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Abstract—Prognostics methodologies determine the health
state of a system and predict the end of life and remaining useful
life. This information enables operators to take maintenance-
related decisions, thus effectively streamlining operational and
mission-level activities. Prognostics testbeds help in the prototyp-
ing, development, and maturation of prognostic technologies. In
this work, we present a prognostics testbed for pneumatic valves.
Pneumatic valves are critical components in many industrial
processes, and the testbed will be used to showcase how remaining
life prediction works in the context of cryogenic refueling oper-
ations. The testbed allows for the injection of time-varying leaks
with specified damage progression profiles in order to emulate
common valve faults. In addition, the testbed contains a battery
used to power some components, allowing the study of the effects
of battery degradation on the operation of the valves. Prognostic
algorithms will utilize sensor data collected from the different
transducers in order to estimate component health and make
life predictions, based on mathematical models describing the
underlying physics of component degradation and employing a
Bayesian filtering algorithm for state-parameter estimation from
which life predictions are made.

I. INTRODUCTION

Prognostics methodologies determine the health state of a
component or subsystem, and predict the end of life (EOL)
and remaining useful life (RUL). This information enables
operators to take maintenance-related decisions, thus effec-
tively streamlining operational and mission-level activities.
In cryogenic propellant loading operations, ensuring system
safety through prognostics and health management technolo-
gies is critical to maintaining launch availability and reducing
maintenance cost [1]. In order to mature propellant loading
technologies, a testbed has been developed at NASA Kennedy
Space Center (KSC) that transfers cryogenic propellant from
a storage tank to a vehicle tank through a network of pipes,
pumps, and valves [2].

Pneumatic-actuated valves play a critical role in such a
system [3]; since the valves are used to control the flow of
propellant, failures may have a significant impact on launch
availability. In order to demonstrate prognostics in the context
of cryogenic propellant loading, we have developed a prognos-
tics demonstration testbed for pneumatic valves which allows
the controlled injection of faults with varying degrees on a
subset of valves of the larger testbed. In this paper, we describe
the design and development of the testbed, which consists

of two different types of pneumatic valves that allows the
injection of faulty behavior and controllable fault progression.
One valve type opens discretely, and is controlled through a
solenoid valve; the other valve type opens continuously, and is
controlled through a current-pressure transducer. Controllable
leaks of pneumatic gas with specified damage progression
profiles are introduced in the testbed through proportional
valves, allowing the testing and validation of prognostics
algorithms for pneumatic valves. The demonstration testbed
will integrate with the cryogenic testbed at KSC through
pneumatic ports and electrical connections.

The demonstration testbed also includes batteries that are
used to power some components. Batteries are finding an
increased use as backup power supply sources for critical
systems and scientific applications all over the world. For these
systems to operate at maximum efficiency and reliability, it be-
comes crucial to both monitor battery health and performance
and to predict end of discharge (EOD) and EOL events. The
testbed allows to study the effects of battery degradation on
the operation of the control valves, as well as the prediction
of EOD.

The structure of the paper is as follows. Section II presents
the overall prognostics approach to the system using a model-
based methodology. Section III discusses the overall setup
of the prognostics demonstration testbed. Section IV and V
describe the leak and battery faults injected in the system,
respectively. The paper ends with discussion and conclusions
in Section VI.

II. PROGNOSTICS APPROACH

In this section, we first describe the general model-based
prognostics problem, followed by an implementation architec-
ture.

A. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)),

y(k) = h(k,x(k),θ(k),u(k),n(k)),

where k is the discrete time variable, x(k) ∈ Rnx is the state
vector, θ(k) ∈ Rnθ is the unknown parameter vector, u(k) ∈
Rnu is the input vector, v(k) ∈ Rnv is the process noise



Fig. 1. Prognostics architecture.

vector, f is the state equation, y(k) ∈ Rny is the output vector,
n(k) ∈ Rnn is the measurement noise vector, and h is the
output equation.1

In prognostics, we are interested in predicting the oc-
currence of some event E that is defined with respect to
the states, parameters, and inputs of the system. We define
the event as the earliest instant that some event threshold
TE : Rnx × Rnθ × Rnu → B, where B , {0, 1} changes
from the value 0 to 1. That is, the time of the event kE at
some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP .

