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Abstract. Understanding the origins of life has been one of the greatest dreams throughout 

history. It is now known that star-forming regions contain complex organic molecules, known as 

Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral 

characteristics. By understanding which PAH species are found in specific star-forming regions, 

we can better understand the biochemistry that takes place in interstellar clouds. Identifying and 

classifying PAHs is not an easy task: we can only observe a single linear superposition of PAH 

spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds 

or even thousands.  This is a challenging source separation problem since we have only one 

observation composed of numerous mixed sources. However, it is made easier with the help of a 

library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we 

need to identify the specific species and their unique concentrations that would provide the given 

mixture. We develop a Bayesian approach for this problem where sources are separated from 

their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided 

with their error bars, illustrating the uncertainties involved in the estimation process. The 

approach is demonstrated on synthetic spectral mixtures where the template data are taken from 

the Infrared Space Observatory. Performance of the method is tested for different noise levels.  
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INTRODUCTION 

 In space, interstellar mediums (ISM) contain abundant amounts of large, 

complex organic molecules known as PAHs. These are mainly composed of many 

Carbon and Hydrogen atoms and can be found in neutral and ionic forms. Sometimes, 

they also involve Deuterium and Nitrogen atoms, as well [1]. These molecules are 

thought to have formed after supernovae explosions. In star-forming regions, the 

ultraviolet light of star excites these molecules and causes them to emit radiation in the 

infrared spectrum. Since each of these molecules has a unique vibration mode, they 

also possess unique emission spectra [2]. That is why; finding specific PAH molecules 

will give us information regarding the biochemical composition of a particular 

astrophysical site of interest. 

 However, we are only capable of observing a mixture of these species in the 

infrared spectrum range. Thus, finding the hidden PAHs from their linear 

superposition leads us to the source separation problem. In literature, a very limited 

research has been done to solve this problem. Although fitting data by hand has been 

tried [1], a satisfactory separation could not be achieved. Our ultimate goal is to 
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handle this formidable problem by developing a Bayesian method. The nature of the 

problem, on the other hand, causes serious complications: From a source separation 

point of view, the problem is highly challenging since we have only one measurement 

and hundreds to thousands of sources. We overcome this problem by using the library 

of spectral templates of the PAH molecules provided by our collaborators at NASA 

Ames Research Center. Dust radiation and atomic emissions also contribute to the 

observed mixture [3], making the problem even harder. These additional 

contaminations can be modeled by a Planck blackbody and a mixture of Gaussians, 

respectively [3]. In this work, we focus on the Bayesian separation of the PAH 

species. Although Non-negative Least Squares (NNLS) method has been used 

satisfactorily for this purpose [3], it is not capable of providing the uncertainties in the 

estimations. This problem is avoided by the Bayesian approach developed here. Each 

PAH molecule within the PAH library is modeled by a concentration parameter 

indicating the degree to which a particular species contribute to the mixture. 

Concentration of each PAH species within the library is inferred by using the 

Metropolis-Hastings algorithm with its associated error bar.  

This paper is organized as follows: Next section presents problem statement 

followed by the description of the Bayesian methodology. Results are demonstrated in 

Section 4. 

PROBLEM STATEMENT 

 

 Identifying PAH molecules is of utmost importance since we know which 

species are already present in our environment, where life has originated. Thus, 

finding similar PAHs elsewhere could provide us with an invaluable information 

regarding where to look for signs of life. In order to identify these molecules, we need 

to look at the infrared spectrum which includes the characteristic signatures of each 

PAH species. As an example, two of these species are illustrated below along with 

their spectra: 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAHs are very stable, large and flat molecules of carbon and hydrogen. Each 

carbon has three neighboring atoms. Typically, all PAHs have emission lines near 3.3, 

6.2, 7.7, 8.6, 11.2, and 15-20 microns. Separating these molecules from the spectral 

FIGURE 1.  An example of two PAHs and their spectra. 



mixture is a very challenging problem: A significant amount of PAH species possess 

tiny spectral flux at similar wavelengths. That is why; one PAH could easily be 

confused with another, having similar spectral characteristics. 

