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Abstract: The authors have formulated a comprehensive Systems Engineering approach 
to Electro-Mechanical Actuator (EMA) Prognostics and Health Management (PHM) 
system development. The approach implements software tools to integrate simulation-
based design principles and dynamic failure mode and effects analysis. It also provides 
automated failure mode insertion and propagation analysis, PHM algorithm design and 
verification, full dynamic simulations, code generation, and validation testing. This 
process aims to produce the appropriate fault detection and prediction algorithms needed 
for successful development of an EMA PHM system. 
 
As an initial use case, the developed approach was implemented to develop and validate 
a model-based, virtual sensor software package for landing gear EMA PHM. This effort 
included creation of a dynamic, component-level system model that can be used to 
virtually sense parameters, detect degradation, isolate probable root cause, and assess 
severity. This model is also used as a virtual test bed for performing fault insertion 
analysis to address algorithm development and experimental prioritization. The 
developed model was validated using data from a test stand, which was specifically 
constructed for EMA PHM development. The model-based predictor was then coupled 
with failure mode diagnostics, advanced knowledge fusion, and failure mode progression 
algorithms to form a complete prototype EMA PHM solution. 
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Introduction: Electro-Mechanical Actuator (EMA) systems, which generate controlled 
linear or rotational motion using a DC motor connected to a ball-screw or gear train, are 
currently employed in a wide variety of industries, including commercial aircraft, 
military air/land vehicles, robotics, and industrial process control. In recent years, EMAs 
have been adapted to many applications where conventional hydraulic actuators have 
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been used previously. Growing interest in power-by-wire aircraft design philosophy is 
expected to further increase the number of EMA units in military and commercial aircraft 
applications. The weight reduction, maintenance advantages, and other appealing 
characteristics of power-by-wire have led to many research and development efforts 
aimed at expanding the role of EMAs in both military and commercial aircraft 
applications.[1],[2] Expanded deployment of EMA systems in critical applications has 
created much interest in Prognostics and Health Management (PHM) of these actuators to 
ensure reliable and economical system performance, especially in safety-critical 
applications such as aircraft control. Development of diagnostic and prognostic 
technologies is therefore needed to enable successful deployment of EMAs in these new 
applications. 
 
Conventional actuator maintenance procedures often rely on time-based service or 
replacement of fielded units. This approach, in the worst case, can result in loss of 
aircraft due to failure occurring before the end of the estimated component life span. 
However, since component life is generally estimated in a conservative manner to avoid 
catastrophic failure, maintenance actions are often performed when not warranted by the 
actual condition. Modern health monitoring techniques that provide an accurate 
diagnostic assessment of the current component health enable a transition to Condition-
Based Maintenance (CBM) where decisions to service or replace components are made 
according to the current estimated health state. 
 
Prognostic Health Management (PHM) systems go beyond purely diagnostic approaches 
by estimating the progression of component degradation, thereby generating a 
continuously updated prediction of remaining component life. This offers additional 
benefits beyond purely diagnostic systems by allowing advanced scheduling of 
maintenance procedures, proactive replacement part allocation, and enhanced fleet 
deployment decisions based upon the estimated progression of component life usage. 
Prior studies have demonstrated the process of applying PHM techniques to aircraft 
hydraulic actuator systems and the resulting benefits. [3],[4],[5],[6] As the role of EMAs 
in aircraft applications continue to increase, PHM technologies will be a vital part of the 
Condition-Based Maintenance strategy. 
 
In order to facilitate this development, the authors have formulated a comprehensive 
Systems Engineering approach that consists of a step-by-step process to develop an EMA 
PHM system. The end result of this process is the appropriate fault detection and 
prediction algorithms needed for successful EMA PHM. This approach also enables the 
formulation of a PHM system that can be integrated within the broader Integrated 
Vehicle Health Management (IVHM) architecture for the entire vehicle. As an initial use 
case, the developed approach was implemented to develop and validate a model-based, 
virtual sensor software package for landing gear EMA PHM systems. This effort 
included creation of a detailed dynamic, component-level model of the system (built in a 
transportable simulation environment) that can be used to virtually sense parameters and 
detect degradation, isolate probable root cause, and assess severity. This simulation 
environment can also be used as a virtual test bed for performing fault insertion analysis 
to address algorithm development and experimental prioritization. The authors have also 



3 

designed and constructed an EMA test stand with an extensive sensor suite, including 
high-performance displacement sensors, accelerometers, thermocouples, and load 
measurement that provides a comprehensive assessment of EMA response and health 
state. Data obtained from this test stand has been used to tune and validate the simulation 
models. Uncertainty assessment methods and model order reduction techniques are also 
being evaluated with respect to technical accuracy, required processing, and potential 
effects on safety and life-cycle cost drivers. The model-based predictor, when coupled 
with failure mode diagnostics, advanced knowledge fusion, and failure mode progression 
algorithms within a probabilistic framework, forms a complete prototype EMA PHM 
solution. 
 