In the context of systems health management, TE is defined
via a set of performance constraints that define what the
acceptable states of the system are, based on x(k), θ(k), and
u(k) [4]. For valves, timing requirements are provided that
define the maximum allowable time a valve may take to open
or close [3]. For batteries, there are two types of predictions
are relevant. The first is EOD, defined by a voltage threshold
VEOD. In this case, TE is defined by V < VEOD, that is,
when the battery voltage is less than the cutoff voltage, EOD
is reached and TE evaluates to 1. The second type of prediction
is EOL, which is typically defined by a lower bound on the
effective battery capacity [5]. In this case, TE is defined by
C < CEOL, where C is the measured battery capacity and
CEOL is the lower bound on capacity.

Models of the system components are constructed in this
paradigm that capture both nominal behavior, as well as faulty
behavior and damage progression[3]. Using these models, ob-
servations can be mapped back to the health state of the system
as represented in x and θ. An estimation algorithm, such as
the Kalman filter, unscented Kalman filter, or particle filter, is
used to solve this problem [6]. This state-parameter estimate,
along with a prediction of the future usage of the component, is
used as input to a prediction algorithm that computes EOL and
RUL [4], [7]. In order to account for fault effects propagating
across different components, such as a leak through a solenoid
valve causing changes in pneumatic valve behavior, a system-
level perspective is needed for prognostics [8].

1Bold typeface denotes vectors, and na denotes the length of a vector a.

B. Prognostics Architecture

In a model-based prognostics architecture [4], there
are two sequential problems, (i) the estimation problem,
which requires determining a joint state-parameter estimate
p(x(k),θ(k)|y(k0:k)) based on the history of observations
up to time k, y(k0:k), and (ii) the prediction problem, which
determines at kP , using p(x(k),θ(k)|y(k0:k)), a probability
distribution p(kE(kP )|y(k0:kP )). The distribution for ∆kE
can be trivially computed from p(kE(kP )|y(k0:kP )) by sub-
tracting kP .

The prognostics architecture is shown in Fig. 1 [4]. In
discrete time k, the system is provided with inputs uk and
provides measured outputs yk. The estimation module uses
this information, along with the system model, to compute an
estimate p(x(k),θ(k)|y(k0:k)). The prediction module uses
the joint state-parameter distribution and the system model,
along with hypothesized future inputs, to compute the prob-
ability distribution p(kE(kP )|y(k0:kP )) at given prediction
times kP .

III. OVERALL SETUP

The prognostics demonstration testbed as shown in Figure 2
has been developed to demonstrate remaining life prediction
of valves and batteries in the context of cryogenic refu-
eling operations. The schematic shows the complete setup
being developed for demonstration. The dashed lines are the
electrical signals including the data acquisition I/O signals,
power lines etc. The solid lines are all the pneumatic pressure
lines connecting the control valves, solenoids, IPT etc. The
schematic also illustrates the switching from normal supply to
battery backup supply as well as a fail-safe mode to isolate the
prognostics demonstration testbed from the cryogenic testbed.

As can be seen from the schematic diagram, two types
of pneumatically-actuated valves are used for demonstration.
The discrete-controlled valve (DV) illustrated in Figure 3 is
a normally-closed valve with a linear cylinder actuator. The
valve is opened by filling the chamber below the piston with
gas up to the supply pressure, and evacuating the chamber
above the piston down to atmospheric pressure. The valve is
closed by filling the chamber above the piston, and evacuating
the chamber below the piston. The return spring ensures that
when pressure is lost, the valve will close due to the force
exerted by the return spring, hence it is a normally-closed
valve [3].