Below, we present our mathematical forward model to describe the spectral 

measurement: 
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where F(.) denotes the measurement. ii sc ,  are used for the concentration and spectral 

flux of the i
th

 source, respectively. The additive noise is shown by )(λφ  at a specific 

wavelength of λ . 

Our goal is to infer the concentration parameters, ic , given the data F(.) and 

templates )(λis  for Ni ,...,2,1=  PAHs. In order to be able to deal with the challenging 

difficulties of this problem, we prefer using an informed Bayesian source separation 

methodology [4] rather than a blind one where we can exploit the prior information 

that we possess. Therefore, our methodology can be summarized as follows, by the 

well known Bayesian formula: 
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where c denotes the model parameter vector, i.e. [ ]Nccc ,...,, 21=c  (concentrations), D 

represents data and I denotes the prior information. In order to infer the concentration 

parameters, the posterior probability, ),|( IDP c , is estimated by shaping our prior 

belief, )|( IP c , with the observed data using the likelihood, ),|( IDP c . We 

incorporate our prior belief by the selection of the prior probability and the spectrum 

model depicted by (1). Without loss of generality, the noise component in (1) could be 

modeled by a zero-mean Gaussian distribution, ( )2,0 σΝ , where σ  denotes the 

unknown standard deviation. This selection leads to the following likelihood function: 
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where ( )λD   and ( )λF  denote the measured flux (data) and the modeled spectral flux, 

respectively. Since we do not know the value of the standard deviation, we can 

integrate (3) over all possible values of σ using a Jeffrey’s prior and obtain the 

following Student-t distribution for the likelihood function [5]: 
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We incorporate our prior information on the concentration parameters by assigning a 

uniform distribution in (2) as shown below: 
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In order to estimate the posterior distribution given by (2), Metropolis-Hastings 

algorithm is utilized as described in the next section. 

 

THE PROPOSED METHOD 

 

 In order to estimate the posterior probability of the concentration parameters, 

we propose using a Bayesian search and optimization scheme utilizing the Metropolis-

Hastings algorithm. Metropolis-Hastings is one of widely used Markov Chain Monte 

Carlo (MCMC) methods where the objective is to draw independent, identically 

distributed (i.i.d) samples from the posterior distribution [6]. To accomplish this goal, 

a Markov chain is generated in such a way that its samples are asymptotically 

distributed according to the desired distribution, namely ),|( IDP c . Once we get 

samples from the desired distribution, we can also obtain its statistical summaries such 

as the mean and error bars of the related parameters.  

 To construct a Markov chain, a new sample is generated from the proposal 

distribution which is located at the current value of the parameter, ( )t
c . This iterative 

sampling is represented by ( )cc q~*  where ( ).q  denotes the proposal distribution and 

*c  represents the candidate sample. Having drawn a new sample from the proposal 

distribution, acceptance ratio is calculated as shown below: 
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where ( )., pρ  denote the acceptance ratio and the desired distribution, respectively. 

Here, ( )xyq ;  denotes the value of the proposal distribution evaluated at y and located 

at x. If 1≥ρ , *c  is accepted to the Markov chain: ( ) ( ){ }*,,...,
~ 1 cccC tt −= , i.e. 

( ) *1
cc =+t . If 1<ρ , then *c  is accepted with probability ρ . If it is rejected, then the 

Markov chain proceeds by  ( ) ( )tt
cc =+1 , i.e. ( ) ( ) ( ){ }ttt cccC ,,...,

~ 1−= . The reader is referred 

to [7] for further details on MCMC methods.   

 A pseudocode of the methodology is given below to demonstrate each step in 

the algorithm explicitly. 

 

 

 



TABLE 1. Bayesian methodology 

 

1. Draw initial samples from the prior distribution of the concentration parameters: 

( )cqcı ~*  where ( )
minmax
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2. Calculate the initial likelihood value: 
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3. FOR t = 1 TO T (number of iterations) 

 

     FOR i = 1 TO N (number of components) 

          SET number of accepts = 0 (A=0), SET mean value: 0=m , SET mean squared value 02 =m  

              FOR r = 1 TO R 

 

                         Draw new samples from the proposal distribution:             

                           

                            xcc iıı µ+=*   where ( )1,0~ Nx  , Ni ,...,3,2,1=   

 