Systems Engineering: In order to facilitate the development of EMA PHM, the authors 
have formulated a comprehensive Systems Engineering approach that consists of a step-
by-step process to develop an EMA PHM system. The developed approach uses software 
tools (FMECA++™ and PHM Design™) developed by the authors that allow for the 
integration of simulation-based design principles and dynamic failure mode and effects 
analysis. The integration of these tools provides: 1) automated failure mode insertion and 
propagation analysis; 2) PHM algorithm design and verification; 3) full dynamic 
simulations; 4) code generation; and 5) validation testing.  
 
Traditional Failure Modes, Effects, and Criticality Analyses (FMECAs) are commonly 
used to assess the relative criticality of individual failure modes based on symptoms, 
failure rates, and subsequent detrimental effects, allowing those with higher risk levels to 
be eliminated in early stages of system development. Impact has expanded this concept to 
incorporate PHM considerations, such as sensors and algorithms needed to detect a given 
symptom and isolate probable root cause, with FMECA++™. Other metrics such as 
detection and false alarm probabilities, along with detectability and predictability scores, 
allow a complete relative assessment of fault coverage. Information from a number of 
typical EMAs was consolidated to create a FMECA++™ for a general EMA. 
 
This information was then modeled using PHM Design™, a software tool that allows the 
user to design, develop, evaluate, and implement a cost-effective PHM system. In 
addition to a functional model, which consists of functional areas and either mechanical, 
electrical, or fluid connections, the software provides a canvas to combine elements 
typically contained in “paper-based” FMECAs, such as failure modes, symptoms, and 
effects, with PHM design information such as sensors, algorithms (BIT, diagnostic and 
prognostic), and maintenance tasks. The software organizes the PHM information, 
performs metric-based analyses, and enables trade studies to answer difficult PHM or 
CBM design and development questions. Analysis options are also built-in to provide 
coverage metrics that help to ensure an optimal PHM solution. These analyses include 
Criticality, Reliability, Reachability, Diagnosability, and Prognostic Coverage analyses 
for each failure mode and line replaceable unit (LRU) (Figure 1).  
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Include algorithms and sensors
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Design with FMECA information Perform Analyses
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Create the Functional Model

Include algorithms and sensors
Populate Health Management 

Design with FMECA information Perform Analyses

PHM Optimization Loop

 
Figure 1 – PHM DesignTM Modeling Process 

Functional Model and Health Management Design: The PHM Design™ software allows 
the user to define a functional model of the system that serves to organize the design of 
the PHM system. Within each functional element, the user can design the Health 
Management scheme using information from the FMECA++™, as well as expertise and 
experience. A snapshot of the developed Functional Model and Health Management 
Design for the target EMA is shown in Figure 2. 
 

  
Figure 2 – EMA Functional Model (left) and Health Management Design (right) from Impact’s 

PHM Design™ Software 

Criticality Analysis: The Criticality Analysis generates a criticality matrix, which is a 
popular logistics tool that sorts failure modes in two dimensions by weighing their failure 
rates and severities. Severity is a failure mode attribute, defined as a number between 1 
and 4 for each fault block in the model. Failure rate must also be defined for each failure 
mode and is categorized at the time of the analyses according to user-defined limits. The 
most important conclusion the user takes from this analysis is which failure modes fall 
into the high risk category and should be compensated for with adequate PHM coverage. 
 
Reliability Analysis: The reliability analysis has a very similar objective to the criticality 
analysis, except it pertains more to fault paths than to individual components. Each 
failure mode’s reliability is calculated based on a reliability equation, which algebraically 
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combines the reliabilities of multiple failure modes that lie on the same path. The results 
are organized by the block where the root failure mode appears and may be displayed 
with respect to time in both tabular and graphical formats (see Figure 3). By viewing all 
fault reliabilities together, the user can more clearly see which faults paths have the 
highest risk and would benefit most from the failure risk reduction that PHM offers. 
 

