Complex Networks in Climate Science: Progress, Opportunities and Challenges

Karsten Steinhaeuser

iCeNSA

Nitesh V. Chawla Auroop R. Ganguly

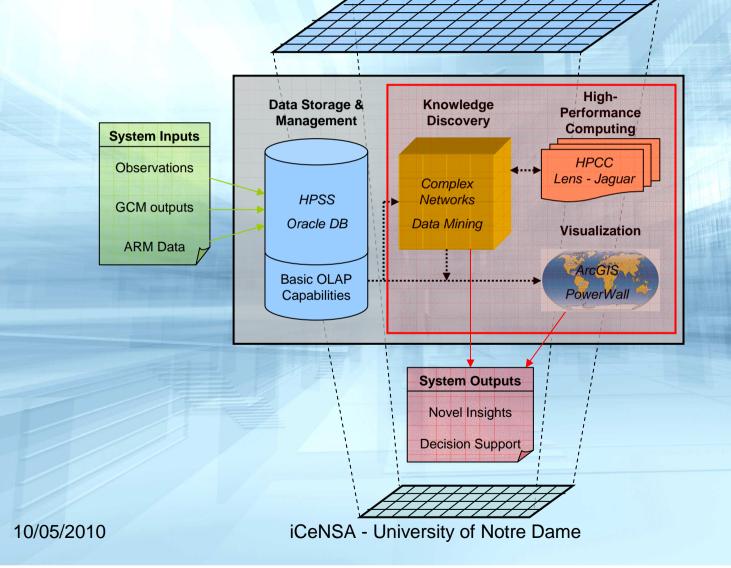
Interdisciplinary Center for Network Science & Applications

October 5, 2010

Outline

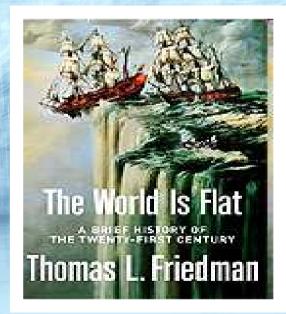
- Motivation
- Data & Methodology
- Network Structure
- Predictive Modeling
- Computational Issues
- Open Questions

Knowledge Discovery for Climate



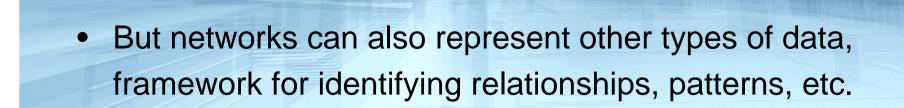
Mining Complex Data

- Complex spatio-temporal data pose unique challenges
- Tobler's First Law of Geography: "Everything is related, but near things more than distant."
 - But are all near things equally related?
 - Are there phenomena explained by interactions among distant things? (teleconnections)



"Networked Thinking"

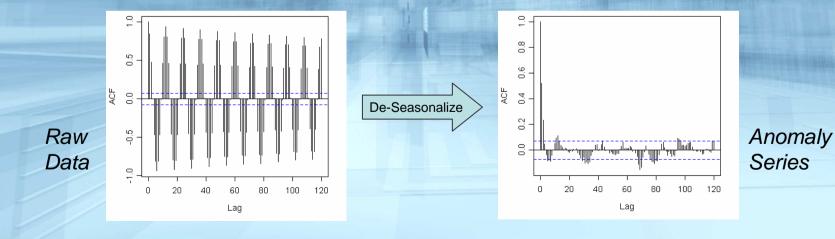
- Networks are pervasive in social science, technology, and nature
- Many datasets explicitly define network structure



Historical Climate Data

- NCEP/NCAR Reanalysis proxy for observation
- Monthly for 60 years (1948-2007) on 5°x5° grid

