Improving Cause Detection Systems with Active Learning

Isaac Persing and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Cause Identification

- determines **why** the incident described in an incident report in the ASRS database occurred

- A text categorization task
 - NASA researchers have identified 14 causes (or *shaping factors*) that could explain why an incident occurred
 - **Goal**: given an incident report, determine which of a set of 14 shapers contributed to the occurrence of the incident
Shaping Factors (Posse et al., 2005)

- **Proficiency**
 - general deficit in capabilities
 - inexperience, lack of training, not qualified, …

- **Physical Factors**
 - pilot ailment that could impair flying
 - being tired, drugged, ill, dizzy, …

- **Resource Deficiency**
 - absence, insufficient number, or poor quality of a resource
 - overworked or unavailable controller, insufficient or out-of-date chart, malfunctioning or missing equipment
Shaping Factors (Cont’)

- Attitude
- Physical Environment
- Communication Environment
- Familiarity
- Pressure
- Preoccupation
- Taskload
- Duty Cycle
- Illusion
- Unexpected
- Other
Cause Identification is Challenging

- No publicly available labeled data

- Skewed class distributions
 - some shapers occur a lot more frequently than the others
 - 10 of the 14 shapers are minority classes

- Multi-label categorization
 - an incident may be caused by more than one factor
Cause Identification is Challenging

- No publicly available labeled data

- Skewed class distributions
 - some shapers occur a lot more frequently than the others
 - 10 of the 14 shapers are minority classes

- Multi-label categorization
 - Recast the 14-class classification task as a set of 14 binary tasks
 - Train each binary (SVM) classifier using a one-vs-all scheme
 - Each report may receive one or more labels
Cause Identification is Challenging

- No publicly available labeled data

- Skewed class distributions
 - Reduce data skewness by oversampling
Cause Identification is Challenging

- No publicly available labeled data

Goal: Improve cause identification by reducing the cost of data annotation via *active learning*
Dataset (1,333 Hand-Labeled Reports)

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Deficiency</td>
<td>30.0</td>
</tr>
<tr>
<td>Physical Environment</td>
<td>16.0</td>
</tr>
<tr>
<td>Proficiency</td>
<td>14.4</td>
</tr>
<tr>
<td>Other</td>
<td>13.3</td>
</tr>
<tr>
<td>Preoccupation</td>
<td>6.7</td>
</tr>
<tr>
<td>Communication Environment</td>
<td>5.5</td>
</tr>
<tr>
<td>Familiarity</td>
<td>3.2</td>
</tr>
<tr>
<td>Attitude</td>
<td>2.4</td>
</tr>
<tr>
<td>Physical Factors</td>
<td>2.2</td>
</tr>
<tr>
<td>Taskload</td>
<td>1.9</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.8</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>1.8</td>
</tr>
<tr>
<td>Unexpected</td>
<td>0.6</td>
</tr>
<tr>
<td>Illusion</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Dataset (1,333 Hand-Labeled Reports)

<table>
<thead>
<tr>
<th>Resource Deficiency</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Environment</td>
<td>16.0</td>
</tr>
<tr>
<td>Proficiency</td>
<td>14.4</td>
</tr>
<tr>
<td>Other</td>
<td>13.3</td>
</tr>
<tr>
<td>Preoccupation</td>
<td>6.7</td>
</tr>
<tr>
<td>Communication Environment</td>
<td>5.5</td>
</tr>
<tr>
<td>Familiarity</td>
<td>3.2</td>
</tr>
<tr>
<td>Attitude</td>
<td>2.4</td>
</tr>
<tr>
<td>Physical Factors</td>
<td>2.2</td>
</tr>
<tr>
<td>Taskload</td>
<td>1.9</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.8</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>1.8</td>
</tr>
<tr>
<td>Unexpected</td>
<td>0.6</td>
</tr>
<tr>
<td>Illusion</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Dataset (1,333 Hand-Labeled Reports)

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Deficiency</td>
<td>30.0</td>
</tr>
<tr>
<td>Physical Environment</td>
<td>16.0</td>
</tr>
<tr>
<td>Proficiency</td>
<td>14.4</td>
</tr>
<tr>
<td>Other</td>
<td>13.3</td>
</tr>
<tr>
<td>Preoccupation</td>
<td>6.7</td>
</tr>
<tr>
<td>Communication Environment</td>
<td>5.5</td>
</tr>
<tr>
<td>Familiarity</td>
<td>3.2</td>
</tr>
<tr>
<td>Attitude</td>
<td>2.4</td>
</tr>
<tr>
<td>Physical Factors</td>
<td>2.2</td>
</tr>
<tr>
<td>Taskload</td>
<td>1.9</td>
</tr>
<tr>
<td>Pressure</td>
<td>1.8</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>1.8</td>
</tr>
<tr>
<td>Unexpected</td>
<td>0.6</td>
</tr>
<tr>
<td>Illusion</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Goal

• Improve cause identification by reducing data annotation cost via active learning
Active Learning

- Have a human annotator annotate only those unlabeled instances that are most informative to the machine learner

 - **Most informative instances**
 - instances whose label the learner is most uncertain about

 - **Margin-based active learning**
 - use an SVM learner to learn a hyperplane
 - unlabeled instances closest to hyperplane are most informative
Margin-Based Active Learning

Input: U: a large pool of unlabeled reports

1. Select 14 reports randomly from U and hand annotate them

2. Train 14 binary SVM classifiers on these labeled reports
 - one classifier for each shaper, using the one-vs-all scheme
 - each report is represented as a vector of unigrams (0/1)