Ballscrew fatigue crack –
Actuator will not move when commanded

Ballscrew misalignment / unbalance –
Localized nut backlash

Ballscrew fatigue crack –
Actuator will not move when commanded

Ballscrew misalignment / unbalance –
Localized nut backlash

 
Figure 3 – Example Reliability Analysis 

Reachability Analysis: Once the high-risk failure modes are identified, the reachability of 
each mode is assessed. This analysis identifies all sensors, algorithms, failure modes, 
symptoms, and maintenance tasks in any way linked to the given component. The output 
is divided into upstream and downstream elements to give an indication of available 
diagnostics opportunities. This analysis can also be run on symptoms if the user was 
more interested in what could cause or be caused by a certain system behavior.  
 
Diagnosability Analysis: Once the model is populated with sensors and algorithms, a 
diagnosability analysis can be run to evaluate the theoretical performance of the PHM 
approach. Specifically, it calculates how well a combination of symptoms isolates the 
root cause to a particular failure mode or 
line replaceable unit (LRU). Ideally, all 
failure modes would have some 
distinctive characteristic that enables a 
unique identification. However, most 
times, a single symptom can be caused by 
multiple faults. The list of potential faults 
for a given symptom, called an ambiguity 
group, is included in the top screen of the 
results (see Figure 4). The bar chart on 
the bottom is a graphical breakdown of 
failure mode and LRU isolation. 
Elements that do not isolate well indicate 
the need for additional symptoms, 
sensors, or algorithms to improve their 
diagnosability. 

Figure 4 – Example Diagnosability Analysis 
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Prognostic Coverage Analysis: The prognostic coverage analysis enables the user to 
realize a system’s ability to prevent critical failure modes by effective diagnosis of 
upstream events. This is done by evaluating the presence and attributes of algorithms 
along potential causal paths leading to any particular failure mode. The prognostic 
coverage output is divided into three sections. In the first section, failure modes are 
sorted by area, based on whether they are safety or flight critical (“sc” or “fc”) and their 
coverage condition (ok, warning, or alarm). This classification is determined from the 
prognostic coverage value and the location in the criticality matrix since the level of 
coverage required to be considered adequate is set higher for critical faults than it is for 
less critical faults. The “alarm” condition will only be assigned if the failure mode is in 
the medium or high risk regions. The second section indicates the prognostic coverage 
values sorted from least to most coverage. The third section, the criticality matrix, shows 
a quick reference of the failure mode locations. Each cell of the matrix lists all failure 
modes belonging to that combination of probability of occurrence and severity. 
 
Based on the 
results of the PHM 
Design™ model, 
certain faults and 
failure modes have 
been identified as 
high risk (see 
Figure 5), while 
certain others were 
tagged as low risk 
and thus eliminated 
from consideration. 
 
Model-Based 
PHM: The model-
based approach to PHM (Figure 6) applies physical modeling and advanced parametric 
identification techniques. As an advantage over ‘black-box’ or purely data-driven health-
monitoring schemes, faults and failure modes are traced back to physically meaningful 
system parameters providing the maintainer with invaluable diagnostic information. The 
approach employs a mathematical dynamic model of the system that is directly tied to the 
physical processes that drive the health of the component. The control command is used 
on the model to simulate expected system response. The difference between the 
simulated and actual response is used to perform an estimation of system parameters 
(e.g., efficiency, friction factors, etc.). The estimated parameters are then compared with 
the baseline health level parameters to identify and isolate system faults and provide a 
measure of fault severity. 
 

Failure Mode Risk

Motor  bearing wear / spall High

Motor bearing lubrication degradation High

Nut channel wear / spalling High

Nut looseness / slipping High

Motor shaft eccentricity High

Motor winding shorted/open High

Seized motor bearing / shaft High

Loss of Power High

Nut cracked / fractured High

Resolver fault / failure High

Ballscrew/nut jammed/seized High

Ballscrew fracture High

Failure Mode Risk
Power transients Medium
Ballscrew wear / spalling Medium
Ballscrew fatigue crack Medium
Screw/nut lube degradation Medium
No signals generated Medium
Nut collar/RAM fracture Medium
Seal Degradation Medium

*Functional failures in bold

Figure 5 – Failure Mode Candidates from PHM Design™ Criticality 
Analysis 
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Figure 6 – Model-Based PHM Approach 

A generalized dynamic system model of electro-mechanical actuators was developed to 
aid in the refinement of model-based PHM techniques for EMAs. This model was created 
in the Simulink® environment of the MATLAB® software package and can be employed 
to represent the physics of system degradation and its effects on the performance of 
components or subsystems within the overall actuator system. A virtual test bed 
application was developed to exercise this model under a variety of baseline and faulted 
conditions. The following sections detail these development efforts. 
 