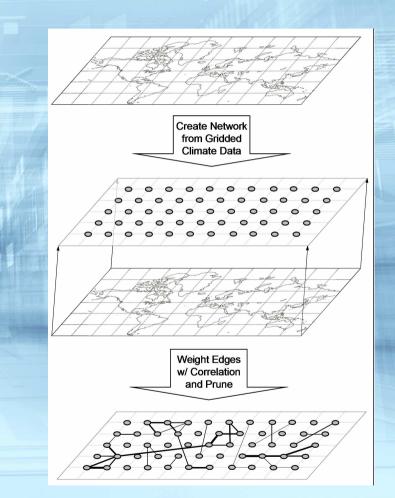
Sea surface temperature (SST), Sea level pressure (SLP) Geopotential height (Z), Precipitable water (PW), Relative Humidity (RH), Horizontal (WSPD) / Vertical (w) wind speed



10/05/2010

Network Construction

- View the global climate system as a collection of interacting oscillators
 - Nodes represent physical locations in space
 - Edges denote correlation in climate variability
- Link strength estimated by correlation, low-weight edges are pruned from the network



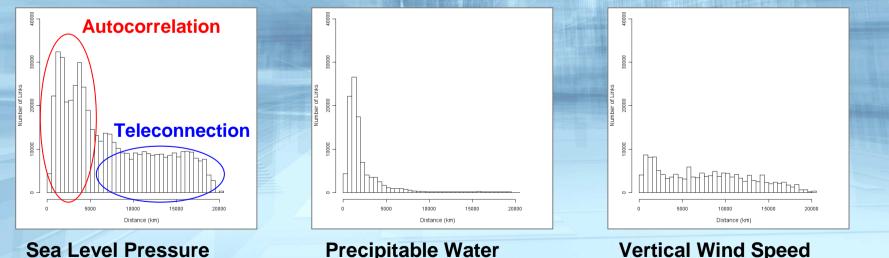
Network Topology

- Small-World (high clustering, short paths)
- Not scale-free (power law exponent $\alpha \sim 1$)

Var.	Nodes	Edges	С	L	α
SST	1,701	132,469	0.541	2.437	1.089
SLP	1,701	175,786	0.629	2.547	1.028
Z	1,701	249,322	0.673	2.436	1.286
PW	1,701	50,835	0.582	4.281	1.152
RH	1,700	25,375	0.559	4.063	1.150
WSPD	1,699	31,615	0.554	4.826	1.127
W	1,701	71,458	0.342	2.306	1.033

Geographic Properties

- Examine network structure in spatial context
 - Link lengths computed as great-circle distance
 - Compare autocorrelation / de-correlation lengths for different variables, interpret within the domain



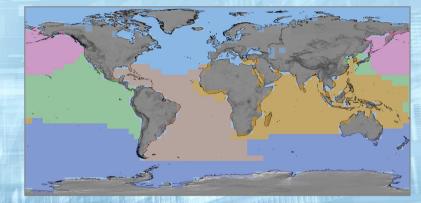
Sea Level Pressure

10/05/2010

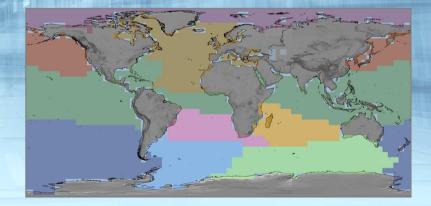
iCeNSA - University of Notre Dame

Clustering Climate Networks

- Apply community detection to partition networks
- Visualize spatial pattern using GIS tools
- Cluster structure suggests relationships within the climate system



Sea Level Pressure



Precipitable Water

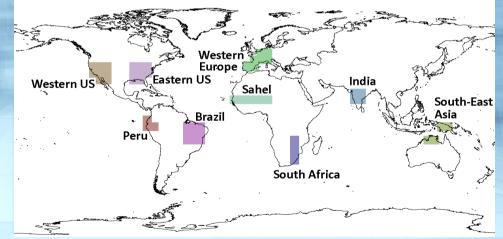
10/05/2010

Descriptive → **Predictive**

- Network representation is able to capture interactions, reveal patterns in climate
 - Validate existing assumptions / knowledge
 - Suggest potentially new insights or hypotheses for climate science
- Want to extract the relationships between atmospheric dynamics over ocean and land – i.e., "Learn" physical phenomena from the data

