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Abstract. Fatigue damage and its prediction is one of the foremost concerns of structural in-
tegrity research community. The current research in structural health monitoring (SHM) is to
provide continuous (or on demand) information about the state of a structure. The SHM system
can be based on either active or passive sensor measurements. Though the current research on
ultrasonic wave propagation based active sensing approach has the potential to estimate very small
damage, it has severe drawbacks in terms of low sensing radius and external power requirements.
To alleviate these disadvantages passive sensing based SHM techniques can be used. Currently,
few efforts have been made towards, time-series fatigue damage state estimation over the entire
fatigue life (stage-I, II & III). A majority of the available literature on passive sensing SHM tech-
niques demonstrates the clear trend in damage growth during the final failure regime (stage-III
regime) or during when the damage is comparatively large enough. The present paper proposes a
passive sensing technique that demonstrates a clear trend in damage growth almost over the entire
stage-II and III damage growth regime. A strain gauge measurement based passive SHM frame-
works that can estimate the time-series fatigue damage state under random loading is proposed.
For this purpose, a Bayesian Gaussian process nonlinear dynamic model is developed to map the
reference condition dynamic strain at a given instant of time. The predicted strains are compared
with the actual sensor measurements to estimate the corresponding error signals. The error signals
estimated at two different locations are correlated to estimate the corresponding fatigue damage
state. The approach is demonstrated for an Al-2434 complex cruciform structure applied with
biaxial random loading.

Nomenclature

an nth damage level damage index
dn nth damage level damage value
ΔN Number of fatigue cycles between two adjacent damage level
gn nth damage level nonlinear function with respect to hidden state x
hn nth damage level nonlinear function with respect to strain measurements u or y
HU→uTransfer function between environmental load U and input strain u
HU→yTransfer function between environmental load U and output strain y
m Time lag coefficient in sensor observation at nth damage level
n (Superscripts) Symbolizes discrete damage level
u Input strain at location 1
U Environmental load
xn nth damage level hidden state
y Output strain at location 2
εi Strain at location i
0 (Superscripts) Symbolizes reference or healthy condition

*Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, 85287, USA, smohant2@asu.edu,
aditi@asu.edu, Clyde.Coelho@asu.edu
**Engineering Technology Department, Arizona State University Polytechnic, Mesa, AZ, 85212, USA, ra-
jadas@asu.edu.

271

2010 Conference on Intelligent Data Understanding

Beth
Typewritten Text
Copyright © 2010 Subhasish Mohanty, Aditi Chattopadhyay, and John N. Rajadas, Clyde.  NASA has been granted permission to publish and disseminate this work as part of The Proceedings of the 2010 Conference on Intelligent Data Understanding. All other rights retained by the copyright owner.



