
Distributed Monitoring of theR2 Statistic for Linear Regression

Kanishka Bhaduri∗ Kamalika Das† Chris R. Giannella‡

Abstract

The problem of monitoring a multivariate linear regression
model is relevant in studying the evolving relationship be-
tween a set of input variables (features) and one or more de-
pendent target variables. This problem becomes challenging
for large scale data in a distributed computing environment
when only a subset of instances is available at individual
nodes and the local data changes frequently. Data centraliza-
tion and periodic model recomputation can add high over-
head to tasks like anomaly detection in such dynamic set-
tings. Therefore, the goal is to develop techniques for mon-
itoring and updating the model over the union of all nodes’
data in a communication-efficient fashion. Correctness guar-
antees on such techniques are also often highly desirable, es-
pecially in safety-critical application scenarios. In this paper
we developDReMo— a distributed algorithm with very low
resource overhead, for monitoring the quality of a regres-
sion model in terms of its coefficient of determination (R2

statistic). When the nodes collectively determine thatR2 has
dropped below a fixed threshold, the linear regression model
is recomputed via a network-wide convergecast and the up-
dated model is broadcast back to all nodes. We show empir-
ically, using both synthetic and real data, that our proposed
method is highly communication-efficient and scalable, and
also provide theoretical guarantees on correctness.

1 Introduction

Multi-variate linear regression is an important and widely
used technique for modeling the behavior of a target variable
based on a set of input variables (features). In scenarios
where the data changes or evolves over time, monitoring the
model for identifying such changes may be essential. This
problem becomes more challenging if the data is distributed
at a number of different nodes, and the model needs to be
recomputed periodically to avoid inaccuracy. If the data
is piecewise stationary, periodic model recomputation often
wastes a lot of resources.

∗MCT Inc., NASA Ames Research Center, Moffett Field CA 94035,
Kanishka.Bhaduri-1@nasa.gov

†SGT Inc., NASA Ames Research Center, Moffett Field CA 94035,
Kamalika.Das@nasa.gov

‡The MITRE Corp, 7525 Colshire Drive, McLean, VA 22102-7539,
cgiannel@acm.org. C. Giannella completed this work primarily while in
the Department of Computer Science, Loyola University in Maryland and
New Mexico State University.

For example, for large networked distributed systems
such as the Cloud and the Internet, anytimeness is extremely
important, and monitoring the health of tens of thousands
of data centers supporting numerous services requires ex-
tremely fast and correct detection of every performance cri-
sis. The target variable for the identification of such crises
can be response latency or request throughput [3], and an
on-time and accurate alert suggesting a change in the input-
target relationship can get the operators’ immediate attention
towards fault diagnosis and recovery. Similarly, we can mon-
itor the carbon footprint of a community (city/state/country)
in the next generation Smart Grids by modeling the carbon
emission as a function of power consumption and natural en-
ergy production. Any change from the standard model can
indicate change in consumption pattern, fault in power gen-
erators, etc. and an on-time detection can enable human in-
tervention and guarantee uninterrupted service.

Most existing solutions for monitoring models in such
setups usually trade off model fidelity for lower communi-
cation cost. Some of the approaches for monitoring mod-
els in distributed systems include the sampling-based meta-
learning strategy [11] and randomized techniques such as
gossip [9]. The first group of algorithms suffer from the
drawback that accuracy drops with increasing number of
nodes in the network whereas gossip-based algorithms rely
on sufficient statistic computation on a random selection
of nodes and are extremely communication-intensive for
changing data scenarios. In the ideal case, the monitoring
algorithm should be able to raise an alert every time an event
occurs in the network and should do so with as little com-
munication overhead as possible. Monitoring algorithms
that satisfy these properties have been proposed earlier [16],
where instead of periodically rebuilding a model, a thresh-
olding criterion is developed to efficiently detect changesin
the global model by only monitoring changes in the local
data. The provable correctness of this class of algorithms
ensures that the distributed algorithm can raise all the alerts
that a centralized algorithm (seeing all the data at once) can
detect and this is of utmost importance in many critical ap-
plications such as the ones mentioned above. However, the
problem with the existing technique is that the usefulness of
these algorithms is limited by the design parameters chosen
by the user. If the user does not have prior knowledge about
the data, it is possible that a wrong choice of the thresholding
criterion can render these algorithms useless.

In this paper we overcome this problem for multivari-
ate linear regression by formulating the monitoring problem
in terms of the coefficient of determinationR2, a statisti-
cal metric for checking the quality of linear regression mod-
els. Since theR2 statistic lies between 0 and 1, it is a scale
free measure for the quality of fit for any data set. The al-
gorithm developed in this paper,DReMo, works for hori-
zontally partitioned data (defined later) and offers provable
correctness guarantees with minimal communication. It is
a reactive algorithm since communication for model recom-
putation does not happen periodically. Whenever the nodes
jointly discover that the model no longer fits the data, an
alert is raised and a convergcast/broadcast scheme is then
deployed for model recomputation.

2 Related work

Regression being a powerful modeling tool, extensive re-
search has been done for both distributed and centralized
modeling and monitoring. In this paper we briefly review
existing literature on distributed regression and its monitor-
ing. Hershberger and Kargupta [7] have proposed one of the
earliest wavelet transformation-based distributed regression
algorithm for vertically partitioned data where each node ob-
serves all possible instances of a subset of features. The
wavelet transform on the data optimizes the communication
overhead by reducing the effect of the cross terms and the lo-
cal regression models are centralized for building the global
model. Another popular distributed regression algorithms
has been proposed by Guestrinet al. [6] for learning ker-
nel linear regression models in sensor networks. Once the
model converges, instead of sending the raw data, the cen-
tral node can only collect the coefficients of the regression
model as a compact representation of the data, thereby re-
ducing communication. The algorithm requires two passes
through the entire network per data change to ensure global
convergence, in the worst case and, therefore, may require
huge number of messages and a long time to converge in
dynamic data scenarios. It should be noted here that both
these methods, as well as many other distributed regression
techniques solve an approximate version of the centralized
regression problem and therefore, cannot guarantee provable
correctness when adapted for monitoring.

Meta-learning is an interesting class of algorithms
which can be easily adopted for distributed model learning.
Proposed by Stolfoet al. [15], the basic idea is to learn a
model at each site locally (no communication at all) and then,
when a new sample comes, predict the output by simply tak-
ing the average output of the local model outputs. The un-
derlying assumption is that the data distribution is homoge-
neous across the nodesi.e. they have all been generated from
the same distribution. Significant research has been done in
the area of distributed computing of complex models. Ran-
domized gossip based computations have been proposed by

Kempeet al. [9] and Boydet al. [4] for computing simple
primitives such as average, min, max etc. of a set of num-
bers distributed across the network. In gossip protocols, a
node exchanges statistics with a random node and this pro-
cess continues until convergence. Deterministic techniques
such as the ones proposed by Scherber and Papadopoulos
[13] and Mehyaret al. [12] solves a differential equation
using messages exchanged between neighboring nodes such
that the optimal solution to the equation gives the global av-
erage. However, both these classes of techniques require
hundreds of messages per node for the computation of just
one statistic and are not suitable for dynamic data. A related
line of research concerns the monitoring of various kinds
of data models over large numbers of data streams. Sharf-
manet al. [14] has developed an algorithm for monitoring
arbitrary threshold functions over distributed data streams.
Unlike our method, the technique proposed in [14] requires
the existence of a broadcast-based communication topology,
which can be difficult to maintain for large networks.

