is O(n), for many interesting problem
instancesγ is a small constant and independent
of the size of the network as corroborated by our
extensive experimental results.

C. An Alternate Approach

In the previous section we used L2-norm monitor-
ing as the building block for monitoring the regres-
sion coefficients. In this section we discuss another
primitive viz. majority voting protocol which can be
used for the same matter.

Majority voting protocol for large P2P systems
was proposed by Wolff and Schuster [31]. In its
basic form, each peerPi contains a real number
δi and the objective is to determine whether∆ =∑

i∈V δi ≥ ǫ′, whereǫ′ is a user chosen threshold.
The task of computing if∆ > ǫ′ can be achieved

by the following algorithm. For peersPi andPj , let
δi,j denote the most recent message (a real number)
peerPi sends toPj. Similarly δj,i denotes the last
message received byPi from Pj . Now using a
similar mnemonic as done in the previous sections,
the knowledge ofPi is ∆i = δi +

∑
Pj∈Γi

δj,i.
Similarly, the agreement of peerPi andPj is ∆i,j =
δi,j + δj,i, for each neighborPj ∈ Γi. The algorithm
is entirely event based — an event atPi can be
one of the following: (i) Pi is initialized (enters
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the network or otherwise begins computation of the
algorithm); (ii) Pi experiences a data changeδi or
a change of its neighborhood,Γi; (iii) Pi receives
a message from a neighborPj . If any of these
events occur, peerPi needs to check conditions
on its knowledge and agreement to determine if a
message needs to be sent toPj. It can be shown that
peerPi needs to send a message toPj only if the
following test returns true:(∆i,j ≥ 0 ∧∆i,j > ∆i)∨
(∆i,j < 0 ∧∆i,j < ∆i). Since all these events are
local to a peer, the algorithm requires no form of
global synchronization and hence can be used for
our regression monitoring algorithm.

What is left to discuss is whatPi sends toPj,
if the conditions dictate so.Pi first sets δi,j to
β∆i − δj,i (thereby making∆i,j = β∆i) and sends
it to j, whereβ is a fixed parameter between 0 and
1. Reducingβ reduces the number of messages in
a dynamic setup while increasing the convergence
time. This mechanism replicates the one used by
Wolff et al. in [33] and Bhaduriet al. [17]. The
pseudo-code is presented in Algorithm 2.

In order to use this protocol for regression mon-
itoring, the following steps need to be taken:

• The inputδi for each peer should be the aver-
age error calculated on its own local datasetSi

i.e. δi = Ei = 1
|Si|

∑
−→x ∈Si

[
f(−→x )− f̂(−→x )

]2

.
• Chooseǫ′ = ǫ×n, wheren is the total number

of nodes in the network.
Other than these two changes, the majority voting

algorithm can be used for regression monitoring
without any further change.

In the next section we discuss the algorithm for
computing the regression coefficients.

V. STEP 2: COMPUTING REGRESSIONMODEL

The regression monitoring algorithm presented in
the earlier section can be viewed as a flag which is
raised by a peer wheneverEG > ǫ. In this section
we discuss how the peers collaborate to find a new
f̂(−→x ) using a convergecast-broadcast technique.

The basic idea is to use theconvergecastphase
to sample data from the network to a central post
and compute, based on this sample, a newf̂(−→x ).
The broadcastphase distributes thiŝf(−→x ) to the
network. The monitoring algorithm now monitors
the quality of the result. The efficiency and cor-
rectness of the monitoring algorithm allows a very

Input : δi, Γi, L, β

Output : if ∆i ≥ 0 then1 else0
Local variables: ∀Pj ∈ Γi : δj,i, δi,j

Definitions: ∆i = δi +
∑

Pj∈Γi δj,i, ∆i,j = δi,j + δj,i

Initialization:
begin

forall Pj ∈ Γi do
δi,j = δj,i = 0;
SendMessage(Pj);

end
end
if MessageRecvd(Pj , δ) then δj,i ← δ;
if PeerFailure

(
Pj ∈ Γi

)
then Γi ← Γi \ {Pj};

if AddNeighbor
(
Pj ∈ Γi

)
then Γi ← Γi ∪ {Pj};

if Γi, δi changes or MessageRecvdthen call
OnChange();
FunctionOnChange()
begin

forall Pj ∈ Γi do
if

(
∆i,j ≥ 0 ∧∆i,j > ∆i

)
∨(

∆i,j < 0 ∧∆i,j < ∆i
)

then
call SendMessage(Pj);

end
end

end
FunctionSendMessage(Pj)
begin

if time ()− last message ≥ L then
δi,j ← (β∆i − δj,i);
last message← time ();
Send

