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Abstract.  In this work, we propose a novel approach to perform Dependent Component 
Analysis (DCA). DCA can be thought as the separation of latent, dependent sources from their 
observed mixtures which is a more realistic model than Independent Component Analysis (ICA) 
where the sources are assumed to be independent. In general, the sources can be spatio-
temporally dependent and the mixing system may be non-stationary. Here, we propose a DCA 
algorithm, that combines concepts of particle filters and Markov Chain Monte Carlo (MCMC) 
methods in order to separate non-stationary mixtures of spatially dependent Gaussian sources.   
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INTRODUCTION 

Source separation problem has always attracted many researchers from different 
disciplines, such as telecommunications, biomedicine, audio, speech and astrophysics. 
This arises as a result of the need to investigate different and relevant properties of the 
desired signals, which are generally hidden at the mixed and noisy observations. In the 
last decade, research on source separation was mainly focused on the independence 
assumption of the sources that are mixed, hence called as the ICA [1]. However, in the 
physical world, the independence assumption cannot always hold and the 
dependencies should be taken into account. In literature, there is a limited number of 
references considering the problem of dependent sources [2-3]. 

Moreover, in the classical ICA approaches, the separation problem is generally 
handled as a blind method. However, in physical world, the researchers do have some 
a priori knowledge about their specific problems and can also make use of this 
information. Therefore, instead of blind processing, this a priori information can be 
exploited [4-5]. 

In source separation problems, another investigation topic is the stationarity of the 
signals. If the mixing system is constant over time and the sources are stationary, then 
MCMC methods, can be applied. Rowe [3] proposes MCMC methods for separating 
both dependent and independent sources, for such cases.  

On the other hand, for non-stationary applications, another Bayesian approach, 
known as particle filters [6-7], have been widely used for processing the data 
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sequentially, as opposed to the batch nature of the MCMC methods. In order to model 
the non-stationarities, particle filters have been applied to the separation of 
autoregressive (AR) sources, whose AR coefficients are time-varying [8] and the 
sources are independent at a given time instant. In [9-11], other non-stationary ICA 
problems are solved by particle filters for non-Gaussian sources, where the mixing 
systems are time-varying.  

In this work, we propose a novel method in order to separate two dependent 
Gaussian sources from their non-stationary mixtures. In this approach, we used 
particle filters to estimate the coefficients of mixing matrices and MCMC to separate 
the sources. In this approach, particle filters can be used for estimating any non-
stationary mixing matrix. Thus, it is different from the method in [3, Ch.13] where 
special forms of non-stationary mixing matrices are estimated by MCMC.  

PARTICLE FILTERS 

Particle filters are used in order to sequentially update a priori knowledge about 
some predetermined state variables by using the observation data. In general, these 
state variables are the hidden variables in a non-Gaussian and nonlinear state-space 
modelling system. Such a system can be given by the following equations: 
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where θt, xt , vt and nt represent states, observation, process and observation noises, 
respectively. Here, the objective is to sequentially obtain the a posteriori distribution 
of the state variables obtained via the observation data gathered up to that time, i.e. 

)|( :1:0 ttp xθ . Distributions are approximated in terms of particles as follows [6-7]: 
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where i

tw , θ0:t
i , δ(.) denote the weight, the ith particle and the Kronecker delta 

operator, respectively. The particles that take place in equation (2) are drawn by a 
method known as the “Sequential Importance Sampling” [6-7] and the corresponding 
“Importance Weight” for each of them is denoted by i

tw  , which is defined as follows: 
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where q(.) function is called as the “Importance Function” and drawing samples from 
this probability density function (pdf) is easier than that of original distribution [6,7].  



MCMC METHOD FOR SEPARATING STATIONARY 

MIXTURES  

In this section, brief background information is presented about the MCMC method 
that is utilized for the separation of stationary mixtures of sources in [3]. This method 
assumes that the mixing system and the sources are stationary. The following model is 
used for the mixtures: 

ttt nΛsµx ++=                                                      (4) 

 
where ttt nsΛµx ,,,,  denote the mixture, overall constant mean, mixing matrix, source 

and the noise matrices, respectively. These matrices are represented as follows: 
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( )′= ',...,',' 21 pλλλΛ  where (.)’ denotes the transposition operator. In this work, the 

sources are spatially dependent Gaussian processes and each source is temporally 
uncorrelated. Unlike the sources, the additive noise components are both spatially and 
temporally independent. Because (4) represents a mixture model at a given time 
instant t, a number of observations, say n, form the following matrix notation for the 
estimation from this n sampled batch [3]: 
 

   NΛSµeX +′+′= n                                                   (5) 

 

where ( ) ( ) ( )′=
′

=
′

= n21n21n21 n,...,n,nN,s,...,s,sS,x,...,x,xX and en denote an n-

dimensional vector of ones [3]. By augmenting the µ  and the en vectors, (5) is put into 

a more compact form as follows: 
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where ( )ΛµC ,=  and ( )SeZ ,n= . Then, the likelihood function is given as follows: 
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where Ψ  denotes the diagonal covariance matrix of the noise vector and tr(.) 
represents the trace operator. Distribution in (7) is known as the Matrix-Normal 
distribution [3]. For the model of (6), the following conjugate prior distributions can 
be used for the model parameters [3], where MN and IW stand for Matrix Normal and 
Inverted Wishart distributions, respectively. In the following equations, 

HBVCS ,,,,, ,00 νη  denote the hyperparameters, through which, the a priori 

information is exploited. 
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Above, R denotes the covariance matrix of the sources and it is not constrained to be 
diagonal and all of its elements are left free, to model the dependencies between the 
sources. After some algebra, the following posterior conditionals are obtained to be 
utilized in the Gibbs sampling, which is the preferred MCMC method here [3]: 
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By cycling through the posterior conditionals given above, Gibbs sampling can be 
performed in order to estimate the model parameters [3]. 

