
Distributed Data Mining
in Peer-to-Peer Networks

Peer-to-peer (P2P) networks are gaining popularity in many applications such as

file sharing, e-commerce, and social networking, many of which deal with rich,

distributed data sources that can benefit from data mining. P2P networks are, in

fact,well-suited to distributed data mining (DDM),which deals with the problem

of data analysis in environments with distributed data,computing nodes,and users.

This article offers an overview of DDM applications and algorithms for P2P

environments, focusing particularly on local algorithms that perform data analysis

by using computing primitives with limited communication overhead. The authors

describe both exact and approximate local P2P data mining algorithms that work

in a decentralized and communication-efficient manner.

LANs, peer-to-peer (P2P) networks,
mobile ad hoc wireless networks
(Manets), and other pervasive distrib-

uted computing environments often
include distributed data and computation
sources. Data mining in such networks
naturally calls for proper utilization of
these distributed resources in an efficient,
decentralized manner. Data mining algo-
rithms that require substantial communi-
cation among the nodes, synchronous
computing nodes, and complete central-
ized control have difficulty scaling in such
distributed environments. Moreover, pri-
vacy concerns and resource issues in mul-
tiparty applications often dictate that data
sets collected at different sites be analyzed
in a distributed fashion without collecting
everything to central sites. Most off-the-
shelf data mining products are designed to
work as monolithic centralized applica-
tions, downloading relevant data to cen-

tralized locations to perform data mining
operations, but this centralized approach
doesn’t work well in many emerging dis-
tributed data mining applications.

Distributed data mining (DDM) offers an
alternate approach to address this problem
of mining data using distributed resources.
DDM pays careful attention to distributed
data, computing, communication, and
human resources to use them in a near-
optimal fashion. Distributed P2P systems
are emerging as a solution of choice for a
new breed of applications such as file shar-
ing, collaborative movie and song scoring,
electronic commerce, and surveillance
using sensor networks. DDM is gaining
increasing attention in this domain for
advanced data-driven applications.

This article presents an overview of
efforts to use DDM technology in P2P net-
works. Our goal is to present a high-level
introduction to this field with pointers for
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further exploration. We illustrate the ideas using
some exact and approximate DDM algorithms.

P2P Data Mining:Why Bother?
The term “data mining” generally implies analysis
of large databases to detect useful patterns. In most
commercial applications, data mining systems run
as vertical applications on top of large centralized
data warehouses. Although this model serves well
for many applications, including customer-rela-
tionship management and financial fraud detec-
tion, many emerging domains such as P2P systems
call for new thinking. High-speed network con-
nectivity and cheap digital storage and data-
recording devices are increasing the popularity of
P2P networks such as the e-Mule and Kazaa file-
sharing networks, which are based on point-to-
point connections without central servers. Such
networks host a substantial array of widely vary-
ing data, collected from different sources and dis-
tributed over large numbers of peers. If integrated,
that data would present a valuable repository for
mining, but computational resource constraints,
privacy issues, and so on make it difficult to inte-
grate distributed data into one repository.

Many popular Web servers use Web-mining
applications to analyze and track users’ click-stream
behavior. Now imagine client-side Web mining that
did the same for Web site visitors (rather than host
servers) by analyzing the browsing histories of
many users connected via a P2P network. Today,
site visitors have no direct access to the results of
Web mining algorithms running on the servers, but
a client-side P2P Web-mining algorithm could
empower visitors with click-stream data mining for
advanced applications such as P2P search, interest-
community formation, and P2P-based electronic
commerce. Figure 1 illustrates such a case, in which
the application categorizes visited URLs according
to three subjects (movies, baseball, and hurricanes)
by exchanging information with other peers. Clear-
ly, maintaining users’ privacy will be an important
issue in such applications, and the field of privacy-
preserving DDM might offer some solutions.1

Although most current P2P networks deal pri-
marily with file-sharing applications (for music
and movies, for example), in this article, we con-
sider a P2P network to be any large, serverless net-
work with point-to-point connections. This opens
up other potential application areas for P2P data
mining, including mobile ad hoc networks
(Manets), sensor networks, and federated databas-
es without central coordinator sites. These appli-

cation areas differ in some respects, but all would
benefit from data-analysis and mining algorithms
that could operate effectively on dynamic, large-
scale P2P networks. 