Dynamic System Model Development: A schematic of the general EMA system 
represented by the model is shown in Figure 7, while the developed EMA Simulink® 
model is shown in Figure 8. 
 

 
Figure 7 – Schematic of Electromechanical Actuator 

The model incorporates blocks for the various components within the EMA, such as the 
brushless DC motor, leadscrew and ball nut, ram, and output shaft. It also contains blocks 
for components such as the gearbox and encoder, which can be selected or deselected by 
the user, since these components may not be present on all EMAs. Similarly, the user 
may also select the type of control for the EMA with the available choices being position 
control, velocity control, or torque control. In addition, the model incorporates fault 
blocks within the various components. These blocks insert faults by modifying the 
control or feedback signals, or characteristic parameters within the component. Also, 
faults may be simulated by introducing biases or noise into actuator commands or 
measured responses. 
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Figure 8 – Dynamic Model of Generalized EMA System 

The major assumptions made in creating this EMA model are listed below. 
 
1. Three phase brushless DC motor drives leadscrew 
2. Each phase of motor is modeled as L-R circuit 
3. Leadscrew, ball-nut, and ram modeled as rigid components with mechanical 

efficiencies 
4. Shaft angular acceleration is proportional to excess torque (motor torque, less 

damping and load torques) 
5. The motor is governed by the relationships shown in Eq. (1) to (3): 

lTotal

t

BJ

Ik
sLR

V
I

τθθτ

τ φ

φφ

φ
φ

φφ

++=

=

+
=

&&&

 

 

(1) 

(2) 

(3) 
 

where Iφ is the current in each phase, Vφ is the voltage in each phase, Rφ is the winding 
resistance in each phase, Lφ is the winding inductance in each phase, τ is the motor 
torque, kt is the torque constant, J is the rotor inertia, B is the damping on the rotor, and τl 
is the load torque acting on the rotor shaft. 
 
In addition to modeling the electrical and mechanical parts of the EMA, a thermal model 
of the EMA motor was implemented. As Figure 9 shows, the model treats the motor 
windings as a lumped system and determines their temperature at each time step based on 
the input heat (I2R losses) and the heat lost to the surface of the motor. The motor surface 
then loses heat to the ambient air through convection and gray-body radiation. 
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Figure 9 – Thermal Model of Actuator Motor 

Virtual Test Bed Development: A Virtual Test Bed Environment (VTBE) was developed 
(also in Simulink®) to allow simulation of the developed model, critical faults, and other 
external effects (i.e., loads, control inputs, etc) that contribute to prediction uncertainty. 
This environment can be used to execute the validated model with various healthy and 
simulated fault conditions to produce a database of model parameters that characterize 
the response of the system.  
 
For initial demonstrations, the VTBE is based on an EMA Test Stand constructed by the 
authors. The physical test stand includes components to subject the test actuator to the 
desired load profiles, as well as to generate the control profiles that define actuator 
motion. The test rig also incorporates a variety of sensors to obtain and characterize the 
response of the actuator system to various 
external stimuli. These additional 
elements of the test rig are therefore also 
modeled in the VTBE, so as to subject 
the actuator model, in the digital realm, to 
the required excitation profiles and 
loading conditions. The VTBE consists 
of a loading system, a controller, an 
actuator drive, and the required sensor 
blocks. Since the loading system was 
modeled as another EMA opposing the 
test EMA, an additional drive was also 
modeled for the load actuator. A block 
diagram of this test bed environment, 
showing the various control modes and feedback loops, is shown in Figure 10. 

 
As seen from the figure, a master controller sends command signals to the test and load 

Figure 10 – Block Diagram of Virtual Test Bed 
Environment 
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EMA control drives. The drives command the respective EMA voltage and current 
levels. The master controller receives feedback from the position sensor and sends a 
control signal to the test EMA drive to correct for the position error. The controller also 
receives a load feedback signal from the load cell between the EMA shafts. The 
controller sends a signal to the load drive to minimize the load response error. A diagram 
of the actuator model within the Virtual Test Bed Environment is shown in Figure 11. 