1. Introduction

Real-time structural health monitoring (SHM) is an emerging research area with multiple appli-
cations in aircraft structures. The design and operation of civil and military aircraft require a strict
regiment of inspection and maintenance based on damage tolerant [6] principles, that ensures the
operational safety from the structural point of view. The inspection and maintenance cost typically
constitutes approximately 30-40 percent of any individual aircraft’s total life cycle cost. The current
research on structural health monitoring [2, 7, 20] can lead to lower inspection and maintenance
cost and reduces the long overhauling time for maintenance. Currently there are two different SHM
techniques based on active and passive sensing approaches. For an active sensing based SHM tech-
nique, a fixed input signal is introduced to the host structure using an actuator. The corresponding
sensor signals are analyzed to interrogate the presence of damage in the structure and to estimate its
extent and severity of damage. The passive SHM infers the state of the structure using passive sensor
signals that are monitored over time. Currently there is a sizeable amount of research being con-
ducted on active sensing based damage interrogation techniques [1, 10, 14, 15, 18]. These techniques
are related to narrowband wave propagation based pitch-catch, pulse-echo, phased array structural
radar approaches. Also research has been initiated in the area of time-series fatigue damage state
estimation [5, 10, 11]. To estimate fatigue damage, continuous monitoring of the structure is re-
quired over its entire fatigue life. Recently Mohanty et al [12] proposed an unsupervised broadband
active sensing technique, which can estimate sub-millimeter level damage over the entire fatigue life,
including stage-I, II and III crack growth regime. The technique was effectively used to monitor
critical structural hot-spots such as lug-joints that connect the fuselage with the main wing box. It
must be noted that although the active wave propagation based interrogation technique can estimate
very small damage, it has a few drawbacks. The sensing radius of an individual active sensing node
is very small (of the order of centimeters), thus requiring a large number of actuators and sensors
to monitor a large structure. The need for large number of sensors can limit the usability of active
sensing approach in large structures such as aircraft wing. Also the wave based techniques require
an external excitation source, which limits their applications. Keeping in mind both the advantages
and disadvantages of active sensing techniques, it is practical to use active wave based techniques
in highly sensitive and localized hotspot, whereas the rest of the structure can be monitored using
passive sensing [3, 19]. The passive sensing technique has some advantages over active wave based
techniques. For example passive techniques are more global and can monitor large structures if
sensors are placed strategically. In addition, passive sensing techniques do not require any exter-
nal power source. Though the use of different types of passive sensors is application specific, the
accelerometer based damage monitoring approaches [8, 16, 22] are less sensitive to detect incipient
smaller damage, which can lead to the estimated damage signatures become prominent only dur-
ing the final failure regime. To alleviate the disadvantages of both wave based active sensing and
accelerometer based passive sensing approaches, a novel strain gauge measurements based passive
damage interrogations technique is used in the present paper. Though the strain gauge measure-
ment is more local to accelerometer measurement, it is more global to wave based active sensing
techniques. The strain gauges can be placed strategically in structural hot-spots for passive and
continuous monitoring of fatigue damage. It is to be noted that the strain gauge sensing techniques
are more mature compared to wave based active sensing techniques. They do not require any exter-
nal power source. Recently Mohanty and et al [11] have demonstrated the use of strain gauges for
real-time and time-series damage state estimation of an Al-6061 cruciform specimen under biaxial
constant amplitude fatigue loading. However, damage estimation under random loading is more
complicated compared to damage interrogations under constant amplitude fatigue loading. The
present paper discusses a novel strain gauge measurement based passive sensing technique that can
estimate time-series damage states under random loading. The approach is demonstrated for an
Al-2024 cruciform specimen subjected to biaxial random loading.
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2. Theoretical Approach

Structural systems such as an aircraft in flight undergo random loading. Different locations of the
structure may experience different strain fields. There exists a particular correlation pattern between
the dynamic strain fields measured at those locations, which may change due to damage. The change
in correlation pattern can be mapped as a time-varying transfer function which can be a measure of
time-varying damage condition. A schematic of the nth damage level transfer function (Hn) between
dynamic strains at two points is shown in Figure (1). The dynamic strain at location 1 i.e., ε1 can
be considered as input u, whereas the dynamics strain at location 2 i.e., ε2 can be considered as
output for the estimation of Hn. Note that the strain at both the locations are function of the
environmental load U and the damage condition of the structure at that time. Structural fatigue
damage condition can be monitored in real-time by acquiring real-time signals from passive sensors
such as strain gauges. By using the strain measurements at two different locations, the damage state
of the structure between those two points can be estimated. To estimate the time-series damage
states, the over all fatigue damage process can be divided into multiple short term discrete instances
(Figure 2). For constant cycle fatigue loading, these discrete damage states can be estimated by
directly correlating the corresponding dynamic strains measured at different locations, which has
already been demonstrated by Mohanty and et al. [11]. However, for random loading, estimation
of time-series damage states is more complicated, due to the variation in the strain correlation
(between two points) pattern with varying loads. That means it is not possible to directly identify
whether the correlation pattern change is due to change in load or due to damage. It should be
noted that in the work reported by Mohanty and et al. [11] the load information was not included
in the damage index formulation. For accurate damage state estimation under random loads, the
loading information should be included in the damage index formulation. In addition to the loading
information, other time varying input parameters such as temperature and humidity can also be
included in the damage index formulation. Details of the damage index formulation are discussed
in the following sections.