The continuous-controlled (CV) valve as Figure 4, on the
other hand, opens in a continuous manner. Like the DV
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Fig. 3. Discrete-controlled valve

valve, the actuator contains a piston, however internally the
actuator contains additional components in order to modulate
the pressure applied to the piston. The actuator has two
pressure ports, one for the supply pressure, and one for the
signal pressure. The signal pressure is controlled between 3-15
psig in order to move the valve between fully closed and fully
open. The actuator contains a 3-way, spool type pilot valve.
Supply pressure is applied to one end of the spool while the

other end of the spool is vented to the atmosphere through
a diaphragm assembly. As the valve moves up or down as
directed by the imbalance between the diaphragm and rate
of spring forces, the valve spool either vents the positioner
output port to the atmosphere or admits supply pressure to the
positioner output port. Depending on the pilot valve position,
the output pressure can vary from zero to full supply pressure,
actuating the valve.

A three-way two-position solenoid valve (SV) is illustrated
in Figure 5 is used for controlling the operation of the DV
valve. The cylinder port connects to the valve, the normally
closed (NC) port connects to the supply pressure, and normally
open (NO) port is left unconnected, allowing venting to
atmosphere. When the solenoid is energized, the path from
the NC port to cylinder port is open, allowing gas to pass
from the supply to the valve, thus actuating the valve. When
deenergized, the supply pressure is closed off and the path
from the cylinder port to the NO port is opened, thus venting
the DV valve which closes the valve due to the return spring.
The solenoid is powered by 24 V dc either through the power
supply or the Li-ion batteries for operation.

A current to pressure transducer (IPT) converts an analog
current signal (4-20 mA) to a proportional linear pneumatic
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Fig. 5. Three-way two-position solenoid valve.

output (3 to 15 psig). The IPT is essentially a pressure
regulator that is controlled by a current signal. Supply pressure
is connected to the input port, and, the regulated output
pressure will change depending on the current signal.

Controllable gas leaks are introduced through a set of
proportional valves. These valves combine a solenoid valve
with an electronics package that digitally modulates the control
signal to provide analog proportional control. These are two-
way normally-closed valves and operate on 24 V dc, powered
through the power supply or the batteries.

The data from the different sensors is collected using an 8-
slot NI cDAQ-9188 Gigabit Ethernet chassis which is designed
for remote or distributed sensor and electrical measurements.
In the experimental testbed for safety requirements all the
controls and data acquisition activities are done remotely hence
the specific chassis is selected for the testbed. A single NI
CompactDAQ chassis can measure up to 256 channels of
sensor signals, analog I/O, digital I/O, and counter/timers with
an Ethernet interface back to a host machine. The details of
the cards used are as follows:

1) NI 9211 4-Channel, 14 S/s, 24-Bit, 80 mV thermocouple
input module to sense the temperature of the batteries

2) NI 9205 32 single-ended or 16 differential analog inputs
16-bit resolution; 250 kS/s aggregate sampling rate
200 mV, 1, 5, and 10 V programmable input ranges for
pressure sensing

3) NI 9401 8 Ch, 5V/TTL high-speed bidirectional digital
I/O module. 8-channel, 100 ns ultrahigh-speed digital
I/O 5 V/TTL, sinking/sourcing digital I/O for digital
control

4) NI 9264 16 channel analog output module. 25 kS/s/ch
simultaneous output hot-swappable operation 60 VDC
isolation with D-SUB version card for controlling the
proportional control valves.

All the operations for the cDAQ-9188 are controlled through
a LabVIEW-designed interface from where the user can have
access to all the input data and output control.

IV. PNEUMATIC GAS LEAK FAULTS

As discussed earlier, the prognostic demonstration testbed is
an apparatus used to showcase remaining life prediction in the
context of cryogenic refueling operations. The most common
type of fault is a leak of pneumatic gas. To demonstrate valve
prognostics for leaks we select several locations throughout the
pressure lines for which leaks may appear in order to emulate
faults. The injection is accomplished by adding a bypass line
with a proportional solenoid valve in the pneumatics lines
as illustrated in Figure 2. The bypass valves are remotely
operated and allow control over how much they can be
opened in order to control the leakage rate and support desired
damage progression profiles. Table I summarizes the different
faults that may appear in the system and their effect on the
components. The following subsections describe how these
fault modes can be emulated on the testbed.