THE PROPOSED METHOD 

In literature, MCMC techniques are generally used for batch processing, where the 
model parameters are assumed not to change within the observed data block [12]. That 
is why the particle filtering methods have been developed in order to make the 
estimations sequentially in case of non-stationarities. In this work, the objective is to 
separate dependent Gaussian sources from their mixtures, where the mixing system is 



time-varying unlike the scenario given in the previous section. That is, the elements of 
the mixing matrix in (5) change over time. So, (5) can be written as follows: 
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= )(),...,(),( 21 ttt pt λλλΛ . So, we propose to use particle filtering to 

estimate the time-varying elements of the mixing matrix. Here, it is assumed that there 
is no constant mean in the mixture, i.e. 0µ = , and we have a priori information about 
the statistics of the sources and the noise, so that we can form informative priors for 
these. Even if all the statistics of the sources and the noise are known a priori, 
separating the time evolution of the mixing matrix and the sources needs two sets of 

states in the particle filtering model, i.e.  { }i

t

i
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,=  of (1), at any time instant t. 

Here, i

tΛ
~

 is the vector that is formed by concatenating the rows of the matrix i

tΛ  one 

by one. Since particle filter estimates the joint pdf given by (2), sources, must be 
integrated out from this joint pdf in order to obtain the marginal pdf estimate of the 
mixing matrix. From (3), it is seen that the importance weights of each particle is 
expressed in terms of the likelihood function, if a priori transitions are used for the 
states [6-7]. Then, importance weight estimation (3) takes the following form: 
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To obtain the marginal importance weight of i

tΛ
~

, the likelihood function is integrated:  
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From (10), it is seen that ),
~

|( i

t

i

ttp sΛx conditional density has a Gaussian distribution. 

Since the sources are also Gaussian distributed, the integration (12) has also a 
Gaussian distribution. Thus, instead of estimating (12) for each particle, only mean 
and variance estimations can be found as follows, using Monte Carlo integration: 
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where samples ( )
j

i

tx , can be easily drawn from the Gaussian pdf, given by (12) and K 

is the total number of particles. By these operations, (11) becomes as follows: 
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where )
~

|( i

ttp Λx  is Gaussian, whose mean and covariance matrices can be found by 

(13). In addition, the a priori state transition, which is discussed above, can be written 
as follows: 
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where ),(~ Q0v Nt  and Q is diagonal. (10) and (15) fits into the general state-space 

formulation of the particle filtering, shown in (1). Having found the time evolution of 
the mixing matrix elements by integrating the sources as outlined above, sources also 
need to be extracted from the mixtures. Had the mixing matrix coefficients been 
constant over time, the MCMC method given above could have been used for 
estimating the sources. However, this is not the case in our scenario. Thus, we propose 
to assume that the elements of the mixing matrix do not change considerably over 
small blocks of data. In this case, one may use MCMC in these blocks, however the 
choice of the appropriate prior distributions of the mixing matrix elements arises as a 
problem. This is due to the requirement of using informative prior distributions for the 
parameters given in (8) [3, pp. 56].  

Since we can obtain estimates of these mixing matrix elements by using the particle 
filtering scheme, which is explained above, we propose to use these estimates in order 
to form some approximate informative priors for the mixing matrix elements, which 
are denoted by C0 in (8) and (9).   

 
Table 1. Pseudo-code 
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III. Calculate the importance weights by integrating out the sources: 
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pdf, whose mean    and covariance matrices are given by (13) 
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importance weights equal to each other. 
VI. Go to Step (II) and repeat. 

 
 



MCMC PART 

I. Estimate the Minimum Mean Square Error (MMSE) estimate of Λ
~
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II. For data blocks of size M, calculate the mean of each mixing matrix 
element (found above) and use that as the mixing matrix prior in the first 
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For other parameters, use the priors given in (8). 
III. Then cycle through the Gibbs iterations by using the posterior conditionals 

in (9): i) Start with the initial 00 ,ΨS , ii) Cycle: 
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iii) Discard the variates of burn in period and estimate the parameters as 
follows:   
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EXPERIMENT 

To verify the performance, the following scenario is simulated on the computer: 
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By using these informative priors, both the mixing matrix elements and the sources are 
estimated satisfactorily as shown in Figure 1. 



FIGURE 1.  (a) Observation1: x1(t), (b) Source1 s1(t) and its MMSE Estimate, (c) Observation2: x2(t), 
(d) Source2: s2(t) and its MMSE Estimate, (e) First mixing matrix element and its estimate: a1(t), 
(f) Second mixing matrix element and its estimate: a2(t) 
(g): Zoomed waveform of Source1 s1(t) and its MMSE Estimate for block size of 100 
(h): Zoomed waveform of Source2 s2(t) and its MMSE Estimate for block size of 100 

 
 



CONCLUSIONS AND FUTURE WORK 
 

In this work, we propose a novel method to separate non-stationary mixtures of 
spatially dependent Gaussian sources. Here, particle filter is utilized to estimate the 
non-stationary mixing matrix, while Gibbs sampling is used to extract the sources. By 
simulations, it is observed that the Signal to Interference Ratio is raised approximately 
to 6 dB from 1 dB as a result of the separation. The success of the proposed DCA 
algorithm is a promising result, which can be used in future applications, where the 
independence assumption of ICA is avoided for more realistic physical problem 
modelings. 
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