                         Verify that each maxmin ccc ı <<  

                         Calculate the likelihood of the proposed samples: 
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                     Accept new samples with probability ρ and augment the chain : 
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~ 1 cccC tt −=  

                      SET ( )imm ii C
~

+=  and  ( )222 ~
imm ii C+= , Ni ,...,3,2,1=  

                           INCREMENT NUMBER OF ACCEPTS BY 1: A = A + 1 

 

              END 

              
R

m
m i

i =       and ( )22
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            CALCULATE THE ACCEPTANCE RATE: A = A/R 

              ADJUST THE STEP-SIZE VALUE: 

                     IF A<0.1 ,                                                   10ii µµ =  

                 ELSEIF A<0.34,  IF σµ 1.0>i ,              2ii µµ =  

                 ELSEIF A>0.67,  IF ii m<µ ,                 ii µµ 1.1=  

     END 

   END           

 

 



EXPERIMENTS 

 

 In this section, we demonstrate our method on synthetic spectral mixture data 

where the templates are taken from the ISO. We mix 47 PAH species from a template 

of 187 species with random concentrations varying between 0 and 3000. First, the 

performance of the method is examined without the additive noise, i.e. ( ) 0=λφ  is 

taken in (1). The logarithm of the likelihood of the true solution is calculated to be 

2.864x10
5
. For this data set, we use the Metropolis-Hastings method starting from 10 

random concentration vectors and run it for 10000 iterations. The burnin period is 

chosen to be 9800 as a result of our observations. In Fig. 2, the propagation of one of 

the 10 samples is illustrated. Using the sample values at the steady-state, mean value 

of each concentration parameter is shown in Fig. 3. along with its error bar. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

Above, deduced concentrations are plotted vs. true values. The error-bar of each 

estimated parameter is shown by a line located on the corresponding mean estimate 

illustrated by the dot. It is observed that except for three outliers, almost every 

parameter lies within one standard deviation of the true value providing a 45-degree 

line. The mean solution has a log-likelihood value of -59608 with a Euclidean distance 

of 1093.6=d from the true solution in the 187 dimensional space. Despite the three 

outliers, reconstructed spectrum fits perfectly with the true spectrum of the ISO2 data 

as shown in Fig. 4. In order to compare these results, we use NNLS technique [8] to 

estimate the concentration parameters. This algorithm is run starting from 200 

different points in the 187 dimensional space. The quality of the estimation is 

illustrated by the scatter plot of the deduced concentrations vs. true values in Fig. 5. 

Similar to Fig. 3, NNLS method provides an almost perfect estimation with the mean 

solution having a log-likelihood of -66767 within a distance of 1275.4 from the true 

solution. In order to test the performance of the proposed method under different noise 

levels, three simulation results are demonstrated where the noise power is taken to be 
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FIGURE 2. Propagation of the 

concentration parameter estimates vs. the 

number of iterations 
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101and,1001,10001  of the signal power. The scatter plots of the deduced vs. 

true concentrations are illustrated in Figs. 6a-6c for three situations. Spectral 

reconstruction is illustrated in Fig. 7 for the most noisy case among three.

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above, it is observed that the error-bars of the estimations become larger as the noise 

level increases.  
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FIGURE 5. NNLS: Deduced vs. true 

solutions of the concentration parameters for 
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FIGURE 4. Original and reconstructed spectra for 

the ISO2 data under no noise 
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FIGURE 6a. Noise level Pn = Ps/1000 
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FIGURE 6b. Noise level Pn = Ps/100 
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spectra of ISO2 under noise: Pn = Ps/10 



CONCLUSIONS 

A Bayesian methodology is presented to identify the PAH molecules from their 

mixtures enabling us to estimate the posterior probability distributions of the 

concentration parameters. This allows us to summarize our inference with their error-

bars and provides the most honest solution about the problem without being 

constrained to a local optima. Simulation results demonstrate that the estimations lie 

within one standard deviation of the true solution, providing promising solutions for 

the future applications where the number of PAHs will be increased. Having the error-

bars, we will have the flexibility to express our uncertainty in the estimations unlike 

frequentist approaches such as NNLS. Thus, it will enable us to deal with this 

formidable problem by letting us express our uncertainty in the estimations done by 

our prior models and it will also allow us to change these models as we learn more 

from the problem. 
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