Figure 1. Schematic showing strain at two points of a structure and the time-
varying transfer function between them.

2.1. Dynamic model estimation. One of the major steps in the proposed time-series damage
state estimation approach is to estimate the nonlinear dynamic model using strain gauge and envi-
ronmental load measurements. Two models have to be estimated one between environmental loading
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Figure 2. Schematic showing the division of overall fatigue life to multiple discrete
short term instances.

U and input strain u(= ε1) at location 1 and the other between environmental loading U and out-
put strain y(= ε2) at location 2. The following sections describe the procedure for dynamic model
estimation.

2.1.1. Generic nonlinear dynamic model. Assume that the nth damage level can be described by
sensor signals acquired between n = N and n = N + ΔN fatigue cycle, where ΔN is the interval
in fatigue cycles between which the damage state has to be estimated. It is assumed that during
n = N to n = N + ΔN fatigue cycle, the damage condition of the structure remains unchanged.
The sensor measurements between n = N and n = N + ΔN fatigue cycles are indexed by m =
0, 1, . . . , M . The nth damage level nonlinear dynamic model [23] between environmental input
Un(m) = {Ln(m), Tn(m),Hn(m)} and input strain un(= ε1) at location 1 can be expressed as

xn(m) = gn
u(xn(m − 1), Un(m), dn)(1)

un(m) = hn
u(xn(m), Un(m), dn)(2)

Similarly the nth damage level nonlinear dynamic model between environmental input Un(m) and
output strain yn(= εy) at location 2 can be expressed as

xn(m) = gn
y (xn(m − 1), Un(m), dn)(3)

yn(m) = hn
y (xn(m), Un(m), dn)(4)

where the superscript n represents the nth damage level, xn(·) represents the nth damage level
hidden states, dn is the quantitative value of damage condition at nth damage level, Un(m) =
{Ln(m), Tn(m),Hn(m)} represents the input environmental conditions with Ln(m), Tn(m) and
Hn(m), represent the nth damage level load, temperature and humidity, respectively, with lag
coefficient m. Ln(m) is a vector with input from multiple loading sources. In addition gn

(·) and
hn

(·) are two nonlinear mapping functions. In the present work with laboratory test condition there
is not much change in temperature and humidity. Because of this in numerical validation of the
developed techniques the temperature and humidity variables will not considered. However, for
generality temperature and humidity variables are included in the discussed theoretical formulation.
It is also to be noted that in the present formulation time is not explicitly considered as an input
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variable. However, for time dependant degradation cases such as in case of creep damage, time has
to be considered as additional input parameter. For example with applied mechanical and thermal
load the input variable can be represented as Un(m) = {Ln(m), Tn(m),Hn(m), n}. Again to note
that, in the present formulation it is assumed that during n = N to n = N + ΔN fatigue cycle, the
damage condition of the structure remains unchanged. If time dependant creep damage has also to
be considered between n = N and n = N + ΔN fatigue cycles the input variable can be further
modified as Un(m) = {Ln(m), Tn(m),Hn(m), n(m)}.