3. Repeat
 - for each hyperplane, select the unlabeled report closest to it
 - hand-label these 14 newly selected reports
 - retrain the 14 classifiers on all of the reports annotated so far
Goal

- Improve this **Margin** baseline by investigating **four** extensions to the active learning framework
Extension 1: Oversampling

Motivation
- Because each binary SVM classifier is trained using a one-versus-all scheme, the training set exhibits class skewness
 - Positive instances outnumbered by negative instances

Solution
- Reduce class skewness by creating synthetic positive instances, as in the BootOS system (Zhu & Hovy, 2007)
- Each binary SVM classifier is trained on an oversampled version of the labeled data set in each active learning iteration
Extension 2: Overall Most Confident

Motivation
- The Margin baseline selects one report *per classifier* on each iteration, but it may be better to select reports that would be beneficial to multiple binary SVM classifiers.
- Relax the “one report per classifier” constraint in the baseline

Idea behind Overall Most Confident (OMC)
- Exploits the multi-labelness of the cause identification task
- On each iteration, it selects the 14 unlabeled reports that *N* of the 14 SVM classifiers are least confident about
 - If *N*=1, we call this extension OMC-1
 - If *N*=2, we call this extension OMC-2
 - modify the way we assign confidence values to the reports
Extension 3: Explore All Words

Motivation
- A good (labeled) training set should contain all relevant features to the task being learned.
- Given that we have a small amount of labeled data, it is unlikely that we can identify all the relevant features.
- The Explore All Words (EAW) extension prefers unlabeled reports containing many unseen words.
Four different versions of EAW

- Version 1: EAW
 - select the 14 unlabeled reports that contain the largest number of unseen unigrams with respect to the set of labeled reports

- Version 2: EAW-\text{df}
 - same as Version 1, but weigh each unigram by its document frequency computed over the set of unlabeled reports
 - Unigrams that appear more frequency may be more important

- Version 3: EAW-\text{tfidf}
 - Same as Version 1, but weigh each unigram by its tf-idf value

- Version 4: EAW-\text{tfidf-\text{df}}
 - combines versions 2 and 3
Extension 4: Document Length

• Motivation
 • Length of a report may tell us something about how desirable it is to have a report labeled
 • But … we are unsure whether we should prefer long or short documents.
 • a short report is less expensive to annotate
 • a long report tends to be associated with more shaping factors
 • provide useful positive instances for multiple binary classifiers
Two versions of Document Length

- Short version
 - select the 14 shortest reports for labeling in each iteration

- Long version
 - select the 14 longest reports for labeling in each iteration
Combining the four extensions

• Extensions 2-4 do not have to be used in isolation.

• How to combine them?
 • Scale the values by each extension to the range of 0 to 1
 • Assign each unlabeled report an overall confidence value that is equal to the sum of the values given by these extensions
 • Select the reports with the lowest confidence values
Evaluation

- 1,333 reports hand-labeled with shaper factors

- 5-fold cross validation
 - using one fold for testing
 - using as unlabeled data reports from the remaining four folds

- Results reported in the form of learning curves
 - F-measure scores micro-averaged over the 14 classes for different amounts of labeled data

- Two baselines
 - Margin
 - Random (passive learner)
Evaluation Goal

- measure the contribution of each extension to performance

How?

1. Start with an active learner that makes use of some version of all four extensions
 - Margin baseline + oversampling + OMC-1 + EAW-tfidf-df + Short
2. Remove the extensions one at a time and observe the effects
Examining Extension 4 (Doc Length)
Examining Extension 4 (Doc Length)

- y-axis: F-measure; x-axis: number of words in labeled reports
Examining Extension 4 (Doc Length)

- Short (Green) and EAW-tfidf-df (Pink) perform the best
Examining Extension 4 (Doc Length)

- Short (Green) and EAW-tfidf-df (Pink) perform the best.
- EAW-tfidf-df seems to have a built-in preference for short reports.
Examining Extension 4 (Doc Length)

- Long (Yellow) is the worst
- Long reports may contain info irrelevant to cause identification
Examining Extension 3 (EAW)

- The EAW extension prefers reports with many words not seen in the labeled set
Examining Extension 3 (EAW)

- 4 versions → 4 ways of assigning weights to unseen words
 - EAW, EAW-\(df\), EAW-tfidf, EAW-tfidf-\(df\)
Examining Extension 3 (EAW)

- EAW (Yellow) and EAW-\text{df} (Light blue) are among the worst performers
 - the two versions of EAW without using tf-idf
Examining Extension 3 (EAW)

- EAW-tfidf-df (Pink) & EAW-tfidf (Light Pink) are the best performers
- tfidf is a good measure of term informativeness
Examining Extension 2 (OMC)

- The OMC extension prefers reports that are informative for multiple classifiers
 - OMC-k: prefers reports that k classifiers are least confident about
Examining Extension 2 (OMC)

- OMC-1 (Yellow) performs comparably to Random
Examining Extension 2 (OMC)

- OMC-2 (Pink), OMC-3 (Light blue), OMC-4 (Light pink) perform poorly
- Prefer reports that lie close to 2, 3, 4 hyperplanes respectively
- Problem: select reports that are less close to any hyperplane
Examining Extension 2 (OMC)

- Using only the first two extensions is not effective
- OMC-1, the best version, performs only comparably to Random
Margin Baseline vs. Random Baseline

- Margin performs worse than Random
- Margin enforces the “one report per classifier” constraint
 - overly constrains the selection of unlabeled reports
Summary

- Explored and evaluated four extensions to a margin-based active learner for cause identification

- In comparison to the Random baseline
 - the Margin baseline performs worse
 - but the four extensions to Margin yield a reduction in annotation cost for achieving reasonable F-scores by over 50%