〈
δi,j

〉
to Pj ;

end
else

Wait L− (time ()− last message) time units;
Call OnChange();

end
end

Algorithm 2 : Local Majority Vote

simple sampling technique to be used – if an ill-
fit model is built at all, it will soon be detected
by the local algorithm resulting in another round
of convergecast in the worst case. Another point to
note is that, in our convergecast-broadcast process,
we do not specify the root of the convergecast tree.
Rather we let the network structure (edge delays and
data skewness) decide it. This is significant since it
ensures (1) decentralized control, (2) load balancing,
and (3) robustness against a single point of failure.

In the convergecast phase there are two main
parameters. Each peer maintains a user selected alert
mitigation constant,τ and the sample size. An alert
should be stable for a given period of timeτ before
the peer can send its data, thereby preventing a
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possibly false alarm from propagating. In order to
do this, the peer relies on the underlying monitoring
algorithm. If the monitoring algorithm raises a flag,
the peer notes the time, and sets a timer toτ time
units. If the timer expires, or a data message is
received from one of its neighbors,Pi first checks if
there is an existing alert and if it has been recorded
τ or more time units ago. If so, it counts the
number of neighbors from which it has received data
messages. Once it receives data messages from all of
its neighbors, the peer computes a new regression
model f̂(−→x ) based on the sample it received and
sends it to itself. It then moves to the broadcast
phase and sendŝf(−→x ) to all its neighbors. On the
other hand, if it has received data messages from
all but one of the neighbors then it takes a uniform
sample (of user-defined size) from its own data and
the data it has received from its neighbors. It then
forwards the sample to the peer from which it has
not received data and marks its state as broadcast.
The peer does nothing if it has not received data
from two or more neighbors. Note that, at each
peer, the sampling technique is such that, each data
point gets an equal chance of being included in the
sampled data set. We do this by properly weighing
every data point by size of the subtree from which
the sample was received.

The broadcast phase is fairly straightforward.
Every peer which receives the neŵf(−→x ), restarts
a new regression monitoring algorithm with this
new f̂(−→x ). It then, sends the neŵf(−→x ) to its
other neighbors and changes the status to converge-
cast. There could be one situation in which a peer
receives a newf̂(−→x ) when it is already in the
broadcast phase. This is when two neighbor peers
concurrently become roots for the convergecast tree.
To break this tie, we select thêf(−→x ) to propagate
the root of which has a higher id. Figure 1 shows a
snap-shot of the convergecast broadcast steps as it
progresses up the communication tree. The pseudo-
code is presented in Algorithm 3.

VI. SPECIAL CASE : L INEAR REGRESSION

In many cases, sampling from the network is
communication intensive. We can find the coeffi-
cients using an in-network aggregation if we choose
to monitor a widely used regression modelviz. lin-
ear regression (linear with respect to the parameters
or the unknown weights).

Input : ǫ, Cω , Si, Γi, L, f̂ andτ

Output : f̂ such thatEG < ǫ

Initialization
begin

Initialize vectors;
MsgType= MessageRecvdFrom(Pj);

end
if MsgType = Monitoring Msg then Pass Message
to Monitoring Algorithm;
if MsgType = New Model Msg then