2.1.2. Nonlinear dynamic modeling using Bayesian Gaussian Process. Nonlinear dynamic modeling
and signal processing have been gaining increased interest from researchers in recent years. Nu-
merous researchers have contributed to the development and increased understanding of these fields
[13]. Examples of different nonlinear models are with smooth nonlinearities, multiple-values nonlin-
earities, (e.g., hysteresis), non-smooth nonlinearities with discontinuities. The smooth nonlinearities
can be represented by polynomial models. To describe a polynomial nonlinear system, the Volterra
expansion has been the most widely used model for the last thirty years. The continuous-time
Volterra filter model is based on Volterra series expansion. However the Volterra kernel nonlin-
ear model is computationally intensive for highly nonlinear systems. In addition, polynomial type
Volterra methods are more suitable to model smooth nonlinearity. However fatigue damage consists
of multiple-valued nonlinearities, e.g., hysteresis effect, in stress-strain relation and requires a better
robust approach to model it. The Bayesian Gaussian Process (GP) model [4, 9, 17] can be use-
ful for modeling the nonlinear dynamics associated with the individual discrete damage instances.
Using GP based high-dimensional kernel transformation, the nonlinear relation between the input
environmental loading Un(m) = {Ln(m), Tn(m),Hn(m)} and the input/output strain (i.e un(= ε1)
or yn(= ε2) can first be mapped in a high-dimensional space. The high-dimensional transformation
is performed using assumed kernel functions [4, 9, 17]. It is assumed that in the transformed high-
dimensional space the input environmental load and the input/output strain follow a linear relation.
In the high-dimensional space the mapping between the new transformed input X = Φ(Un(m))) and
observed input/output strain (i.e un(= ε1) or yn(= ε2) can be modeled as a Markovian model. It
is to be noted that the high-dimensional mapping is performed in a subtle Bayesian framework and
the mapped input-output relation cannot be directly envisioned. With first order Markov dynamics
assumption and considering process noise ϑn

(·) the equivalent form of Eq. (1 and 2) for input strain
un(= ε1) at location 1 can be expressed as

Xn(m) = gn
u(Xn(m − 1), dn;An

u) + ϑn
X(m)(5)

un(m) = hn
u(Xn(m), dn;Bn

u ) + ϑn
u(m)(6)

and for output strain yn(= ε2) at location 2 can be expressed as

Xn(m) = gn
y (Xn(m − 1), dn;An

y ) + ϑn
X(m)(7)

yn(m) = hn
y (Xn(m), dn;Bn

y ) + ϑn
y (m)(8)

where Xn(m) ∈ Rd denotes the d-dimensional latent coordinates at mth lag coefficient of the nth

damage level. Also ϑn
(·) is the zero-mean, white Gaussian process noise, gn

(·) and hn
(·) are nonlinear

mapping functions parameterized by An
(·) and Bn

(·) respectively. The nonlinear mapping functions
gn
(·) and hn

(·) at nth damage level can be expressed as linear combination of basis functions φ and ψ

and is expressed as below.
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gn
(·)(X

n(m − 1), dn;An) =
∑

i

An
i φn

i(9)

hn
(·)(X

n(m − 1), dn;Bn) =
∑

j

Bn
j ψn

j(10)

where An = {An
1 , An

2 , . . . , An
M} and Bn = {Bn

1 , Bn
2 , . . . , Bn

M} are weights. In order to fit the param-
eters of this model to training data, one must select an appropriate number of basis function i.e., in
other way to select the proper order of the system. One must ensure that there is enough data to
constrain the shape of the basis functions. Ensuring enough data and finding the proper order of
the system can be very difficult in practice. However, from a Bayesian perspective, the specific form
of mapping function gn

(·) and hn
(·) are incidental and therefore should be marginalized out. Following

GP regression modeling [4, 9, 17], the discrete short term time-series measurements at nth damage
level can be modeled for the input strain un(= ε1) as

f(un|{Xn
m}m=1,...,M ) =

1
(2π)M/2

√
detKn

u

exp[−
1
2
(un − μu)T (Kn

u)−1(un − μu)](11)

Similarly for output strain yn(= ε2) as

f(yn|{Xn
m}m=1,...,M ) =

1

(2π)M/2
√

detKn
y

exp[−
1
2
(un − μy)T (Kn

y )−1(un − μy)](12)

where un = [un(m = 1), un(m = 2), . . . , un(m = M)] or un = [εn
1 (m = 1), εn

1 (m = 2), . . . , εn
1 (m =

M)] is the short term input time series at nth damage level. Similarly yn = [yn(m = 1), yn(m =
2), . . . , yn(m = M)] or yn = [εn