The computational environment in P2P sys-
tems differs dramatically from those for which tra-
ditional centralized data-mining algorithms were
intended. Some important requirements include:

• Scalability. Modern P2P systems can include
millions of peers, which makes scalability the
foremost requirement for data-mining algo-
rithms. Computational and communication
(bandwidth) resource requirements should ide-
ally be independent of system size, or at least
bounded by a function that grows slowly with
increases in system size.

• Availability. Because data can change at some
peers during computation, the algorithms must
work incrementally and should be able to
report partial, ad hoc solutions at any time.

• Asynchronism. Algorithms developed for P2P
system shouldn’t depend on global synchro-
nization; any attempt to synchronize an entire
network is likely to fail due to connection
latency, limited bandwidth, or node failure.

• Decentralization. Although some P2P systems
still use central servers for various needs, next-
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Figure 1. Example client-side P2P Web-usage-mining application.
Client-side P2P Web-mining algorithms could enable an application to
cluster every peer's browsing history into three categories (baseball,
hurricane, movies) based on information exchanged with other peers.
The application would update each peer’s profile according to the
number of visited Web pages in each category, and use the profile to
form Internet groups of peers with common interests.
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generation P2P algorithms might need to run
without any coordinator (server or router) and
calculate results in-network rather than collect
data in a single peer.

• Fault tolerance. Given that multiple peers can
leave or join a P2P system at any given
moment, algorithms must be robust enough to
let systems recover from peer failures and sub-
sequent data loss.

• Privacy. Privacy is an enabling factor that lets

users contribute data without fearing conse-
quences such as revealing sensitive informa-
tion. This is particularly important with
multiparty applications, such as P2P network
surveillance for threat management, commu-
nity formation, and match-making.

• Security and trust. As with any large distrib-
uted system, security is a crucial issue in P2P
data mining because exchanging information
with other peers can increase a peer’s vulnera-
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P2P Data Mining’s Evolution

P2P data mining is a new field that has
grown out of distributed data mining

(DDM),which itself is a fairly new research
area.DDM has evolved over the past five to
10 years as an effort to introduce distrib-
uted versions of many standard data mining
algorithms, such as association-rule mining,
Bayesian network learning, and clustering.
However,most such efforts assume a stable
network and data, and so they can’t be
applied directly to P2P network conditions.

Given that researchers can, in principle,
develop efficient complex algorithms by
applying efficient primitives, many P2P data-
mining efforts have focused on developing
primitive operations (average,sum,max,ran-
dom sampling,and so on), laying a foundation
for more sophisticated data analysis and min-
ing algorithms Wojtek Kowalczyk and col-
leagues developed the newscast model and
used it to calculate mean of data distributed
in P2P networks.1 They relied on empirical
accuracy results rather than guaranteed cor-
rectness. In another approach using an epi-
demic model of computation, David Kempe
and colleagues investigated gossip-based ran-
domized algorithms for computing aggregate
information and proved that aggregate esti-
mation error probability is zero when algo-
rithms run uninterrupted.2 Mayank Bawa
and colleagues developed an approach for
evaluating similar primitives within a speci-
fied error margin.3

In contrast to these approaches, which
all require resources that scale directly with
system size local algorithms4 can compute
results and make definite claims regarding
correctness using information from just a
handful of nearby neighbors in a P2P system.

The resources required by such algorithms
are often independent of system size,which
presents obvious benefits for scalability and
fault tolerance. However, local algorithms
apply to a limited class of functions.