All of the above mentioned techniques can be adopted
for monitoring evolving data streams in distributed com-
puting environments, but they suffer from several draw-
backs starting from very slow convergence resulting in ex-
tremely high communication overhead to lack of perfor-
mance guarantees in detecting events or significant changes
in the model. Recently, Bhaduriet al. [1] have proposed
an algorithm for doing regression in large peer-to-peer net-
works which works by checking the squared error between
the predicted and the target variables based on a generic
monitoring algorithm proposed by Wolffet al. in [16]. If
the error exceeds a predefined threshold (ǫ), the nodes raise
an alert and the regression model is rebuilt. This method
is communication-efficient and provably correct, but suffers
from the serious disadvantage that the communication as
well as model quality is dependent on a parameterǫ that
is input to the algorithm. This choice ofǫ is dependent on
the data and can vary from 0 to∞. If the user has no or
limited knowledge about the data distribution in the comput-
ing network (which is often the case for all practical pur-
poses), then a wrong choice ofǫ can render the algorithm
useless. To overcome this problem, we propose a new re-
gression monitoring algorithmDReMowhich monitors the
coefficient of determination (R2) which is a tried-and-tested,
well-accepted, and widely-used regression diagnostic mea-
surement with0 ≤ R2 ≤ 1. Closer the value ofR2 is to 1,
the better is the model quality and vice versa. However, since
theR2 statistic is no longer the L2 norm of the data, none of
the theories developed for monitoring the L2 norm of data in
a large network [16], [1] are applicable here. In the next two
sections we define this new monitoring problem and derive
the quantity that needs to be monitored for change detection
of a linear regression model.

3 Problem setup

3.1 Notation: Let V = {P1, . . . , Pn} be a set of com-
puting nodes connected to one another via an underlying
communication infrastructure, such that the set ofPi’s im-
mediate neighbors,Ni, is known toPi (andPi is unaware
of the existence of any other nodes). At any time instance,
the local data ofPi is a stream of tuples inRd and is de-

noted bySi =
[(−→

xi
1, y

i
1

)
,
(−→
xi
2, y

i
2

)
, . . . ,

(−−−→
xi
m(i), y

i
m(i)

)]T
,

where
−→
xi
j = [xi

j.1 . . . x
i
j.(d−1)] ∈ R

d−1 andyij ∈ R. Every
local data tuple can be viewed as an input and output pair.
Note thatSi is time-varying, but for notational simplicity,
we suppress an implicitt subscript. LetG =

⋃n

i=1 Si de-
note the global data over all the nodes.

Nodes communicate with one another by sending suffi-
cient statistics of a set of input vectors. We denote the suf-
ficient statistics sent by nodePi to Pj as |Xi,j | and

−−→
Xi,j ,

where|Xi,j | is the size of a set of vectors and
−−→
Xi,j is the

average vector of that set. Computation of these quantities
is discussed in the next section. We assume that reliable
message passing is ensured by the underlying network and,
therefore, ifPi sends a message toPj , thenPj will receive it.
Thus, both nodes knowXi,j andXj,i. We also assume that
an overlay tree topology is maintained and it forms the net-
work seen by the algorithm,e.g.the neighborsNi of nodePi

are the node’s children and parent in the overlay. Note that,
as shown in [2], such an overlay tree can be efficiently con-
structed and maintained using variations of Bellman-Ford al-
gorithms [5][8]. Intuitively, the assumption of a tree overlay
topology is needed to avoid ‘double-counting’ when com-
municating aggregate statistics. This will be discussed later
when describing the specifics of theDReMoalgorithm.

3.2 Problem definition: At any given time, each node
holdsf , a linear regression model (the same for each node).
When the algorithm is initialized, a convergecast and broad-
cast mechanism is used to compute thef overG and dis-
tribute it to each node. After this, the goal is for the nodes,
through ongoing distributed computation, to monitor the
quality off (in terms of how well it fits the global data) and,
when the quality becomes sufficiently low, raise an alert and
initiate another convergecast and broadcast to recomputef
and distribute it to each node. Quality is measured using the

coefficient of determination, R2. Letting ŷij andf(
−→
xi
j) de-

note the true and estimated values of the target variable,

R2 = 1−

∑n

i=1

∑m(i)
j=1 (y

i
j − ŷij)

2

∑n

i=1

∑m(i)
j=1 (y

i
j −

∑
n
i=1

∑m(i)
j=1 yi

j

M
)2

whereM =
∑n

i=1 m(i). This coefficient is between 0 and
1, equalling 1 when the data perfectly fitsf . The ratio
compares the variance off ’s predictions (captured by the
numerator) with the total variance of the data (captured by

the denominator). Intuitively, this ratio captures the quality
of f with respect to a baseline predictor which always returns
the average value over all the observed data (the fraction
in the denominator). WhenR2 is close to one,f provides
a much better prediction of the observed values than the
baseline. It is standard statistical practise when computing
a regression model to computeR2 as a measure of model
quality.

The value ofR2 is time-varying. The goal for the nodes
is to determine whether the accuracy off is unacceptable.
Specifically, for a fixed, user-defined thresholdǫ, the nodes
monitor whetherR2 is below ǫ. If yes, then an alert is
raised and computation is carried out to evaluate a newf
over the most up-to-date global dataG. Therefore, the crux
of the problem is for the nodes to carry out this quality
monitoring in a communication-efficient manner. SinceR2

is a nonlinear function of the local data held by all nodes,
solving such a problem is challenging. Before addressing
this problem, a caveat is in order. The setup described so far
has the network fixed. However, adjusting the algorithm to
accommodate nodes arriving and leaving or communication
links going up and down is straightforward and omitted for
descriptive simplicity.

Next we will define data vectors
−→
vi ∈ R

2 (based
on Si and f), one for each nodePi, and a monitoring
function g : R

2 → R. We will show that the problem
of monitoring whetherR2 is below ǫ can be reformulated
as monitoring whetherg is below zero when applied to a

convex combination of
−→
vi ’s. This result forms the basis of

theDReMoalgorithm proposed in this paper.