2 (m = 1), εn
2 (m = 2), . . . , εn

2 (m = M)] is the short term output time
series at nth damage level. In addition Kn

u and Kn
y are M × M kernel matrices with respect to

X → u and X → y mappings. The elements of kernel matrix can be found using assumed kernel
functions. There are different types of kernel functions (e.g., constant kernel, Radial basis kernel,
Multilayer perceptron kernel, etc.) [21]. From the modeling point of view the choice of kernel should
best suit our data. In the present application Multilayer perceptron (MLP) kernel is used. It is to
be noted that the MLP kernel is a non-stationary kernel and is assumed that the MLP kernel will
be more suitable to model a non-stationary fatigue damage process, particularly if the damage state
does not remain constant between n = N and n = N + ΔN fatigue cycles. The elements of nth

damage level kernel matrix can be found using MLP kernel function as shown below.

(Kn
(·))i,j = k(Xi,Xj) = k(Φ(Ui),Φ(Uj))

= (θn
(·))pSin−1

UT
i (θn

(·))wUj√
(UT

i (θn
(·))wUi + 1)(UT

j (θn
(·))wUj + 1)

+ (θn
(·))ϑ

(13)

In Eq. (13), (θn
(·))p, (θn

(·))w, (θn
(·))ϑ are the process, width and noise hyperparameters, respectively.

There are two sets of hyperparameters: Θn
u = {(θn

u)p, (θn
u)w, (θn

u)b, (θn
u)ϑ} for X → u mapping and

Θn
y = {(θn

y )p, (θn
y )w, (θn

y )b, (θn
y )ϑ} for X → y mapping and can be found by minimizing the following

two negative log-likelihood functions.

276

2010 Conference on Intelligent Data Understanding



Γn
u = −

1
2
logdetKn

u −
1
2
(un)T (Kn

u)−1un −
M

2
log2π(14)

Γn
y = −

1
2
logdetKn

y −
1
2
(yn)T (Kn

y )−1yn −
M

2
log2π(15)

2.2. Time-series fatigue damage state estimation. Above subsection discussed how to estimate
the nonlinear dynamic model for any individual damage instance. This subsection discusses how to
estimate the time-series damage states at individual damage instances. The estimation of dynamic
model for any individual damage instance is a fast scale dynamical system identification problem.
Compared to this, the time-series damage state estimation for entire fatigue life is a slow scale
dynamical system identification problem. The process for time-series damage state estimation for
the entire fatigue life is discussed below.

2.2.1. Reference model estimation. Given the reference environmental condition U0(m) = {Ln(m), Tn(m),Hn(m)}
and input strain u0(= ε01) and output strain y0(= ε02) the reference nonlinear dynamic models H0

U→u

(to estimate Θ0
u) and H0

U→y (to estimate Θ0
y) can be estimated by minimizing the respective reference

condition negative log-likelihood functions given below.

Γ0
u = −

1
2
log det K0

u −
1
2
(u0)T (K0

u)−1u0 −
M

2
log2π(16)

Γ0
y = −

1
2
log det K0

y −
1
2
(y0)T (K0

y)−1y0 −
M

2
log2π(17)

In Eq. (16 and 17) the kernel matrix can be written in the functional form as

K0
u = Ω(U0, u0, k(Xi,Xj))(18)

K0
y = Ω(U0, y0, k(Xi,Xj))(19)

In Eq. (18 and 19) k(Xi,Xj) is the assumed kernel function given in Eq. (13).