 

Figure 11 – Simulink® Virtual Test Bed Environment 

Simulations performed by the authors initially consisted of observation of the system 
response to various position and load profiles under expected healthy conditions. For 
instance, Figure 12 shows the response of the test EMA to a sinusoidal position profile 
with a step change in the load. As seen, the controller and drive are able to maintain the 
specified position profile (top left plot) against the jump in the load. The bottom left plot 
shows a step change in the current drawn corresponding to the change in the load (top 
right plot). The bottom right plot shows the temperature of the EMA motor windings and 
surface. As expected, the higher current draw from t=20 seconds causes a faster rise in 
both temperatures. 
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Figure 12 – EMA Model Response to Sine Position and Step Load Profiles 
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Similarly, the response of the EMA to other command profiles was evaluated, and the 
ability of the controller to maintain the required position and load profiles was verified. 
The response signals of the EMA (such as RPM, temperature, etc.) were analyzed as 
checks on the EMA operation. 
 
The model and VTBE were then used to conduct fault simulation tests. Faults were 
modeled as gain, bias, and/or noise blocks on various parameters and signals. For 
example, Figure 13 shows the simulation of a “loss of power to the motor” fault (see the 
left half of the figure). This fault is simulated by specifying a gain of zero on the motor 
command (with no bias or noise). The right half of the figure shows the EMA response to 
a sinusoidal position profile with a steady load ramp under the influence of this fault. As 
seen, the system is initially able to follow the position command (top left plot in right 
half of the figure). When motor power is lost, the test EMA goes dead. However, the load 
EMA exerts a steady load according to the specified load profile, causing the test EMA 
shaft to retract. As the bottom left plot in the right half of the figure shows, there is still 
current in the test EMA windings. This current is induced by the back EMF generated by 
the motion of the shaft, which forces the motor to turn despite the loss of power. Once the 
power is turned back on, the system resumes normal operation. 
 

 
Figure 13 – EMA Response to Power Loss Fault 

Similarly, a winding short was simulated in the motor (Figure 14). This was achieved by 
using a gain block to reduce the “number of winding turns” parameter (see left half of the 
figure). The winding short was simulated in two phases: an initial mild fault, followed by 
a deteriorating fault that slowly recovers. The right half of the figure shows the system 
response to a sinusoidal position profile and rectangular load profile. As the bottom left 
plot in the right half of the figure shows, the initial mild winding short causes a rise in the 
motor current, which compensates for the reduced torque constant (owing to the reduced 
effective number of windings). Thus, the actuator is still able to follow the specified 
position profile (top left plot in the right half of the figure). However, the maximum 
current that the motor can draw is limited by the drive. This limits the compensation that 
the motor can provide against the later deteriorating fault, causing the shaft to deviate 
from the position command. Once the fault is removed, normal motion resumes. 
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Figure 14 – EMA Response to Winding Short Fault 

Preliminary Model-Based PHM Results: The authors have also developed preliminary 
fault assessment routines to detect and assess the severity of faults that were simulated in 
the dynamic actuator model. These routines implement a reduced order (static) actuator 
model, derived from an order-reduction analysis performed on the full dynamic model. 
The routines also incorporated an automated optimization routine to obtain model 
parameters, based on error minimization between dynamic model responses to command 
signals and the reduced order model responses to the same signal. In this sense, the 
dynamic model was used to mimic an actual (physical) EMA, in that the responses from 
the dynamic model are used to represent the actual response of the system. As described 
above, the Virtual Test Bed Environment was used to simulate three EMA faults, which 
were identified from the systems engineering analysis using PHM design™. These faults 
were: 

• Motor phase 1 winding short 
• Motor bearing wear/lubrication degradation (increased bearing friction) 
• Position sensor fault 