3.3 Monitoring R2: Let ǫ̃ = 1− ǫ, wi = ǫ̃
∑m(i)

j=1 (y
i
j)

2 −
∑m(i)

j=1 (y
i
j − ŷij)

2, andyi =
∑m(i)

j=1 yi
j

m(i) . We haveR2 > ǫ

⇔ 1−

∑n
i=1

∑m(i)
j=1 (yij − ŷij)

2

∑n
i=1

∑m(i)
j=1

(

yij −

∑
n
i=1

∑m(i)
j=1

yi
j

M

)2
> ǫ

⇔ ǫ̃
n∑

i=1

m(i)∑

j=1

yij −

∑n
i=1

∑m(i)
j=1 yij

M

2

−
n∑

i=1

m(i)∑

j=1

(
yij − ŷij

)2
> 0

⇔
n∑

i=1

ǫ̃

m(i)∑

j=1

(yij)
2 − 2ǫ̃

n∑

i=1

m(i)∑

j=1

yij

∑n

i=1

∑m(i)
j=1 yij

M

+ ǫ̃M

∑n

i=1

∑m(i)
j=1 yij

M

2

−
n∑

i=1

m(i)∑

j=1

(
yij − ŷij

)2
> 0

⇔
n∑

i=1

ǫ̃

m(i)∑

j=1

(yij)
2 −

m(i)∑

j=1

(yij − ŷij)
2

− ǫ̃M

∑n

i=1

∑m(i)
j=1 yij

M

2

> 0

⇔
n∑

i=1

(wi)− ǫ̃M

∑n

i=1

∑m(i)
j=1 yij

M

2

> 0

⇔
n∑

i=1

(wi

M

)
− ǫ̃

∑n

i=1

∑m(i)
j=1 yij

M

2

> 0

⇔
n∑

i=1

(
m(i)

M

)(
wi

m(i)

)
− ǫ̃

(
n∑

i=1

(
m(i)

M

)
yi

)2

> 0

Let
−→
vi =

[
wi

m(i) , y
i

]
andg : −→a ∈ R

2 7→ a1 − ǫ̂a22. Thus,

we have thatR2 being belowǫ is equivalent tog being below

zero when applied to a convex combination of
−→
vi ’s:

(3.1) R2 > ǫ⇔ g

(
n∑

i=1

(
m(i)

M

)
−→
vi

)
> 0.

g is a parabola and{−→a ∈ R
2 : g(−→a) = 0} splitsR2 into

two regions: the area inside the parabola (which is convex),
and the area outside (which is not convex). We denote
−→
vG =

∑n

i=1

(
m(i)
M

)−→
vi as the global statistic computed over

all the local
−→
vi -s. Since

−→
vG is a convex combination of

−→
vi ’s,

then if each nodePi determines that
−→
vi is in the area inside

the parabola, then
−→
vG must be too. This forms the basis

for a very nice distributed algorithm. However, the same
reasoning does not hold for the area outside the parabola.
To get around this problem, the area outside the parabola is
approximated as a union of overlapping half-planes (defined

by tangent lines ofg). If each node determines that
−→
vi is

in the same half-space for all nodes, then
−→
vG must be in the

half-plane as well (therefore, outside the parabola). In this
case no communication is necessary since all nodes are in
agreement. On the other hand, if different nodes have their
−→
vi -s in different convex regions (either inside the parabola or
one of the half-spaces), or in none of these convex regions,
then communication is required to come to a consensus. The

goal now boils down to monitoringg(
−→
vG) using the quantity

g(
−→
vi). The next section develops this idea into a concrete

algorithm.

4 DReMo: algorithm description

Based on the formulation ofR2 monitoring, we can develop
a distributed algorithm which requires far less communica-
tion than centralizing all the information from all the nodes
to one location. The intuition is to develop a set of conditions
based on the data at each node. If these conditions are satis-
fied at all nodes independently, then we can guarantee some
globally correct condition. This allows any node to cease
communication and output the correct result. In the remain-
der of this section we first develop one such local stopping

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

x

y

Tie region Tangent

x
4
,y

4

x
3
,y

3

x
1
,y

1

x
2
,y

2

1

2

3

4

Half−space

Figure 1: The parabola and the tangent lines that define the
half spaces as shown in different colors. The tangents are
drawn at the points shown in the figure.

criterion and then describe how it can be effectively used for
developing a distributed regression monitoring algorithm.

4.1 Thresholding criterion: We know that, if all
−→
vi -s lie

in a convex region, then their convex combination is also in
the same convex region. In order to check in a distributed
fashion whether this condition is satisfied, each node needs

to maintain the information about its neighbors’
−→
vi -s. The

following sufficient statistics defined exclusively on local
inputs allow a node to do this computation:

1. knowledge:
−→
Ki is defined as the convex combination of

the local monitoring input
−→
vi and all the information

thatPi has received from all its neighborsi.e.
−−→
Xj,i

2. agreement:
−−→
Ai,j is the information that bothPi andPj

share

3. withheld: Hi,j , is the information thatPi has and has
not yet shared withPj

We also define the sizes of these statistics as the number
of elements over which the statistic is computed. Thus, the
sizes of these statistics are defined as,
1. |Ki| = m(i) +

∑

Pj∈Ni

|Xj,i|

2. |Ai,j | = |Xi,j |+ |Xj,i|
3. |Hi,j | = |Ki| − |Ai,j |.
Using these, the vectors themselves are defined as:

1.
−→
Ki =

m(i)
|Ki|

−→
vi +

∑

Pj∈Ni

|Xj,i|

|Ki|

−−→
Xj,i

2.
−−→
Ai,j =

|Xi,j |
|Ai,j |

−−→
Xi,j +

|Xj,i|
|Ai,j |

−−→
Xj,i

3.
−−→
Hi,j =

|Ki|
|Hi,j |

−→
Ki −

|Ai,j |
|Hi,j |

−−→
Ai,j

Now, in order to check if the convex combination of
−→
Ki’s (and hence

−→
vi ’s) are all in the same convex region,

we need to split the domain of monitoring functiong into
non-overlapping convex regions. Figure 1 shows the re-
gions. First of all, note that inside of the parabola is con-
vex by definition. The outside of the parabola is not con-
vex; however it can be covered by hyper-planes defined
by tangents to the parabola, thereby splitting it into con-
vex regions. Therefore, the convex regions for this moni-
toring are: (1)Cin = {−→e ∈ R

2 : g(−→e) > 0}, and (2)
Cℓ = {

−→e ∈ R
2 : −→uℓ ·

−→e > 0}, where−→uℓ is theℓ-th unit nor-
mal of the tangent to the parabola. These convex regions are
collectively defined asC = {Cin, C1, . . . , Ct}. Also shown
in the figure are thetie regions — those regions which lie out-
side the parabola, and also not inside any half-space. Given
the convex regions, we state the following theorem which
gives us a condition by which any nodePi can decide if the

global vector
−→
vG is inside any convex region based on only

−→
Ki,
−−→
Ai,j , and

−−→
Hi,j .

THEOREM 4.1. [Thresholding Rule][16] Given any region
R ∈ C, if no messages traverse the network, and for each
Pi,
−→
Ki ∈ R and for everyPj ∈ Ni,

−−→
Ai,j ∈ R and either

−−→
Hi,j ∈ R orHi,j = ∅, then

−→
vG ∈ R.

Proof (SKETCH): We omit the formal proof here due to
shortage of space. The intuition behind the proof is to take
one node, sayPi, and combine its data with any of its
neighbor’s data. LetPk be a neighbor ofPi who sends all of
its
−−→
Hk,i to Pi. Pi on receiving this will set its new

−→
Ki to be

the convex combination of the old
−→
Ki and

−−→
Hk,i. Since both

are in the same convex region by assumption, their convex
combination will also be in the same convex region. It is also
easy to verify that the agreements and withheld knowledges
of Pi with any other neighborPj will also lie in the same
convex region after this step. Thus, we can eliminate node
Pk since its information has already been incorporated into
that ofPi. Continuing this process of elimination we will

have the knowledge of a single node equal to
−→
vG (since the

convex combination of all
−→
Ki-s is

−→
vG). Now since in each of

these elimination steps,
−→
Ki always remain inside the convex

region, so will
−→
vG.