2.2.2. Current damage level dynamic strain mapping. Once the reference (n = 0) level dynamic mod-
els H0

U→u and H0
U→y are estimated, for a new environmental conditions Un = [Un(m = 1), Un(m =

2), . . . , Un(m = M)]T , the corresponding input strain un
p = [un

p (m = 1), un
p (m = 2), . . . , un

p (m = M)]
and output strain yn

p = [yn
p (m = 1), yn

p (m = 2), . . . , yn
p (m = M)] can be predicted using the proba-

bility density function (pdf)given below.

f(un
m|Θ0

u,K0
u,Xn(m)) = N

[
μu(m), σ2

u(m)
]
;m = 1, 2, . . . , M(20)

f(yn
m|Θ0

y,K0
y,Xn(m)) = N

[
μy(m), σ2

y(m)
]
;m = 1, 2, . . . , M(21)

where Xn(m) = Φ(Un(m)) is the high dimensional transformation of the new environmental input
Un(m) at nth damage level. N represents the Gaussian distribution with mean

μu(m) = (kn
u(m))T (K0

u)−1u0 ; m = 1, 2, . . . , M(22)

μy(m) = (kn
y (m))T (K0

y)−1y0 ; m = 1, 2, . . . , M(23)

and variance

σ2
u(m) = κn

u(m) − (kn
u(m))T (K0

u)−1u0 ; m = 1, 2, . . . , M(24)

σ2
y(m) = κn

y (m) − (kn
y (m))T (K0

y)−1y0 ; m = 1, 2, . . . , M(25)
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where (M ×M) K0
(·) matrix, (M ×1) kn

(·)(m) vector and scalar κn
(·)(m) can be found using the larger

(M + 1 × M + 1) partitioned matrix given below.

Kn
(·)(m) =

[
K0

(·) kn
(·)(m)

(kn
(·)(m))T κn

(·)(m)

]
; m = 1, 2, . . . , M(26)

Following Eq. (20 - 26) the predicted input strain at nth damage level can be rewritten as un
p =

[μn
u(m = 1), μn

u(m = 2), . . . , μn
u(m = M)] and output strain given as yn

p = [μn
y (m = 1), μn

y (m =
2), . . . , μn

y (m = M)]

2.2.3. Current damage level error signal estimation. Due to damage the nonlinear dynamical model
given by Eq. (1 - 4) will change from one damage level to other damage level. However if the
dynamic model parameter is kept fixed (as reference model parameter), the nth damage level pre-
dicted input strain un

p will not be same as the actual input strain un
a (measured in real-time from

the corresponding sensors). Similar is the case for the predicted output strain yn
p . The error in

predicted signal and actual signal at a given damage level can be a measure of the damage state at
that damage level. The error signals en

(·) for both the input and output strain are given as

en
u(m) = un

a(m) − un
p (m) ; m = 1, 2, . . . , M(27)

en
y (m) = yn

a (m) − yn
p (m) ; m = 1, 2, . . . , M(28)

2.2.4. Time-series damage state estimation. Once the error signal with respect to the input and
output strain are estimated the corresponding scalar damage index an at nth damage level can be
estimated using either of the following two damage index formulations. The expression for root
mean square error based damage index is given as,

an =

√√√√ 1
M

m=M∑
m=1

[en
(u or y)(m)]2 ; n = 1, 2, . . . , N − ΔN,N,N + ΔN(29)

where en
(·)(m) are the error signals as described in Eq. (27) and (28). This damage index formulation

can depend on either the input error signal (en
u(m)) or the output error signal (en

y (m)). A second
damage index formulation using both the input error signal (en

u(m)) and output error signal (en
y (m))

is described below. This damage index is based on our previous work[11] for online damage state
estimation under constant amplitude fatigue loading in which, the damage index was formulated
by directly correlating the input dynamic strain (un(m) = εn

1 (m)) with the corresponding output
dynamic strain (yn(m) = εn

2 (m)). In contrast to the present random loading case, the damage index
is formulated by correlating the input error signal (en

u(m)) with output error signal (en
y (m)). The

expression for the developed damage index is given below.