Case Study: Teleconnections

- Predictive models for ocean-based indicators
- Use network clusters as candidate predictors
- Create response variables for target regions (illustrated below)
- Build regression model relating ocean clusters to land climate

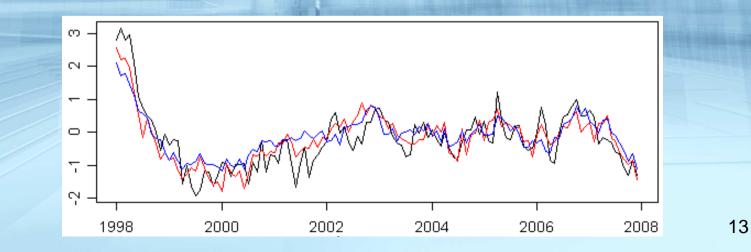


Illustrative Example

- Predictive model for air temperature in Peru
 - Long-term variability highly predictable due to well-documented relation to El Nino
- Small number of clusters have majority of skill

10/05/2010

- Feature selection (blue line) improves predictions



Results on Train/Test

	Region		Network Clusters		K-Means		
					k = 5	k = 10	$k = k_n$
	SE Asia	2	0.541		0.629	0.694	0.886
Ire	Brazil		0.534		0.536	0.532	0.528
atı	India		0.649		0.784	1.052	0.791
era	Peru		0.468		0.564	0.623	0.615
du	Sahel		0.685		0.752	0.750	0.793
Temperature	S Africa		0.726		0.711	0.968	0.734
	East US		0.815		0.824	0.844	0.811
Air	West US		0.767		0.805	0.782	0.926
	W Europe		0.936		1.033	0.891	0.915
	Mean		0.680		0.737	0.793	0.778
	StdDev		± 0.150		± 0.152	± 0.165	± 0.135
	SE Asia		0.665		0.691	0.700	0.684
_	Brazil		0.509		0.778	0.842	0.522
Precipitation	India		0.672		0.813	0.823	0.998
tat	Peru		0.864		1.199	1.095	1.130
bid	Sahel		0.533		0.869	0.856	0.593
eci	S Africa		0.697		0.706	0.705	0.703
Pr	East US		0.686		0.750	0.808	0.685
	West US		0.605		0.611	0.648	0.632
/	W Europe		0.450		0.584	0.549	0.542
	Mean	2	0.631	3	0.778	0.781	0.721
	StdDev		± 0.124		± 0.182	± 0.156	± 0.207
	Friedman Test ($\alpha = 0.05$)				\checkmark	\checkmark	\checkmark

10/05/2010

14

Variations / Extensions

 Compare network approach to traditional clustering methods

- k-means, k-medoids, spectral, EM, etc.

- Compare different types of predictive models
 - (linear) regression, regression trees, neural nets, support vector regression
- Evaluate both model fit and performance on split train/test sets

Computational Issues

- Network Construction
 - 5%5° network has O(10⁶) pairs of nodes, calculating correlations takes thousands of CPU-hours
 - High-resolution data available (both space and time) increases computational complexity
- Predictive Modeling
 - Currently considering only 18 sample target regions, want to predict everywhere (thousands of locations)

Open Questions

- Nonlinearity known to exist in climate, but relevance in network context not fully explored
- Multivariate Relationships must be integrated within networks for realistic representation
- Spatio-Temporal Dynamics capture relative stability and/or changes in structure over time
- Predictive Modeling work with domain experts to define relevant predictive tasks

Summary

- Complex networks provide a flexible data representation and powerful analysis tool
- Data mining methods able to extract complex relationships from observed data and potentially augment or suggest new domain knowledge
- Interdisciplinary approach required from problem definition to analysis and interpretation of results

Thanks & Questions

Acknowledgements

National Science Foundation Grant No. 0826958; LDRD Program of the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725.

DIAL Research Group http://www.nd.edu/~dial

Interdisciplinary Center for Network Science & Applications http://icensa.nd.edu