Each node can apply this stopping condition to its local
vectors and if the condition is satisfied, then it need not
communicate any messages even if its local data changes or
it receives any message from its neighbors. Unfortunately,
when

−→
Ki lies in the tie region, the stopping condition cannot

be applied. In this case, the only way a node can guarantee
correctness is by sending all of the local information

−→
Ki to all

its neighbors. The goal is therefore, to place the tangent lines
such that the area of this region is minimized. The following
lemma shows us how to achieve this.

LEMMA 4.1. Given a parabola defined byy = ǫ̃x2, let
T = {(x1, ǫ̃x

2
1), (x2, ǫ̃x

2
2), . . . , (xt, ǫ̃x

2
t)} be points on the

parabola at which the tangent lines are drawn. Minimizing
the area of the tie region leads to the following values of the
x-coordinates of points inT : xℓ = 2ℓxmax

(2t+1) , ∀ℓ = 1 : t,
wherexmax is the maximum value of thex-coordinate.

Proof. Proof in provided in Appendix A.

4.2 Distributed regression monitoring algorithm
(DReMo): DReMo utilizes the condition of Theorem 4.1
to decide when to stop sending messages to its neighbors.
The pseudo code is shown in Alg. 4.1, 4.2 and 4.3. The
algorithm is entirely event driven. Events can be any one
of the following: (1) change in local dataSi, (2) a message
received, or (3) change inNi. If any one of these events
occur, Pi first checks the received message buffer and
updates its local vectors. It then checks the conditions for
sending messages. First it finds the region in which

−→
Ki

lies and sets a variablekloc accordingly: (1)kloc = 1 if
g(
−→
Ki) > 0 (inside parabola), or (2)kloc = 2 if there exists

one−→uℓ such that−→uℓ ·
−→
Ki > 0 (inside any half space), or (3)

kloc = 3 otherwise (tie region). Now based on the outcome
of this test, a node needs to send a message to its neighbor
Pj if any of the following occurs:

1. (kloc == 3)
∧

(−→
Ki 6=

−−→
Ai,j

)

∧

(|Ki| 6= |Ai,j |)

2. (kloc == 1
∨

kloc == 2)
∧

|Hi,j | == 0
∧

(−→
Ki 6=

−−→
Ai,j

)

3. (kloc == 1
∨

kloc == 2)
∧

|Hi,j | 6= 0
∧

NotInside

(−−→
Ai,j , kloc

)

∧

NotInside

(−−→
Hi,j , kloc

)

Case 1 occurs when
−→
Ki lies in the tie region and a

node needs to send its local information unless it has already
sent everything in a previous communication. Cases 2 and
3 are for directly checking the conditions of Theorem 4.1.
Note that we need to take special care when|Hi,j | = 0, in

which case,
−−→
Hi,j is undefined. This means that a node has

communicated everything to its neighbor and does not need
to send a message again, unless another event occurs. Case
2 can occur, for example, when the node has already sent
everything and then the local data changes, thereby making
−→
Ki 6=

−−→
Ai,j . Case 3 directly checks the condition of Theorem

4.1 with an added exception built-in to prevent this checking
in case of|Hi,j | = 0.

If any one of these conditions occur, a node can set
−−→
Xi,j ←

|Ki|
−→
Ki−|Xj,i|

−−→
Xj,i

|Ki|−|Xj,i|
and|Xi,j | ← |Ki|−|Xj,i| and send

it to Pj . However, as it turns out, if we set|Hi,j | = 0, and
the data changes again, a node might need to communicate
because

−→
Ki 6=

−−→
Ai,j may be violated. To avoid this, we set

Xi,j to be equal to the smallest value for which either both

−→
Ki and

−−→
Ai,j goes inside the convex region or|Hi,j | = 0. The

pseudo code for this step is shown in Alg. 4.3.

ALGORITHM 4.1. DReMo
Input : ǫ, C, Si, Ni andL.
Output : 0 if g(

−→
Ki) > 0, 1 otherwise

Initialization : Initialize vi,
−→
Ki,
−−→
Ai,j ,

−−→
Hi,j

On an event:
if MessageRecvd

(
Pj ,
−→
X, |X|

)
then

−−→
Xj,i ←

−→
X and|Xj,i| ← |X|;

end if
Updatevi,

−→
Ki,
−−→
Ai,j ,

−−→
Hi,j

for all NeighborsPj do

Call CheckMsg(
−→
Ki,
−−→
Ai,j ,

−−→
Hi,j , Pj);

end for

ALGORITHM 4.2. ProcedureCheckMsg

Input :
−→
Ki,
−−→
Ai,j ,

−−→
Hi,j , Pj

kloc = CheckKiLocation(
−→
Ki);

for all NeighborsPj do

if (kloc == 3)
∧(−→
Ki 6=

−−→
Ai,j

)∧
(|Ki| 6= |Ai,j |) then

SendMsg=true; {/*Tie Region*/}
end if
if (kloc == 1 or 2)

∧
|Hi,j | == 0

∧ (−→
Ki 6=

−−→
Ai,j

)
then

SendMsg=true{/*Theorem Condition*/}
end if
if (kloc == 1 or 2)

∧
|Hi,j | 6= 0

∧
NotInside

(−−→
Ai,j , kloc

)

∧
NotInside

(−−→
Hi,j , kloc

)
then

SendMsg=true{/*Theorem Condition*/}
end if
if (SendMsg==true) then

Call SendMessage
(−−→
Xi,j ,

−→
Ki,
−−→
Ai,j ,

−−→
Hi,j , Pj

)

end if
end for

ALGORITHM 4.3. ProcedureSendMessage

Input :
−−→
Xi,j ,

−→
Ki,
−−→
Ai,j ,

−−→
Hi,j , Pj

−−→
Xi,j ←

|Ki|
−→
Ki−|Xj,i|

−−→
Xj,i

|Ki|−|Xj,i|
;

s = 1/2;
|Xi,j | ← (1− s) ∗ (|Ki| − |Xj,i|);
Update all vectors;

While (NotInside
(−−→
Ai,j , kloc

)
or NotInside

(−−→
Hi,j , kloc

)
) and

|Hi,j | 6= 0
|Xi,j | ← (1 − s) ∗ (|Ki| − |Xj,i|);
Update all vectors;
s = ⌊s/2⌋;

end while
Send (Pj ,

−−→
Xi,j , |Xi,j |) to Pj ;

4.3 Re-computing model using convergecast/broadcast:
Whenever the model at any node does not fit the data, it
sets the output ofDReMoto 1 based ong(

−→
Ki) < 0. Once

the nodes jointly discover that the current model is out-of-
date, an alert is raised at each node and model recomputation
becomes necessary.

We leverage the fact that a linear regression model can
be easily computed by solving a linear set of equations. The
coefficients of this equation can be written as a running sum
over all the data points. Let the input-output be related

linearly as follows:ŷij = f(
−→
xi
j) = w0 + w1x

i
j.1 + w2x

i
j.2 +

... + wd−1x
i
j.(d−1). For simplicity, we separate the input

data matrix at nodePi asSi = [Xi yi], by partitioning
the input and output into separate matrices. We can do this
for G = [X y] in a similar fashion. We then augment
the input matrixXi with a column of 1-s at the beginning,
but for notational simplicity refer to it byXi itself. Using
least square technique for model fitting, we need to compute
two matrices over the global data:XTX andXT y. As
shown below, both these matrices are decomposable over
local inputs:

XTX =

∑n
i=1 m(i)

∑n
i=1

∑m(i)
j=1 xi

j.1 . . .
∑

n
i=1

∑m(i)
j=1 xi

j.1

∑
n
i=1

∑m(i)
j=1 (xi

j.1)
2 . . .