an =

√√√√∑m=M

m=−M (γn
euey

(m) − γ0
euey

(m))2∑m=M

m=−M (γ0
euey

(m))2
; n = 1, 2, . . . , N − ΔN,N,N + ΔN(30)

where γn
euey

(m) is the mth lagged cross correlation coefficient between the error signal eu and ey.
Superscripts ′n′ and ′0′, represent the nth and reference state damage levels, respectively. It is to
be noted that the reference damage level does not have to be the healthy condition of a structure.
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3. Results and Discussion

Validation of the numerical model described in the previous section is a complex task. The ”de-
scribed” numerical prediction must to be validated by experimental results. Towards the validation
goal, a fatigue test was conducted under biaxial random load. Using the real-time test data, damage
states were estimated at different fatigue damage levels. The details of the numerical exercise are
discussed below.

3.1. Fatigue experiment and data collection. The experimental validation of the developed
model was carried out using data from fatigue tests performed on an Al-2024-T351 cruciform spec-
imen under biaxial random loading. The cruciform specimen loaded in an MTS biaxial fatigue test
frame can be seen in Figure 3. The specimen was instrumented with strain gauges as shown in
Figure 4A. Two strain gauge rosettes are placed at different locations to measure the input strain ε1
and the output strain ε2, respectively. In the present case, the individual strain gauges of the 3-axis
rosette gauges are aligned along the X-axis, 45o to X-axis and Y-axis of the MTS frame, respectively.
Although in a typical application it is not necessary to follow any particular alignment direction,
for better correlation of sensor signals the input and output rosettes should be placed parallel to
each other. Figure 4A also shows the healthy condition of the cruciform specimen, while Figure 4B
shows its failed condition. To accelerate the crack propagation, a 1.5 mm EDM notch was made
at the bottom right boundary of the central hole. Also, to further accelerate the crack growth, the
specimen was fatigued under constant cycle loading (maximum load of 4800 lbf and minimum load
of 480 lbf), to achieve a visible crack (in front of the EDM notch) length of 1-2 mm. Then the
specimen was tested under biaxial random loading. From the finite element stress analysis results
the yield load was found to be 7200 lbf. Based on this limiting yield load, random load patterns
were generated. The original patterns were generated using MATLAB and then coded to the MTS
controller. Typical 1 block (equivalent of 300 cycles) of original random load pattern is shown in
Figure 5. In the present random loading case all the blocks are non-repetitive which means that
each block is different from every other block. The random loading patterns were generated using
MATLAB while maintaining the maximum load limitat equal to 80 percent of the yield load and
minimum load limited to 6.6 percent of the yield load. For every random loading block strain gauge
signals and MTS load cell signals were acquired using a 48-channel NI-PXI data acquisition system
(Figure 3). During testing both the X and Y-axis load frame actuators were programmed to operate
at the same phase with a cyclic frequency of 10Hz. However, to capture high-frequency damage
signatures, the strain gauge signals were acquired at a 1000 Hz sampling frequency. In order to
maintain same data length, the MTS X and Y-axis load cell signals were also acquired with the
same sampling frequency. The load cell and strain gauge measurements for a typical (healthy or
reference state) random load block is shown in Figure 6. Part of the data based on Figure 6 is shown
in Figure 7 in a magnified form. It is to be noted that, in the present work, the GP state estimation
approach only requires relative strain signals at different locations. Hence it was not necessary to
acquire the true or absolute strain field of the structure and so the strain gauges were not calibrated.
Figures 6 and 7 show the uncalibrated strain signals.

3.2. Time-series damage state estimation. An approach for estimating the current damage
level (nth damage level) input and output error signals was presented in theoretical section. The
estimated error signals at different damage levels can be used to estimate the corresponding scalar
damage states. The individual damage states can be estimated using either the root mean square
error (RMSE) based damage index or the correlation analysis (CRA) based damage index given in
Eq. (29) and Eq. (30). The normalized damage states estimated using root mean square error based
damage index formulation is shown in Figure 8. The normalized damage states estimated using both
input strain error signal as well as output strain error signal are shown. In addition, the figure shows
the normalized crack length estimated from the visual image captured by a high resolution camera.
It is to be noted that the random loading fatigue test was started with a pre-cracked (with 1.5 mm
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Figure 3. Biaxial testing experimental setup. The figure shows a MTS biax-
ial/torsion frame mounted with an Al-2024 cruciform specimen.