Updatef̂ ;
Forward newf̂ to all neighbors;
Datasent=false;
Restart Monitoring Algorithm with neŵf ;

end
if MsgType = Dataset Msg then

if Received from all but one neighborthen
flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then

if DataAlert stable forτ time then
D=Sample(Si, Recvd Dataset);
Datasent=true;
SendD to remaining neighbor

end
elseDataAlert=CurrentTime;

end
end
if Received from all neighborsthen

D=Sample(Si, Recvd Dataset);
f̂=Regression(D);
Forward newf̂ to all neighbors;
Datasent=false;
Restart Monitoring Algorithm with neŵf ;

end
end
if Si, Γi or Ki changesthen

Run Monitoring Algorithm;
flag=OutputMonitoring Algorithm();
if flag=1 and Pj=IsLeaf() then

Execute the same conditions as
MsgType = Dataset Msg

end
end

Algorithm 3 : P2P Regression Algorithm.

Let the global dataset over all the peers be de-
noted by:

G =





x11 x12 . . . x1(d−1) f(−→x1)
x21 x22 . . . x2(d−1) f(−→x2)
...

...
...

...
xj1 xj2 . . . xj(d−1) f(−→xj )
...

...
...

...
x|G|1 x|G|2 . . . x|G|(d−1) f(−→x|G|)
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(a) Initial state (b) Activated leaves (c) Activated intermediate nodes (d) Activated roots

Fig. 1. Convergecast and broadcast through the different steps. In subfigure 1(a), the peers do not raise a flag. In subfigure 1(b), the two
leaves raise their flags and send their data up (to the parent)as shown using arrows. Figure 1(c) shows an intermediate step. Finally, the
roots (two of them) become activated in subfigure 1(d) by exchanging data with each other.

where−→xj =
{
xj1xj2 . . . xj(d−1)

}
.

In MR, the idea is to learn a function̂f(−→xj ) which
approximatesf(−→xj ) for all the data points inG. For
linear regression, that function̂f(−→xj ) is chosen to be
a linear function i.e. ad− 1 degree polynomial fit-
ted to the input attribute points

{
xj1xj2 . . . xj(d−1)

}

∀j = 1 to |G|. More specifically, the linear model
which we want to fit be:̂f(−→xj ) = a0+a1xj1+a2xj2+
...+aj(d−1)xd−1, whereai’s are the coefficients that
need to be estimated from the global datasetG.
We drop the cross terms involvingxjk and xjℓ for
simplicity ∀k, ℓ ∈ [1..(d− 1)].

For every data point in the setG, the squared error
is:

E1 =
[
f (−→x1)− a0 − . . .− ad−1x1(d−1)

]2

E2 =
[
f (−→x1)− a0 − . . .− ad−1x2(d−1)

]2

...

E|G| =
[
f

(−→x|G|

)
− a0 − . . .− ad−1x|G|(d−1)

]2

Thus the total square error over all the data points
is

SSE =

|G|∑

j=1

Ej =

|G|∑

j=1

[
f (−→xj )− a0 − . . .− ad−1xj(d−1)

]2

For linear regression, closed form expressions
exist for finding the coefficientsai’s by finding the
partial derivatives of SSE with respect to theai’s
and setting them to zero. In the matrix form this

can be written as:




|G| ∑|G|
j=1 xj1 . . .

∑|G|
j=1 xj(d−1)∑|G|

j=1 xj1

∑|G|
j=1(xj1)

2 . . .
∑|G|

j=1 xj1 ∗ xj(d−1)

...
...

. . .
...∑|G|

j=1 xj(d−1)

∑|G|
j=1 xj(d−1)xj1 . . .

∑|G|
j=1(xj(d−1))

2





×





a0

a1
...

ad−1



 =





∑|G|
j=1 f(−→xj )∑|G|

j=1 f(−→x j)xj1

...∑|G|
j=1 f(−→x j)xj(d−1)





⇒ Xa = Y

Therefore for computing the matrix (or more ap-
propriately vector)a, we need to evaluate the matri-
cesX andY. This can be done in a communication
efficient manner by noticing that the entries of these
matrices are simply sums. Consider the distributed
scenario whereG is distributed amongn peers
S1, S2, . . . , Sn. Any entry ofX, say

∑|G|
j=1(xj1)