.

.

.
.
.
.

.

.

.
∑n

i=1

∑m(i)
j=1 xi

j.(d−1)

∑n
i=1

∑m(i)
j=1 (xi

j.(d−1))
2 . . .

=

n∑

i=1

m(i)
∑m(i)

j=1 xi
j.1 . . .

∑m(i)
j=1 xi

j.1

∑m(i)
j=1 (xi

j.1)
2 . . .

.

.

.
.
.
.

.

.

.
∑m(i)

j=1 xi
j.(d−1)

∑m(i)
j=1 (xi

j.(d−1))
2 . . .

 =

n∑

i=1

XT
i Xi

Similarly, it is easy to verify thatXTy =
∑n

i=1 X
T
i yi. Once

these two matrices are known globally, the set of weights
−→w = w0, . . . , wd−1 can be computed as

−→w =

(
n∑

i=1

XT
i Xi

)−1(n∑

i=1

XT
i yi

)

The goal is then to coordinate this computation across
the nodes over the topology tree that is already maintained
for the monitoring phase. A simple strategy is to use an al-
ternating convergecast-broadcast scheme. For convergecast,
whenever a nodePi detects that the output of the monitoring
algorithm is 1, it sets an alert flag and starts a timer (alert
wait period) to τ time units. When the timer expires and if
the flag is still set,Pi checks to see if it is a leaf. If it is, it
sends bothXT

i Xi andXT
i yi to its neighbor from which it

has not yet received any data and sets its state as converge-
cast. If, on the other hand, the monitoring algorithm dictates
that the model fits the data, the flag is reset. When any inter-
mediate node getsXT

j Xj andXT
j yj from one of its neigh-

borsPj , it first adds the received data to its received buffer
B. It then checks if its alert flag is set, the timer has ex-
pired and if it has received data from all but one neighbor.
If all these conditions are valid, it adds its own data to the
received bufferB and sends it to its neighbor from whom it
has not received any data and sets its state to convergecast.
When a node gets data from all neighbors, it becomes the
root. It then solves the regression equation to find a new−→w
and broadcasts this−→w to all its neighbors. Any node on re-

ceiving this new model, changes it state to ‘broadcast’ and
resets its alert flag and timer. It then forwards the new model
to all its children. We use the alert wait period to minimize
the number of false alarms by making a node wait forτ time
units before the alert is acted upon.

Note that the use of linear regression allows us to com-
pute the weights in an exact fashion compared to centraliza-
tion. Moreover, the dimensionality of the matricesXT

i Xi

andXT
i yi ared.d+ d.1 = O(d2). This shows that the com-

munication complexity is only dependent on the degree of
the polynomial or the number of attributes and independent
of the size of the dataset.

It must be noted that a new convergecast/brodacast
round is invoked wheneverR2 goes belowǫ at all the nodes.
R2 < ǫ implies that the data has changed and the model
does not fit the data. To improve model quality, the coef-
ficients of functionf are recomputed using the converge-
caset/broadcast procedure. However, another scenario where
R2 becomes less thanǫ is when the assumption of linearity is
no longer valid. In this case it may still be possible to avoid
multiple convergecast rounds by using a sufficiently low (yet
significant) value ofǫ in application scenarios where an ap-
proximate fit is good enough such as in anomaly detection.
Another way of addressing this problem is to directly com-
pare the coefficients of the old and the new model and then
to stop the recomputation phase if the two models are close
while theR2 is still low. More details of monitoring nonlin-
ear models is beyond the scope of this work.

4.4 Correctness ofDReMo: Correctness ofDReMo is
based on Theorem 4.1. Based on the conditions, any node
will keep sending messages until one of the following con-

ditions occur: (1) for every node,
−→
Ki =

−→
vG or, (2) for ev-

ery Pi and every neighborPj ,
−→
Ki,
−−→
Ai,j ,and

−−→
Hi,j ∈ R. In

the former case, obviouslyg(
−→
Ki) = g(

−→
vG). In the latter

case, Theorem 4.1 dictates that
−→
vG ∈ R. Therefore, in either

of the casesg(
−→
Ki) = g(

−→
vG), thereby guaranteeing global

correctness. Also since we are computing linear regression
models, the decomposability of the convergecast matrices
XTX =

∑n

i=1 X
T
i Xi andXTy =

∑n

i=1 X
T
i yi also ensure

that the model built is the same as a centralized algorithm
having access to all of the data.

5 Experimental results

In order to analyze the performance ofDReMo, we have per-
formed a variety of experiments under different conditions.
We first describe the simulation environment and the dataset,
followed by the performance of the algorithm.

5.1 Experimental setup: We have used a simulated envi-
ronment for running the experiments. The simulations have
been run on a dual processor machine of 3.3 GHz each with

31,000 X10 Time

.....

EpochEpoch

Sub
Epoch

Sub
Epoch Sub

Epoch
Sub

Epoch

520 54050040200

Figure 2: Eachepochis of 500,000 ticks and consists of
several 20,000 tickssubepochs.

4GB of physical memory running Windows XP. The dis-
tributed network has been simulated on this machine using
a topology generated by BRITE (http://www.cs.bu.
edu/brite/). We have experimented with the Barabasi
Albert (BA) model. We convert the edge delays to simu-
lator ticks for time measurement since wall time is mean-
ingless when simulating thousands of nodes on a single PC.
Each simulator tick in our experiment corresponds to 1 msec
in BRITE topology. On top of each network generated by
BRITE, we overlay a communication tree. We make the as-
sumption that the time required for local processing is trivial
compared to the overall network latency and therefore, con-
vergence time forDReMois reported in terms of the average
edge delay.

In our experiments we have used a leaky bucket mech-
anism which prevents a node from sending two messages
within the same leaky bucket period. Whenever a nodePi

gets a message, it sets a timer toL simulator time units and
down counts. If another event occurs while the timer is still
active,Pi does not send another message. Only if an event
occurs after the expiration of the timer,Pi is allowed to send
another message. Note that this technique does not affect
the correctness of the algorithm, since we do not destroy any
events. In the worst case, it may only delay convergence. In
our experiments we have set the value ofL such that any
node is able to send between 10 to 20 messages fir each
sub-epoch. This rate is enough to allowDReMoto converge
while offering a very low communication overhead.

In order to demonstrate the effects of the different
parameters ofDReMo in a controlled manner, we have
used synthetically generated data following a linear model.
(Experiments with real data is given in the next section.)
Given an input vector−→xj = xj.1 . . . xj.(d−1), the output is

generated according to:̂yj = w0+
∑d−1

k=1 wkxj.k+θ, where
θ ∼ N (0, σ2). For any experiment, we have randomly
chosen the values ofwi’s andσ in the range -5 to +5. Fig.
2 shows the timing diagram for all experiments. At some
predefined clock ticks, we have changed the data distribution
by randomly changing the weightswi-s of the data generator.
We refer to this time interval as anepoch. A epoch consists
of severalsub-epochs— those time points when we replace
20% of the data at each node, generated from the current

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

0.2

0.4

0.6

0.8

1

Time

V
al

ue
 o

f R
2

ε

(a) Dataset

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

(b) Accuracy vs. Time

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

6

0

0.5

1

1.5

2

Time

M
es

sa
ge

s
pe

r
no

de

(c) Monitoring messages vs. Time

Figure 3: Dataset, accuracy and messages forDReMoalgorithm in monitoring mode.