Various researchers have focused on
developing local algorithms for primitive
operations.Mortada Mehyar and colleagues
used a Laplacian-based approach to com-
pute the average of data points distributed
over a P2P network.5 Ran Wolff and Assaf
Schuster developed a local algorithm for
computing the majority vote over a P2P
network.6 They’ve subsequently used the
primitive to develop local algorithms for
more complicated problems, including K-
facility location,7 which is finding the k-best
gateways for information exchange in a
sensor network, and association-rule min-
ing,6 (deriving associations between attrib-
utes when data is homogeneously
distributed in a P2P network). Ran Wolff,
Kanishka Bhaduri, and Hillol Kargupta have
also proposed algorithms for monitoring 
K-means clustering in P2P networks.8

Although Brian Babcock and Chris Olston
addressed a similar problem earlier, their
approach assumed a centralized coordina-
tor site and a hierarchical topology for
effective monitoring and global conflict res-
olution.9 They also focused on detecting
change in top k-ranked entities in a distrib-
uted scenario, whereas this work
(described in the main text) is designed to
monitor any shift in existing clusters.8

Souptik Datta and colleagues have focused
on developing approximate local algorithms
for solving data-mining problems such as K-
means clustering in P2P networks.10
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bility to network threats such as denial of ser-
vice or selfish behavior. Trust management is
also likely to be an important issue because
users of P2P systems must deal with peers they
might not have directly interacted with other-
wise. In a mobile vehicular ad hoc network
(Vanet), for example, a vehicle might need to
communicate with a group of nearby vehicles
that changes every few minutes.

We now turn our attention to algorithms for P2P
data mining, focusing particularly on local algo-
rithms, which perform computations by commu-
nicating information only with neighbor nodes.
Approaching these algorithms from a computa-
tional perspective, we distinguish between exact
and approximate approaches.

Algorithms for P2P Data Mining
A P2P algorithm is unlikely to scale if it requires
that every node communicate with every other
node in the network. Unfortunately, many data
mining tasks on P2P networks demand this very
situation. Consider, for example, a P2P network in
which every node has a data tuple and our goal is
to compute the distance matrix (in some metric
space) where the (i, j)th entry represents the dis-
tance between tuples stored at the ith and jth
nodes. To compute this in an exact manner, we
have little choice but to exchange information
between every possible pair of peers. One solution
is to make sure that every node talks to every other
node in the network and computes the corre-
sponding pair-wise distance, but that approach
might not scale in P2P networks with millions of
nodes. On the other hand, we might be able to
approximate the problem and eliminate the need
for such an extensive communication load.2 For
example, we could identify only the significant
entries of the distance matrix and develop an effi-
cient P2P algorithm that doesn’t necessarily
require exchanging information between every
pair.2 Many other problems are inherently decom-
posable and don’t require that every node directly
share data with every other node in the network.

The notion of locality is very important in
developing P2P algorithms because it facilitates
P2P data mining in a scalable manner through a
collection of local computations. Consider a P2P
network represented by a graph in which nodes
represent peers and edges represent the links
between them. Let G = (V; E) be the graph repre-
senting the network in which V denotes the set of

nodes and E represents the edges between them.
The �-neighborhood of a vertex v � V is the col-
lection of vertices at distance � or less from it in G:
��(v; V) = {u|dist(u; v) � �}, where dist(u; v)
denotes the length of the shortest path between u
and v, and a path’s length is defined as the number
of edges in it. Let each node v � V store a data set
Xv. An �-local query by some vertex v is a query
whose response can be computed using some func-
tion f (X�(v)), where X�(v) = {Xv|v � ��(v; V )} and
the response size is bounded by some constant c.
An algorithm is �-local if it never requires compu-
tation of a �-local query such that � > �. When we
speak of local algorithms, we thus imply �-local
algorithms in which � is a small constant.

In this article, we can broadly classify local
algorithms under two categories:

• Exact local algorithms produce the same results
as a centralized algorithm.

• Approximate local algorithms offer approxi-
mations of the results that a centralized algo-
rithm would produce.

To compare the two, we begin by discussing an
exact local algorithm for majority voting, which
we can use as a primitive for monitoring a K-
means clustering3 — in which the goal is to divide
objects into a fixed number of clusters K while
minimizing the sum of the average distances to the
cluster centroids over all clusters. We then describe
the approximate local algorithm we developed to
offer an alternative solution for incrementally
computing a K-means clustering.