2, can
be decomposed as

|G|∑

j=1

(xj1)
2 =

∑

xj1∈S1

(xj1)
2

︸ ︷︷ ︸
for S1

+
∑

xj1∈S2

(xj1)
2

︸ ︷︷ ︸
for S2

+ . . . +
∑

xj1∈Sn

(xj1)
2

︸ ︷︷ ︸
for Sn

Therefore each entry ofX andY can be computed
by simple sum over all the peers. Thus, instead of
sending the raw data in the convergecast round, peer
Pi can forward a locally computed matrixXi and
Yi. PeerPj, on receiving this, can forward a new
matrix Xj andYj by aggregating, in a component-
wise fashion, its local matrix and the received ones.
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Note that the avoidance of the sampling technique
ensures that the result is exactly the same compared
to a centralized setting.

Communication Complexity: Next we prove a
lemma which states the communication complexity
of computing the linear regression model.

Lemma 6.1:The communication complexity of
computing a linear regression model is only de-
pendent on the degree of the polynomial (d) and
is independent of the number of data points i.e.|G|.

Proof: As shown in Section VI, the
task of computing the regression coefficients
{a0, a1, . . . ad−1} can be reduced to computing the
matricesXi andYi. The dimensionality ofXi d.d =
d2. Similarly the dimensionality ofYi d.1 = d.
Therefore the total communication complexity is
O(d2), which is independent of the size of the
dataset|G|.

The efficiency of the convergecast process is due
to the fact thatd ≪ |G|. Hence there can be
significant savings in terms of communication by
not communicating the raw data.

VII. EXPERIMENTAL RESULTS

In this section we discuss the experimental setup
and analyze the performance of the P2P regression
algorithm.

A. Experimental Setup

We have implemented our algorithms in the Dis-
tributed Data Mining Toolkit (DDMT) [42] de-
veloped by the DIADIC research lab at UMBC.
We use topological information generated by the
Barabasi Albert (BA)model in BRITE [43] since
it is often considered a reasonable model for the
internet. BA also defines delay for network edges,
which is the basis for our time measurement1. On
top of the network generated by BRITE, we overlay
a communication tree.

B. Data Generation

The input data of a peer is a vector
(x1, x2, . . . , xd) ∈ R

d, where the first d − 1
dimensions correspond to the input variables and
the last dimension corresponds to the output.
We have conducted experiments on both linear

1Wall time is meaningless when simulating thousands of computers
on a single PC.

and non-linear regression models. For the linear
model, the output is generated according to
xd = a0 + a1x1 + a2x2 + . . . + ad−1xd−1. We have
used three functions for the non-linear model: (1)
x3 = a0 + a1a2x1 + a0a1x2 (multiplicative), (2)
x3 = a0 × sin(a1 + a2x1) + a1 × sin(a2 + a0x2)
(sinusoidal) and (3)x3 = a0

√
x0a1 + a1

√
x1a0

(square root). Every time a simulated peer needs
an additional data point, it chooses the values of
x1, x2, . . . xd−1, each independently in the range
-100 to +100. Then it generates the value of the
target variablexd using any of the above functions
and adds a uniform noise in the range 5 to 20%
of the value of the target output. The regression
weightsa0, a1, . . . , ad−1’s are changed randomly at
controlled intervals to create an epoch change.

C. Measurement Metric

In our experiments, the two most important pa-
rameters for measurement are thequality of the
result and thecost of the algorithm.

For the regression monitoring algorithm, quality
is measured in terms of the percentage of peers
which correctly compute an alert,i.e., the number
of peers which report thatKi < ǫ when EG < ǫ
and similarlyKi > ǫ whenEG > ǫ. We also report
the overall quality which is average of the qualities
for both less than and greater thanǫ and hence lies
in between those two. Moreover, for each quality
graph in Figures 3, 4, 5, 6, 7 and 8 we report two
quantities — (1) the average quality over all peers,
all epochs and 10 independent trials (the center
markers) and (2) the standard deviation over 10
independent trials (error bars). For the regression
computation algorithm, quality is defined as the L2
norm distance between the solution of our algorithm
and the actual regression weights. We compare this
to a centralized algorithm having access to all of the
data.