0 5 10 15
x 10

5

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

0 5 10 15
x 10

5

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

0 5 10 15
x 10

5

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)
0 5 10 15

x 10
5

0

0.4

0.8

1.2

1.6

2

Time

M
es

sa
ge

s
pe

r
no

de

0 5 10 15
x 10

5

0

0.5

1

1.5

2

Time

M
es

sa
ge

s
pe

r
no

de

0 5 10 15
x 10

5

0

0.5

1

1.5

2

Time
M

es
sa

ge
s

pe
r

no
de

Figure 4: Variation of accuracy (top row) and messages (bottom row) for different|Si| = 10, 50 and100 from left to right.

distribution. Thus each sub-epoch refers to a unit of data
change. We choose length of each epoch as 500,000 ticks
and sub-epoch as 20,000 ticks. Note that the number of times
data is replaced in every epoch is 500,000/20,000=25 and all
our experiments are run for many epochs.

We report three quantities for the experiments:accu-
racy, convergence rate, and communication cost. These
quantities are measured differently for the two modes of
DReMo— (1) when only the monitoring algorithm operates,
and (2) when the nodes jointly execute the convergecast-
broadcast procedure after the monitoring algorithm raises
an alert. For the former mode of operation, accuracy is
measured as the number of nodes which correctly identify
whetherR2 ≷ ǫ, while for the other mode, it is measured as
the averageR2 value over all the nodes.Convergence rate
is defined as the number of simulator ticks from the begin-
ning of an epoch to the time the algorithm reaches 99% accu-
racy.Communication costconsists of two types of messages:
monitoring messages measured as the number of messages
sent byDReMofor monitoring and computation messages
for rebuilding the model.

For all the experiments, unless otherwise stated, we
have used the following default values of the parameters:
(1) |Si| = 75, (2) d = 10, (3) L = 2000, (4) ǫ = 0.5,
(5) number of tangent lines = 6, and (6) number of nodes
(n) = 1000. In the experiments we have not placed the
tangents optimally according to Lemma 4.1; rather we have
placed the tangents at equidistant points on thex-axis. We
ran several experiments and found that this simple technique
works quite as well.

5.2 Performance analysis ofDReMo monitoring phase:
In this mode the nodes are not allowed to deploy the
convergecast-broadcast to rebuild the model and only raise
alerts when the model is out-of-date. This allows us to
demonstrate the convergence properties and message com-
plexity of DReMo.

Fig. 3 shows a typical dataset and the performance of
the nodes. For this mode of operation ofDReMo, we have
chosen the data such that for the odd epochs,R2

odd = 0.7429
while for the even epochsR2

even = 0.2451 as shown in Fig.
3(a). This means that, for the odd epochs, the regression

coefficients at each node matches with the weights of the data
generator, while for the even epochs they do not. The redline
is the error thresholdǫ. In all the experiments reported in
this mode of operation ofDReMo, the goal at each node is to
check if the model fits the datai.e. if R2

odd > ǫ for the odd
epochs andR2

even < ǫ for the even ones. As we see in Fig.
3(b), accuracy is very high (close to 100%) for each epoch,
once the algorithm converges after the initial data change.
Fig. 3(c) shows the monitoring messages per node plotted
against time. For the default leaky bucket size of 2000, the
maximal rate of messages per sub-epoch (i.e. data change)
is bounded by2×20, 000/2000 = 20 for DReMo, assuming
2 neighbors per node on average. Also, an algorithm which
broadcasts the data for each change will have this maximal
rate to be 2 per sub-epoch. ForDReMo, this rate of messages
per node per sub-epoch has been calculated to be only 0.025,
well below these maximal rates.

For DReMo, size of the local dataset plays a vital role
in the accuracy and message complexity. Increasing the
number of data points per node improves the quality of
the local sufficient statistics and hence lowers the messages
required by DReMo to agree with its neighbors. This
hypothesis is verified by Fig. 4, which shows an increase in
accuracy (top row) and decrease in messages (bottom row)
plotted against time for different|Si| = 10, 50 and 100 (left
to right). The rate of messages are 0.67, 0.045, and 0.013 per
node per sub-epoch for the three cases respectively.

The actual value ofǫ does not affect the performance
of DReMo, rather the distance betweenR2 and ǫ plays a
major role. Closerǫ is to R2 for any epoch, the more
difficult the problem becomes for that epoch. By varyingǫ
between 0 and 1, we demonstrate the performance ofDReMo
with different levels of problem difficulty as shown in Fig.
5. The ǫ values demonstrated here are 0.2, 0.5, and 0.7
from (left to right, all columns). Recall that the value of
R2

odd = 0.7427 for odd epochs andR2
even = 0.2451 for

even epochs. Forǫ = 0.2, R2
even is very close to the

threshold and hence, the accuracy is close to 60% with high
message complexity (leftmost column, both top and bottom
figures). For the sameǫ, checking forR2

odd > 0.2 is a
much simpler problem. On the other hand, forǫ = 0.7,
R2

odd is very close toǫ. This is reflected in the decrease in
accuracy and corresponding increase in messages for the last
column (both top and bottom) figures. In this case, checking
if R2

even < 0.7 becomes simple.

5.2.1 Convergence rate:Fig. 6(a) demonstrates the con-
vergence rate ofDReMofor different network sizes. We have
plotted the performance from the beginning of one epoch till
the time the nodes converge to 99% accuracy. At time 0,
the accuracy is 0%. When the data changes at 20,000 ticks,
accuracy increases and then again drops because the nodes
need more information to agree on the outcome. At 40,000

ticks, when the data changes again, the accuracy increases
and it keeps increasing till it reaches close to 100%. Even
with data changing at subsequent sub-epochs, we do not see
any drop in accuracy. For these network sizes, convergence
occurs at the following simulator ticks: 50441 (500 nodes),
49282 (1000 nodes), 47120 (2000 nodes), and 47989 (4000
nodes).

5.2.2 Scalability: Fig. 6(b) shows the accuracy and Fig.
6(c) shows the messages (separately for the odd and even
epochs) as the number of nodes is varied from 500 to 4000.
Each point in the accuracy plot is the average accuracy of
DReMoover the last 80% of time for each epoch. Similarly,
each point in the messages plot shows the messages per node
per sub-epoch during the later 80% of the epoch. For both
these plots, the circles represent the odd epochs, while the
squares represent the even epochs and bars represent the
standard deviation over 5 runs of the experiment. Since both
accuracy and messages do not vary for different network
sizes we can conclude thatDReMois highly scalable.

We have also run several experiments by varying the
other parameters — dimension of the data, size of the
leaky bucket and number of tangent lines. For all of these
parameters, the accuracy and messages do not vary much.
We do not present detailed graphs here due to lack of space.