Exact Local Algorithms
In discussing exact local algorithms, we assume an
overlay tree topology is maintained over the P2P
network. Current P2P networks commonly use
such overlay information. This tree structure guar-
antees that the algorithms produce correct
answers, given that peers communicate directly
only with their neighbors in the tree. 

Majority voting. Building on work by Ran Wolff
and Assaf Schuster, the majority-voting problem
serves as a nice primitive from which we can devel-
op more complicated exact local algorithms, such
as frequent-item-set mining.4 In this problem, each
peer Pi holds a number bi (0 or 1) and a threshold �
> 0 (the same threshold for all peers). The peers seek
to collectively determine whether �ibi is above n�
where n is the number of peers in the network. We
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can easily extend the approach described here to
two other general scenarios:

• Each peer has a real number xi and the collec-
tive goal is to decide whether avg(xi) > �.

• Each peer has a pair of real numbers xi, yi and
the collective goal is to decide whether �ixi –
(�iyi)� > 0.

For simplicity we don’t describe these here, but
we’ll use them later when discussing the exact
local algorithm for K-means monitoring and fre-
quent-item-set mining.

Peer Pi communicates only with its neighbors
and uses the information it receives to maintain
estimates of both the global sum Si and the num-
ber of nodes in the network Ci. Based on these esti-
mates, Pi believes that the majority threshold is
met (that is, whether �ibi is above n�) if Si – Ci� >
0; otherwise, it believes the majority is unmet.  We
call this Pi’s threshold belief.

Let Sji denote the most recent sum estimate that
Pi received from its neighbor Pj. Likewise, we
define Cji as Pj’s most recent estimate of total
nodes. The crux of the approach lies in deciding
whether Pi needs to send a message (composition
explained later) to Pj. It must send a message
unless it can be certain that it doesn’t have any
information that will change Pj’s threshold belief.
To make this decision, Pi must estimate Pj’s sum
and count, based on the information it knows for
certain that Pj has — namely, the information that
Pi sent to and received from it: Sij;Cij and Sji, Cji.

If Pi estimates that Pj believes the threshold to be
met is Sij + Sji – (Cij + Cji)� > 0, it doesn’t need to send
a message if its own estimate would only strengthen
the belief (that is, Sij + Sji – (Cij – Cji)� � Si – Ci� ). In
this case, Pi could be certain that it had no informa-
tion that could change Pj’s threshold belief. Similar
reasoning applies if Pi estimates that P doesn’t
believe the threshold to be met. If Pi decides to send
a message, it sends all of its information except that
received from Pj about the global sum (that is, Sij is
set to ) and the global count (that
is, Cij is set to ).

This approach is naturally robust to data and
network changes. If its data changes (bi flips), Pi

recomputes Si and Ci and applies the conditions
explained in the preceding paragraph to all its
neighbors. If a neighbor Pj drops out of the net-
work, Pi recomputes Si and Ci without Sji and Cji

and applies the same conditions to all remain-
ing neighbors.

Frequent-item-set mining. The majority-voting
primitive leads directly to a local algorithm for fre-
quent-item-set mining of data distributed over P2P
networks.4 Frequent-item-set mining has gained
great popularity for analyzing centralized data (for
example, determining customers’ buying patterns),
and we believe it also has interesting applications
in analyzing data distributed over P2P networks.5

For example, imagine a P2P music-sharing net-
work in which each peer records the artist name for
all songs downloaded. For recommendation pur-
poses, it might be useful to determine which artists
X and Y tend to be downloaded together. If a user
downloaded a song by X, the system could inform
the user that Y’s songs might be of interest.

Generally speaking, each peer is said to have
an item set if it holds all its items (in the previous
example, a peer that downloaded songs by artists
X and Y would hold itemset {X}, itemset {Y}, and
itemset {X,Y}).  An item set’s support over an
entire network is the total number of peers hold-
ing it. The goal of frequent-item-set mining is to
find all frequent item sets — those whose level of
support is above n�.

Peers can undertake a majority vote to deter-
mine whether any given item set is frequent. To
find all frequent item sets, peers engage in the fol-
lowing procedure.