We refer to the cost of the algorithm as the
number ofnormalized messagessent, which is the
number of messages sent by each peer per unit of
leaky bucketL. Hence, 0.1 normalized messages
means that nine out of ten times the algorithm
manages to avoid sending a message. We report
both overall cost and the monitoring cost (station-
ary cost), which refers to the “wasted effort” of
the algorithm. We also report, where appropriate,
messages required for convergecast and broadcast
of the model.
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(b) Monitoring Cost

Fig. 2. A typical experiment is run for 10 equal length epochs. Quality and overall cost are measured across the entire experiment –
including transitional phases. The monitoring cost is measured on the last80% of every epoch, in order to ignore transitional effects.

D. Typical Experiments

A typical experiment is shown in Figure 2. In all
the experiments, about 4% of the data of each peer is
changed every 1000 simulator ticks. Moreover, after
every 5× 105 simulator ticks, the data distribution
is changed. Therefore there are two levels of data
change — (1) every 1000 simulator ticks we sample
4% of new data from the same distribution (station-
ary change) and (2) every 5× 105 clock ticks we
change the distribution (non-stationary change). To
start with, every peer is supplied the same regression
coefficients as the coefficients of the data generator.
Figure 2(a) shows that for the first epoch, the quality
is very high (nearly 96%). After 5× 105 simula-
tor ticks, we change the weights of the generator
without changing the coefficients given to each peer.
Therefore the percentage of peers reportingKi < ǫ
drops to 0. For the cost, Figure 2(b) shows that the
monitoring cost is low throughout the experiment if
we ignore the transitional effects.

E. Results: Regression Monitoring

There are four external parameters which can
influence the behavior of the regression monitoring
algorithm: size of local buffer|Si|, the threshold
ǫ, size of the leaky bucketL and noise in the
data. Apart from these there are also the system
size (number of peers) and dimensionality of the
multivariate regression problem which can affect
performance. In this section we present the quality
(less thani.e. EG < ǫ, greater thani.e. EG > ǫ and
overall) and cost of the algorithm w.r.t. different pa-
rameters. Note that, unless otherwise stated, we have
used the following default values for the different

parameters: number of peers = 1000,|Si| = 50,
ǫ = 1.5, d = 10, k = 8 and L = 500 (where
the average edge delay is about 1100 time units).
As we have already stated, independent of the re-
gression function chosen, the underlying monitoring
problem is always inR. The results reported in this
section are with respect to linear model since it is
the most widely used regression model. Results of
monitoring more complex models are reported in
the next section.

Figures 3(a) and 3(b) show the quality and cost of
the algorithm as the size of local buffer is changed.
As expected, the quality when the average is less
than ǫ increases and the cost decreases as the size
of buffer increases. The other quality is very high
throughout. This stems from the fact that, with the
noise in the data, it is easy for a peer to get flipped
over when it is checking for less thanǫ. On the
other hand, noise cannot change the belief of the
peer when the average is greater thanǫ. In the
second set of experiments, we variedǫ from 1.0 to
2.5 (Figure 4(a) and 4(b)). Here also, the quality
increases asǫ is increased. This is because with
increasingǫ, there is a bigger region in which to
bound the global average. This is also reflected
with decreasing number of messages. Note that,
even for ǫ = 1.0, the normalized messages are
around 1.6, which is far less than the theoretical
maximum of 2 (assuming two neighbors per peer).
The third set of experiments analyzes the effect of
leaky bucketL. As shown in Figure 5(a) quality
does not depend onL, while Figure 5(b) shows
that the cost decreases slowly with increasingL.
Figures 6(a) and 6(b) depict the dependence of the
noise on the monitoring algorithm. Quality degrades
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and cost increases with increasing noise. This is
expected, since with increasing noise a peer is more
prone to random effects. This effect can, however,
be nullified by using a large buffer or biggerǫ.