5.3 Performance analysis ofDReMo with convergecast-
broadcast: We now shift our focus to the other mode of
operation ofDReMo— when the algorithm monitors the
model and rebuilds it, if outdated. Fig. 7 shows a typical
run of the experiment. Fig. 7(a) shows theR2 value of all
nodes at each time instance. The redline is the default value
of ǫ = 0.9. The plot shows thatDReMorebuilds the model
at every new epoch. Once the model is rebuilt, the value
of R2 drops belowǫ and only the efficient local monitoring
algorithm operates for the rest of the epoch. The algorithm
has a high true positive rate (alerts raised when necessary)
and a very low false positive rate (unnecessary alerts). Fig.
7(b) shows the monitoring messages per node per sub-epoch
and Fig. 7(c) shows the cumulative messages exchanged for
recomputing the model. As is evident from Fig. 7(b) and
7(c), the algorithm offers a very low overhead of monitoring.
Each data message consists of the following two matrices:
XT

i Xi (d × d) andXT
i yi (d × 1). The number of bytes

transmitted in each data message isd2/2 + d, d being the
number of features.

We study the effect of two parametersviz. ǫ and the
alert wait periodτ on the accuracy and messages ofDReMo.
Fig. 8 shows the variation of averageR2 over all nodes and
messages for different values ofǫ. The (red) squares show
the averageR2 value over the entire experiment duration,
ignoring the epoch transitional periods. The (blue) circles
show the respectiveǫ values. This plot shows that (1) the

0 5 10 15
x 10

5

0

50

100

Time

A
cc

ur
ac

y
(%

)

0 5 10 15
x 10

5

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

0 5 10 15
x 10

5

0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

0 5 10 15
x 10

5

0

0.5

1

1.5

2

Time

M
es

sa
ge

s
pe

r
no

de

0 5 10 15
x 10

5

0

0.5

1

1.5

2

Time

M
es

sa
ge

s
pe

r
no

de

0 5 10 15
x 10

5

0

0.5

1

1.5

2

Time

M
es

sa
ge

s
pe

r
no

de

Figure 5: Variation of accuracy (top row) and messages (bottom row) for differentǫ = 0.2, 0.5 and0.7 from left to right.
Recall thatR2 = 0.2451 for the even epochs, and henceǫ = 0.2 makes it very close to the threshold (left column). Similarly,
for the odd epochs,R2 = 0.7429 and soǫ = 0.7 makes this too close to the threshold. In both these cases there is decrease
in accuracy and increase in messages.

0 20000 40000 60000
0

20

40

60

80

100

Time

A
cc

ur
ac

y
(%

)

500 nodes
1000 nodes
2000 nodes
4000 nodes

(a) Convergence rate

500 1000 2000 3000 4000
99.8

99.85

99.9

99.95

100

Network size

A
cc

ur
ac

y
(%

)

R2 > ε
R2 < ε

(b) Accuracy vs. # nodes

500 1000 2000 3000 4000

0

0.05

0.1

0.15

0.2

Network size

N
or

m
al

iz
ed

 m
es

sa
ge

s

R2 > ε
R2 < ε

(c) Messages vs. # nodes

Figure 6: Convergence rate and scalability ofDReMofor different network sizes. Leftmost plot shows convergence rate.
The next two figures demonstrate accuracy and messages with the size of the network.

0 0.5 1 1.5 2 2.5 3
x 10

6

0

0.2

0.4

0.6

0.8

1

Time

V
al

ue
 o

f R
2

(a) R2 vs. Time

0 0.5 1 1.5 2 2.5 3
x 10

6

0

0.5

1

1.5

2

Time

M
on

ito
rin

g
m

es
sa

ge
s

(b) Monitoring messages per node vs. Time

0.5 1 1.5 2 2.5 3
x 10

6

0

4

8

12

16

20

Time

C
om

pu
ta

tio
n

m
es

sa
ge

s

(c) Cumulative data messages vs. Time

Figure 7: Accuracy and messages for entireDReMoalgorithm while both monitoring and re-building the model.

average computedR2 is always higher than theǫ value, and
(2) the R2 value increases with increasingǫ to maintain
the required accuracy since higherǫ implies more rigid
model fitting requirement. The second figure shows both
the monitoring messages and convergecast broadcast rounds

per node per epoch. The monitoring messages vary between
0.028 and 1.0154 – far less than the maximal rate of 20 and
2 messages as discussed earlier. Also the average number of
computation rounds vary between 1.1 and 3.12 which means
that new models are built between 1 and 3 times per epoch.

0.6 0.7 0.8 0.9 0.95
0.5

0.6

0.7

0.8

0.9

1

ε

V
al

ue
 o

f R
2

DReMo
ε

0.6 0.7 0.8 0.9 0.95
0

0.2

0.4

0.6

0.8

1

1.2

ε

M
on

ito
rin

g
m

es
sa

ge
s

0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

C
om

pu
ta

tio
n

ro
un

ds

Computation rounds
Monitoring messages

Figure 8: Accuracy and messages ofDReMovs. ǫ.

10 50 100 500 1000
0.89

0.92

0.95

0.98

τ

V
al

ue
 o

f R
2

DReMo
ε

10 50 100 500 1000

0

2

4

τ

M
on

ito
rin

g
m

es
sa

ge
s

10 50 100 500 1000
2

2.5

3

C
om

pu
ta

tio
n

ro
un

ds

Monitoring messages
Computation rounds

Figure 9: Accuracy and messages ofDReMovs. τ .

As can be seen from the graph, this value is small for lower
values ofǫ since model fitting requirements are relaxed.

We have also varied the alert wait periodτ to take
values 10, 50, 100, 500 and 1000. Fig. 9 shows the
variation of accuracy and messages for the values ofτ .
AverageR2 value varies very little, and always stays greater
than ǫ. As expected, the convergecast broadcast rounds
per node per epoch decrease and the monitoring messages
increase since the convergence ofDReMo is delayed with
increasing values ofτ . The optimal value ofτ is that for
which both monitoring messages and computation rounds
are minimized.

6 Application to Electrical Smart Grid monitoring

Electrical smart grids (ESG) provide an exciting venue for
deploying this algorithm in a realistic setting. In this section
we demonstrate how we can monitor the CO2 emission from
energy usage in electric grids. Since data in the electric grid
is inherently distributed, this calls for a distributed monitor-
ing algorithm. Unfortunately, a lot of the electric grid perfor-
mance data is proprietary and not available for experimental
purposes. As a result we have used the data available from
EIRGRID (http://www.eirgrid.com/). It is an Irish
state-owned company developing and maintaining GRID25
— an efficient power generation and transmission infrastruc-
ture having a meshed network of approximately 6,500 km
of high voltage overhead lines and underground cables and
over 100 transmission stations. This grid system seamlessly
connects both fossil fuel generation plants and renewable en-
ergy sources such as wind turbines, solar arrays. All of the
major generating plants feed into this grid and power is trans-
mitted nationwide. This design ensures that power can flow
freely to where it is needed and that if one power station,
power line or transmission station is non-operational, there

are other options or routes available. EIRGRID publishes
system performance data every 15 mins. The data consists
of the following: electricity demand (in Mega Watts), wind
generation (in Mega Watts) and CO2 emissions (in Tonnes
per hour). This dataset has also been used by Krameret al.
[10] for forecasting electricity demand using kernel regres-
sion.

Our goal in this work is to demonstrate the ability
of DReMo in assessing the state of the ESG distribution
system. We have used wind generation and electricity
demand as inputs in order to model CO2 emission, with
the underlying assumption that higher than usual CO2 level
indicates higher fossil fuel burning and hence lesser green
energy generation. Detection of such events may ultimately
help the grid companies to dynamically switch on or off more
renewable energy sources.