For each size-one item set (a set containing one
item), the peers engage in a majority vote to deter-
mine if they’re frequent. Next, peer Pi considers the
size-two item sets. For each size-two item set I, if
the peer isn’t currently running a majority vote for
I, but is confident that all the size-one subsets of I
are frequent, the peer initiates a majority vote for
I, which could be frequent though not currently
under consideration. If the peer is currently run-
ning a majority vote for I and is confident that one
of its size-one subsets is infrequent, it stops run-
ning the majority vote. If one of I’s subsets is infre-
quent, then I must also be infrequent, which means
there’s no need to keep it under consideration.

In this way, peers continuously initiate and ter-
minate majority votes for item sets. Provided that
the data and network remain static for long
enough, however, all majority votes will eventu-
ally terminate at which point all peers will know
the precise set of frequent item sets. 

Monitoring a K-means clustering. Large-scale
applications collect P2P system status data (such as
network traffic or user-specific data) as part of their
daily routines. System administrators or common

1 + ≠ ∈Σ� �j N it
C

b Si j N it
+ ≠ ∈Σ� �
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users are often interested in using this status data
to build complex models of the collected data,
which give us insight into system behavior, user
profiles, network conditions, and so on. Some of
these complex predicates includes K-means, eigen-
vectors, eigenvalues, and means of the data. Keep-
ing these models up to date is very important
because data can change frequently, and the model
needs to follow the changes to accurately reflect
current system status. For volatile scenarios in
which data and topology change frequently, peri-
odically centralizing the data to build new data
models can be expensive. The periodic-update
scheme has two major disadvantages. The model is
certain to be inaccurate during the period when the
distribution has changed but the model has yet to
be rebuilt. Moreover, when the distribution changes
infrequently (static periods), this computation mode
unnecessarily rebuilds the same model, thereby
wasting valuable resources. We could potentially
monitor these predicates if we had a local algorithm
that let each peer quickly identify that the current
model no longer represented its data.

Although this work doesn’t solve the problem
of computing a K-means clustering in a distributed
setting, we’ve developed an algorithm for moni-
toring K-means clusters of data distributed over
P2P networks.3 The K-means monitoring algorithm
has two major parts:

• an exact local algorithm that monitors the data
distribution to trigger new runs of the K-means
algorithm as soon as the current centroids no
longer represent the data, and

• sample data collected from the network and
transferred to a central location to compute the
centroids using a standard K-means algorithm.

Simply put, the local algorithm raises an alert if
the centroids need updating. Any peer for which
the alert flag is set sends a sample of its local data
to its parent up the tree topology that’s already
been laid on top of the network. Once the root
node has all the data, it executes a new run of K-
means and ships the new centroids back to all
peers. Henceforth, we focus only on the monitor-
ing part because computing the new centroids and
flooding the network with them is a relatively sim-
ple problem. For ease of discussion, we assume a
2D problem, but extending it to a multidimen-
sional case is straightforward.

Each peer Pi begins with a 2D local data set Sit

at time t, as well as a list of the current centroids

(each of which is a 2D vector) computed by run-
ning the centralized K-means algorithm on the
complete data set. We can think of this initial cen-
troid computation as an offline task that isn’t part
of the distributed algorithm. That said, this step is
necessary so that all peers start with the same ref-
erence point. Pi computes an average of all its data
points as a vector with one average value for each
dimension. It then computes the difference
between the local average vector and the current
centroids to get a vector we call XXi, the knowledge
of Pi. The monitoring problem is to figure out if the
average XXi of all the peers exceeds a user-defined
threshold �. Given that XXi is a vector, we use a
standard metric, popularly known as the L2 norm,
to find the value of XXi. By definition, the L2 norm
of a vector is computed as the square root of the
sum of its individual components. Thus, the prob-
lem becomes: Is the L2 norm of the average vector
less than a user-defined threshold �? If so, the
algorithm doesn’t need to do anything; otherwise,
the current centroids no longer accurately repre-
sent the data, so a new round of K-means is nec-
essary to accurately represent the data.