Our next experiment analyzes the scalability of
the monitoring algorithm w.r.t the number of peers
and dimension of the multivariate problem. As Fig-
ures 7(a) and 7(b) show, both the quality and cost of
the algorithm converge to a constant as the number
of peers increase. This is a typical behavior of local
algorithms. For any peer, since the computation is
dependent on the result from only a handful of its
neighbors, the overall size of the network does not
degrade the quality or cost. Similarly, Figures 8(a)
and 8(b) show that the quality or the cost does
not depend on the dimension of the multivariate
problem either. This independence of the quality and
cost can be explained by noting that the underlying
monitoring problem is inR. Therefore for a given
problem, the system size or dimensionality of the
problem has no effect on the quality or the cost.

Overall, the results show that the monitoring
algorithm offers extremely good quality, incurs low
monitoring cost and has high scalability.

F. Results: Regression Models

Our next set of experiments measure the quality
of the regression model computed by our algorithm
against a centralized algorithm having access to
the entire data. There are two important parameters
to be considered here – (1) the alert mitigation
constant (τ ) and (2) the sample size (for non-linear
regression). For computing the non-linear regression
coefficients, we have implemented the Nelder-Mead
simplex method [44].

We have conducted experiments on three datasets.
Figures 9(a), 10(a) and 11(a) presents two sets of
error bars. The square markers show the L2 norm
distance between the distributed coefficients and the
actual ones. Also shown in each figure is the L2
norm distance between the coefficients found by a
centralized algorithm and the actual ones (diamond
markers). The first pair of figures, Figures 9(a)
and 9(b) show the results of computing a linear
regression model. Our aim is to measure the effect
of variation of alert mitigation periodτ on quality
and cost. As shown in Figure 9(a), the quality of
our algorithm deteriorates asτ increases. This is
because, on increasingτ , a peer builds a model later

and therefore is inaccurate for a longer intermediate
period. Figure 9(b) shows that the number of data
collection rounds (dot markers) decrease from four
times to twice per epoch. This results from a de-
crease in the number of false alerts. Also shown are
monitoring messages (green squares).

Figures 10(a) and 10(b) analyzes the quality
of our algorithm while computing a non-linear
multiplicative regression modelviz. x3 = a0 +
a1a2x1 + a0a1x2. Figure 10(a) presents the quality
as other parameterviz. sampling size is varied.
As expected, the results from the distributed and
centralized computations converge with increasing
sample size. Also the number of data collection
rounds as depicted in Figure 10(b) decrease as
sample size is increased.

The third pair of figures, Figures 11(a) and 11(b)
show the same results for a sinusoidal model:x3 =
a0 ∗ sin(a1 + a2x1)+ a1 ∗ sin(a2 + a0x2). Here also
the quality becomes better and the cost decreases as
the sample size is increased.

Finally Figures 12(a) and 12(b) demonstrate the
effect on quality of the regression model built and
the cost incurred as the for building a model of the
form x3 = a0

√
x0a1 + a1

√
x1a0. As shown here,

the quality improves and the cost decreases as the
sample size is increased.

To sum everything up, the regression computa-
tion algorithm offers excellent accuracy and low
monitoring cost. Also, the number of convergecast-
broadcast rounds is also two times per epoch on
an average. We have tested our algorithm on sev-
eral regression functions and the results are highly
satisfactory.

VIII. C ONCLUSIONS AND FUTURE WORK

To the best of the authors’ knowledge this is one
of the first attempts on developing a completely
local and asynchronous regression algorithm for
P2P systems which maintains the same regression
models given all the data to all the peers. The
algorithm is suitable for scenarios in which the
data is distributed across a large P2P network
as it seamlessly handles data changes and node
failures. We have performed dynamic experiments
with random epoch changes which showed that the
algorithm is accurate, efficient and highly scalable.
Such algorithms are needed for next generation P2P
applications such as P2P bioinformatics, P2P web
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Fig. 3. Behavior of the monitoring algorithm with changes inthe size of the dataset.
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Fig. 4. Behavior of the monitoring algorithm with changes inǫ.
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Fig. 5. Behavior of the monitoring algorithm with size ofL.

mining and P2P astronomy using National Virtual
Observatories. As a next step, we plan to explore
other methods of learning such as support vector
machines and decision trees.
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