Figure 4. A) Instrumented Al-2024 undamaged cruciform specimen. Two 3-axis
rosette strain gauges were placed on both sides of the crack path to monitor dynamic
strain. B) Damaged Al-2024 cruciform specimen.

crack in front of 1.5mm EDM notch) specimen. In the pre-cracked specimen a stable crack grew up
to the bottom wedge boundary resulting in a total length of 43.1 mm (Figure 4B) then a second
crack started at the top edge of the central hole. The stable crack (equivalent to 43.1 mm crack
length) reached the bottom boundary of the central wedge in approximately 380680 fatigue cycles.
The second crack growth was unstable and grew to a total length of 28 mm (Figure 4B) within
3320 fatigue cycles. Figure 8 shows only the time-series damage state estimation in the stable crack
growth regime. For proper comparison the estimated damage states from both proposed SHM model
and visual images are normalized against their maximum value. From Figure 8 it can be seen that
the estimated damage states using the input strain error signal follows a similar trend as that of
estimated damage states using the output strain error signal. However, it can be seen that except
during the final failure regime, the estimated damage states do not follow the trend of normalized
visual measurements. A similar trend in estimated damage states only during the final failure regime
is also observed by other works [22, 8]). However it is clear that it is better to identify the fault
trend long before the final failure regime. The correlation analysis based damage state estimation
given by Eq. (30) can be used to improve the prediction horizon. The estimated damage states
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Figure 5. 1-block of random load. Each block of random load is equivalent to
300 fatigue cycles. Individual random load blocks were generated using MATLAB
random number generator.
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Figure 6. Plot of the raw sensor signals collected at a typical (reference or healthy
state) damage level. The plot shows both load cell (from MTS frame X and Y-axis
load cells) measurements and signals from different strain gauges.

using Eq. (30) is shown in Figure 9. It can be seen that there is a very good correlation between
predicted damage states and normalized visual measurements over almost the entire stage-II and III
damage growth regime.
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Figure 7. Magnified version of the time-series signals shown in Figure 6
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Figure 8. Time-series damage states using root mean square error (rmse) based
damage index

4. Conclusion

A passive sensing based SHM technique has been developed to estimate the real-time fatigue
damage state of complex structures subjected to random fatigue loading. The methodology uses
the predicted and actual dynamic strains at two different locations in the structure. Ideally these
locations are positioned on opposite sides of the damage path. First, individual reference condition
dynamic models are estimated by mapping the reference condition applied load with the reference
condition estimated equivalent strain. The reference condition equivalent strains are estimated
using the measurements from 3-axis strain gauge rosettes placed at the corresponding locations.
The reference condition dynamic models are estimated using Bayesian Gaussian process approach.
Once the reference models are estimated, the dynamic strains are predicted for any applied load at
any given instant of time using these models. The predicted strains are compared with the actual
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Figure 9. Time-series damage states using correlation analysis (CRA) based dam-
age index

sensor measurements to estimate the corresponding error signals. Finally the error signals at the
two locations are correlated to estimate the corresponding fatigue damage state. The approach
is demonstrated for time-series damage state estimation of an Al-2024 cruciform test structure
subjected to biaxial random fatigue loading. To verify the accuracy of the approach, the predicted
damage states are compared with the actual damage states estimated using visual images. The
comparison shows a good correlation between the predicted and actual time-series damage states
almost over the entire stage-II and III crack growth regime. Further improvement of the prediction
accuracy can be achieved by using global optimization and advanced signal processing techniques.
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