For the 2D case, the vector’s L2 norm is a circle
(sum of squares of individual components), and we
can view the problem as a way to determine

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 23

Peer-to-Peer Networks

Figure 2. Peer node’s global-average computation. (A) Each peer
begins by trying to bound its local knowledge vector within a circle of
radius �. (B) Seven evenly spaced vectors define tangent planes that
partition the domain outside the circle into half spaces. (C) The
borders of the seven half spaces define polygons in which the circle
is circumscribed.This polygon is our approximation of the circle. (D)
The area between the circle and the union of the half spaces is our
“flooding zone.” If any of the vectors is in this region, the algorithm
forces the peer to flood the network with its local data.

(a)

(b)

(c)

(d)



whether the global average is inside or outside a cir-
cle of radius �. For each peer Pi to decide this local-
ly, the algorithm uses two auxiliary vectors (other
than its local knowledge X) — an agreement vector
(Y) for each pair between Pi and Pj and a withheld-
knowledge vector (Z = X � Y) between each Pi and
Pj. Peers then use the following decision rule: If, for
every peer Pi and all its neighbors Pj, both the
agreement and the withheld knowledge are inside
any convex shape, the global average is as well.

That leaves us three cases to solve:

• In case 1, all three vectors (X, Y, and Z) are
inside the circle.

• In case 2, all vectors are outside. 
• In case 3, some are inside and some are outside.

For case 1, we know from the rule that the global
average is inside if Y and Z are. Hence, if the
knowledge agrees (is inside), the peer knows that
its knowledge is correct and that it can cease send-
ing messages. 

Case 2 presents a different scenario. If we
assume that, for any peer Pi and any neighbor Pj,
both sets of knowledge are outside the circle, we
must still solve to see if the average is inside (the
knowledge vectors could be in opposite directions).
To do so, we use a set of tangent lines. For each peer
Pi with neighbors Pj, if it can identify a tangent line
such that its own knowledge is outside the circle
with respect to the line and the agreement and with-
held knowledge are also outside with respect to the
same tangent line, the global average is also guar-
anteed to be outside the circle. We can still use the
decision-rule here because the tangent line slices the
space into sets of half spaces that are each convex
regions. If for all peers and all neighbors the agree-
ment and withheld knowledge are outside, the glob-
al average is therefore outside as well. Given that
Pi’s current knowledge matches the global average,
it needn’t communicate any further. 

In case 3, Pi must communicate with its neigh-
bors because the rule can’t help it decide whether
the global average is inside or outside. Figure 2
illustrates the details of the peer’s computation
using the circle of radius �. Seven tangent lines
exist, and for every new point that changes its
local knowledge, Pi must test the three conditions
stated above (by projecting its local vectors along
the tangent line if necessary) until it can decide,
based on the local decision rule, that it needs no
more communication. If the point is in the small
space between the circle and the tangent lines, the

peer must communicate all its local knowledge
because this case can’t be solved locally. We can
make this space arbitrarily small with additional
tangent lines, but the computation cost increases
for each peer with the number of lines.

Approximate Local Algorithms
Although many existing local algorithms can even-
tually achieve exact solutions, they’re usually lim-
ited to problems that can be reduced to threshold
predicates. In contrast, approximate local algorithms
can solve more-complicated problems, such as clus-
tering, with approximate solutions that closely esti-
mate the actual solutions. Here, we propose an
approximate P2P K-means clustering algorithm for
data that’s homogeneously distributed over a net-
work (every node observes the same feature set).

Martin Eisenhardt and colleagues previously
addressed K-means clustering in P2P networks
through an algorithm that uses a probe-and-echo
mechanism to produce an exact solution.6 Howev-
er, their approach requires synchronization of all
peers at each iteration and doesn’t account for net-
work or data changes. Our P2P K-means algorithm
relaxes the global-synchronization requirement
and addresses the dynamic aspects of a typical P2P
network. Rather than guarantee that the centroids
at each peer are the same, it’s designed to ensure
that they’re all close to the centroids produced by
a centralized algorithm.