We have downloaded these three features for a period
of 9 months Jan 01, 2010 to Sep 30, 2010 (273 days).
Since the data is collected every 15 mins, there are a total
of 26,208 samples in our full dataset. In our setup, we
take each month’s data as an epoch and at every 500,000
simulator ticks replace all of the data of all nodes with the
next month’s data. We have divided each month’s data
(approximately 2900 points) into 50 nodes such that each
node has approximately 55 data points per epoch. We have
taken a small sample of the data from the first epoch and
have built a regression model and used it as the reference
model throughout the remaining epochs of the distributed
experiment. It is worthwhile to mention here that we have
usedDReMo to only detect the changes (no convergecast
broadcast). In the absence of real faults in the data, we have
altered the CO2 values of the month of June by±20% of the
actual values. Fig. 10 shows the experimental results. The
top figure shows the percentage of nodes agreeing that the
model fits the data at each time instance. For the entire period
till the end of May we see a good agreement between the
model of Jan 2010 and the data, with some intermediate false
alarms. The interesting phenomenon occurs during June
2010 and the algorithm correctly detects the event. After
June, when the data changes again, the algorithm recovers
and shows high accuracy. In order to validate this, we have
built regression models for each epoch separately, and found
that they are very similar, except the data for June 2010. The
bottom plot shows the messages exchanged byDReMofor
this monitoring.

7 Conclusion

In this paper we have presented a new method for monitoring
linear regression models in distributed environments. The
proposed algorithm usesR2 statistic to assess the quality of
a set of linearly dependent input-output observations in a dis-
tributed fashion and raises an alert whenever the value of the
statistic drops below a predefined thresholdǫ. The algorithm

Jan Feb Mar Apr May Jun Jul Aug Sep

20

40

60

80

100

Time

%
 n

od
es

 in
 a

gr
ee

m
en

t

Alert raised

Jan Feb Mar Apr May Jun Jul Aug Sep

0.4

0.8

1.2

1.6

2

Time

M
es

sa
ge

s
pe

r
no

de

Figure 10: Accuracy and messages ofDReMo for smart
grid data monitoring. The circled region (June) is when the
algorithm correctly detects the fault in the system.

is provably correct and has very low communication over-
head — both ideal for easy deployment on top of existing
distributed infrastructures such as data centers and electri-
cal smart grids. Another important characteristic of the pro-
posed algorithm is the choice ofR2 as the monitoring func-
tion, which helps one to choose a model fidelity threshold(ǫ)
in a data independent manner, making it amenable to diverse
applications. Extensive experimental evaluation using both
synthetic and real data corroborate the performance claims
of DReMo. In our future research, we plan to extend this
scale-free monitoring algorithm to nonlinear models such as
kernel regression.

References

[1] K. Bhaduri and H. Kargupta. A Scalable Local Algorithm
for Distributed Multivariate Regression.Stat. Anal. and Data
Mining, 1(3):177–194, 2008.

[2] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A Local
Algorithm for Ad Hoc Majority Voting via Charge Fusion.
In Proc. of DISC’04, pages 275–289, 2004.

[3] P. Bodik, M. Goldszmidt, A. Foxo, D. Woodard, and H. An-
dersen. Fingerprinting the Datacenter: Automated Classifi-
cation of Performance Crises. InProc. of ECCV’10, pages
111–124, 2010.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip
Algorithms: Design, Analysis and Applications. InProc. of
INFOCOMM’05, pages 1653–1664, Miami, March 2005.

[5] L.R. Ford and D.R. Fulkerson.Flows in Networks. Princton
University Press, 1962.

[6] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madden.
Distributed Regression: an Efficient Framework for Modeling

Sensor Network Data. InProc. of IPSN’04, pages 1–10,
Berkeley, California, 2004.

[7] D. E. Hershberger and H. Kargupta. Distributed Multivariate
Regression Using Wavelet-based Collective Data Mining.
JPDC, 61(3):372–400, 2001.

[8] J.M. Jaffe and F.H. Moss. A Responsive Distributed Routing
Algorithm for Computer Networks.IEEE Trans. on Comm.,
30(7):1758–1762, 1982.

[9] D. Kempe, A. Dobra, and J. Gehrke. Computing Aggregate
Information using Gossip. InProc. of FOCS’03, 2003.

[10] O. Kramer, B Satzger, and J. Lässig. Power Prediction in
Smart Grids with Evolutionary Local Kernel Regression. In
Proc. of HAIS’10, volume 6076, pages 262–269, 2010.

[11] P. Luo, H. Xiong, K. Lü, and Z. Shi. Distributed Classifica-
tion in Peer-to-Peer Networks. InProc. of KDD’07, pages
968–976, 2007.

[12] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and
R. Murray. Distributed Averaging on Peer-to-Peer Networks.
In Proc. of CDC’05, Spain, 2005.

[13] D. Scherber and H. Papadopoulos. Distributed Computation
of Averages Over ad hoc Networks.IEEE J. on Selected
Areas in Comm., 23(4):776–787, 2005.

[14] I. Sharfman, A. Schuster, and D. Keren. A Geometric Ap-
proach to Monitoring Threshold Functions Over Distributed
Data Streams. ACM Transactions on Database Systems,
32(4):23, 2007.

[15] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W.
Fan, and P. K. Chan. JAM: Java Agents for Meta-Learning
over Distributed Databases. InProc. of KDD’97, pages 74–
81, Newport Beach, California, 1997.

[16] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic Local
Algorithm for Mining Data Streams in Large Distributed
Systems.TKDE, 21(4):465–478, 2009.

A Proof of Lemma 4.1

Proof. Let the equation of the parabola bey = ǫ̃x2. Refer-
ring to Fig. 1, minimizing the area of the tie region is equiv-
alent to maximizing the area of the colored half-spaces.

Tangent to this parabola at any point(tx, ty) is y =
ty + 2ǫ̃tx(x − tx). Now the tangent atx1, y1 meets thex-
axis at(x1/2, 0) and intersects with the tangent at(x2, y2)
at(x1+x2

2 , ǫ̃x1x2), using the fact that(yi = ǫ̃x2
i). Therefore,

area of the red triangle (marked as 1 in the figure):A1 =
1
4 ǫ̃x1x

2
2. Using tangent equations at(x2, y2) and(x3, y3), we

can express the area of trapezoid 2 as:A2 = 1
4 ǫ̃x2(x

2
3−x2

1).
Similarly the area of trapezoid 3 isA3 = 1

4 ǫ̃x3(x
2
4−x2

4) and
4 isA4 = 1

4 ǫ̃(2xmaxx4−x2
4+x3x4)(2xmax−x3−x4). We

can extend this fort tangents and maximize the following:

max

{
t∑

i=1

Ai

}

= max{x1x
2
2 + x2(x

2
3 − x2

1) + · · ·+

(2xmaxxt − x2
t + xt−1xt)(2xmax − xt−1 − xt)}

Taking partial derivatives of the above expression with each
xi and setting them to 0 gives us the following values of the
xi’s:

x1 =
2xmax

2t+ 1
x2 =

4xmax

2t+ 1
. . . xt =

2txmax

2t + 1
.