Using the developed PHM approach, the model parameters needed to minimize error 
were then used to predict fault severity levels for each simulated fault. For example, the 
effective number of motor windings was used to predict the severity of the winding short 
fault (Figure 15). Not only did this provide an accurate estimate of fault severity during 
more severe fault levels, it also 
performed well for moderate fault 
levels. As seen in the figure, even 
though the initial fault does not cause 
any significant deviation of the 
measured position from the 
commanded position, the PHM 
algorithm is still able to estimate the 
severity of the fault. It is also worth 
noting that the deteriorating winding 
short caused current limiting circuitry 
within the drive to enter the picture, 
which is why the position response of 
the EMA is affected (at roughly 30 
sec). This initially throws off the diagnostic feature, but fault estimation accuracy 
subsequently recovers. 
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Figure 15 – Diagnosis of Winding Shorts 
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Similarly, motor bearing wear 
can be diagnosed using the 
“bearing friction” parameter. 
This friction is simulated as an 
excess torque that the motor has 
to overcome and is specified as a 
fraction of the motor’s total 
torque capacity. Figure 16 shows 
that the bearing friction 
parameter is able to reliably 
assess the level of wear in the 
EMA motor bearings. 
 
Fault separability was also assessed by simulating multiple faults in the system and 
observing the response of the developed algorithms. For example, Figure 17 shows the 
simulation of three faults simultaneously: winding shorts, bearing wear, and position 
sensor malfunction. As seen, the developed PHM system is able to reliably separate these 
faults for the most part, with brief inaccuracies manifesting themselves when the level of 
the simulated fault abruptly changes. An example of this transient effect can be observed 
as spikes in the winding short and friction severity values at t~30 seconds, when the 
LVDT fault is removed. 
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Figure 17 – Diagnosis of Multiple Faults 

 
Conclusions: The authors have developed a Systems Engineering approach that consists 
of a step-by-step process to develop an EMA PHM system. As an initial use case, a 
model-based EMA PHM system was also developed using the developed methodology. 
Preliminary fault assessment routines, based on an initial reduced-order model of the 
dynamic EMA model, have been shown to perform well for a subset of the faults derived 
from the systems analysis.  
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Figure 16 – Diagnosis of Bearing Wear (Friction) 
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The end goal of the effort is to develop advanced fault diagnostics and prognostics 
routines for the primary failure modes of interest in EMA systems. The developed 
techniques are expected to enhance PHM value for EMA systems, and thus increase 
system reliability and mitigate the effects of catastrophic EMA failures in true power-by-
wire aircraft systems. Ultimately, the software will be adaptable and applicable to 
hydraulic, electro-hydraulic, and electro-mechanical actuator systems and implemented 
as an on-board, at-wing, or overhaul-level maintenance strategy. The realization of such 
an automated, prognostic reasoning package will significantly enhance the ability to 
safely operate the aircraft, schedule maintenance activities, optimize operational life 
cycles, and reduce support costs.  
 
Future Work: A number of tasks remain to be performed with the EMA PHM 
development effort. Initially, the accuracy of the EMA model and the Virtual Test Bed 
Environment will be enhanced using test stand data. Tuning of the parameters of the 
model is an additional task in this regard, and will be performed with experimental data 
collected from the test stand. Additional fault scenarios will also be investigated and 
simulated in the model or through seeded fault testing on the test stand. The fidelity of 
the developed fault classification algorithms will be enhanced to provide more accurate 
classification. Advanced algorithms will be used to provide incipient fault detection, 
while extracted features and models will be used for failure progression tracking and 
remaining useful life (RUL) prediction through complementary prognostic techniques. 
Fusion will also be readily implemented at various levels, including the sensor-level 
(fusing of raw data to increase signal characteristics and reduce noise effects), feature-
level (fusing of extracted features), and knowledge level (fusing of health assessment 
results) to improve algorithm performance and confidence. The authors will also 
implement model order-reduction techniques to reduce the processing needed to 
implement the developed model-based approach. This process will facilitate 
implementation on embedded applications, as well as other applications with strict 
processing limitations. The performance of the reduced model(s) will then be compared 
with the full approaches to trade technical accuracy, required processing, and potential 
safety and life-cycle cost drivers. 
 
Finally, the developed approaches will be 
demonstrated on an experimental EMA test 
stand. In this test stand (Figure 18), two actuators 
(test, load) are directly coupled with minimal 
compliance, though allowing for minor shaft 
misalignment. A central PC-based interface 
manages all test definition, system control, data 
acquisition, and visualization functionality, and 
also allows simultaneous execution of real-time 
PHM algorithms. The test EMA is heavily 
instrumented to provide high fidelity system 
response measurements, thus allowing enhanced 
understanding of degraded EMA response.  
 

Figure 18 – Test/Load EMAs and 
Servo Drives (Inset) 
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