Algorithm Description
Our iterative algorithm7 is based on message
exchange between directly connected peers. It
assumes that every peer knows its immediate
neighbor peers, the termination threshold, and the
value of K (number of clusters). The algorithm is
initiated with a set of randomly chosen centroids
distributed over all peers. In each iteration, every
peer runs a two-step process. 

The first step is identical to an iteration of the
standard K-means algorithm, in which the ith peer
Pi assigns each of its data points to its nearest clus-
ter centroids. After assigning all the data points to
their respective clusters, Pi calculates K local clus-
ter centroids by taking the average of data points
belonging to each cluster, and counts how many
data points are assigned to each of the K clusters
(cluster count). Pi stores these local centroids and
cluster counts to answer queries from its neighbors. 

In the second step, Pi sends a poll message,
comprising its ID and current iteration number, to
its immediate neighbor peers and awaits their
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responses. Each response message from a neigh-
boring peer Pa contains the peer’s locally updated
centroids and cluster counts for the current itera-
tion. Once all Pi’s immediate neighbors respond or
cease to be neighbors, Pi updates K cluster centroids
by taking a weighted average of its own centroid
plus all the centroids it received (using cluster
counts as weights). It then moves to the next itera-
tion of K-means and repeats the whole process.

If the new centroid’s maximum change in posi-
tion after an iteration remains above termination
threshold, Pi goes on to iteration k + 1; otherwise,
it enters the terminated state. 

In addition to executing these steps, each peer
must respond to any polling message received from
its neighbors at any point. If Pi receives a polling
message during its kth iteration from peer Ph, which
is at iteration as long as , Pi sends its local
centroids and counts corresponding to iteration 
. Otherwise, Pi places this poll message in a queue
and checks at every iteration whether its current
iteration equals . The moment Pi finishes its own

th iteration, it responds to Ph’s pending request.
Any peer Pi can enter a terminated state at the end
of iteration k if its cluster centroids change less fre-
quently than the termination threshold. Once Pi is
in the terminated state, it no longer updates its cen-
troids or sends polling messages; instead, it sends
only responses — for example, responding to
polling messages from peer h for iteration by
sending its local centroids and counts correspond-
ing to iteration . Therefore, once all peers
enter the terminated state, all communication ceas-
es and the algorithm terminates.

The algorithm includes a simple mechanism to
detect and adjust to network and data changes:
any peer joining the network can synchronize its
clustering computation with the ongoing cluster-
ing computation in the network by starting from
the minimum iteration of K-means in its neigh-
borhood. Changes in any peer’s data during clus-
tering simply reassign the peer’s cluster centroids
before the peer moves on to the next iteration.

In extensive experimentation, our algorithm
showed better than 90 percent clustering accura-
cy, in comparison to the centralized K-means clus-
tering algorithm (the hypothetical case in which
data present in all peers are integrated and stan-
dard K-means is applied on the data as a whole).7

Although this algorithm lacks a theoretical
proof of convergence because it chooses only
immediate neighboring peers rather than uniform-
ly randomly sampled peers, its high accuracy and

low communication cost (compared to centralizing
the data from all peers) shows great potential for
addressing the clustering problem in P2P networks.

Several algorithms have emerged to address basic
DDM problems, but multiple challenges remain

before they’ll be mature enough to integrate with
real P2P applications. For example, most existing
P2P data-mining algorithms rely on asymptotic
convergence properties. We need P2P data mining
algorithms with performance bounds (regarding
accuracy and communication costs, for example).
We also need to quantify how the algorithm would
behave over a given finite amount of time, and we
might need a way to quantify advanced properties,
such as the algorithm’s stability, and develop tech-
niques that can handle the nonstationary distrib-
utions generated by environments such as Manets. 

Exact P2P algorithms are usually restricted to
functions with local representations in the given
network as with mean computation. Approximate
techniques like those we've employed can help
computing functions (such as clustering in P2P
networks) for which no local algorithm have yet
been developed. We believe we’ll see several inter-
esting applications for P2P network threat detec-
tion, P2P search, information retrieval, electronic
commerce in Manets, and other such areas. As we
mentioned earlier, privacy-preserving and trust-
management techniques will likely play important
roles in future P2P applications.
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