A. Solenoid Valve and DV Leak Faults

Figure 6 illustrates the setup for faults that can be injected
in the solenoid valve when energized, to study the degradation
effects on the operation of the DV. As illustrated, the leakage
faults can be injected at the NO and NC seat ports using
the bypass valve V1 which affects the DV operation due to
decreased supply pressure. The leak through V1 emulates a
leak at the cylinder port or, when energized, a leak across the
NO seat (see Table I).

Similarly, Figure 7 illustrates the setup for faults that can be
injected in the solenoid valve when de-energized, to study the
degradation effects on the operation of the DV. A leakage fault
can be injected at the NO and NC seat ports using the bypass
valve V2 which affects the DV operation due to decreased
supply pressure. In both the injected faults, the amount the
valve will open depends on steady-state pressure and whether
it produces enough force to overcome the spring force. The
steady-state value and how long it takes to get there depends
on orifice sizes and the leak rate. The amount the valve will
close depends on steady-state pressure and if this decreases
the gas force enough for the spring force to overcome it.

In addition to the leakage faults, a fault injected in the
coils will change the operational timing of the seat opening.



TABLE I
FAULT INJECTION MATRIX FOR PROGNOSTICS TESTBED

Component Fault Mode Effects

Solenoid Vale Leak across NC seat If SV energized, and DV valve is open, no effect; if DV valve is closed, no effect. If SV
de-energized, and DV valve is closed, DV valve potentially opens; if DV valve is open,
DV closes more slowly.

Leak across NO seat If SV energized, and DV valve is open, loses pressure and DV can start to close; if DV
valve is closed, it will open more slowly. If SV deenergized, and DV valve is closed, no
effect; if DV valve is open, will close more slowly.

Leak at cylinder port Same as leak across NC seat.

Coil resistance degradation Solenoid current will increase (transient and steady-state). SV timing will change.

DV Valve Pneumatic gas leak at valve port Same effects as leak at SV cylinder port or leak across NO seat.
Spring wear Valve opens faster, closes slower. If spring gets weak enough, valve will not close

completely.

I/P Transducer Leak at input port Lowers regulated pressure
Leak at output port Lowers regulated pressure
Coil resistance increase Lowers regulated pressure
Spring wear Increase or decrease regulated pressure depending on which spring - return spring

decrease would increase output pressure

CV Valve Pneumatic gas leak at supply pressure port Lower supply pressure so valve may not open fully, open more slowly
Pneumatic gas leak at signal pressure port Lowers regulated pressure
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Injecting a increase in resistance will increase the solenoid
current (transient and steady-state) and hence affect the SV
timing and hence the DV timing.

B. IPT and CV Valve Leak Faults

Figure 8 illustrates the setup for faults that can be injected
through the IPT and bypass valves, to study the degradation
effects on the operation of the CV. As can be seen, a leakage
fault can be injected at the supply pressure port through bypass
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Fig. 7. Solenoid valve leak fault injection when de-energized on DV valve

valve V4. Any changes in the supply pressure will have an
effect on the opening and closing of the CV valve. A leak in
the signal pressure line from the IPT to the CV can also be
injected through V3. Since the IPT modulates the amount of
pressure at its output depending upon the control signal, a leak
on the signal line will reduce the signal pressure going to the



Supply Pressure

Leak at output port

Pneumatic gas leak at 

supply pressure port

Pneumatic gas leak at 

signal  pressure port

V4

V3

Fig. 8. CV pneumatic leak faults

CV and modify its position.

V. BATTERIES

As part of a backup power supply source, Li-ion batteries
are used for powering the solenoid valve and IPT. Theoret-
ically the cell has a voltage of around 4.2 V when fully
charged. The terminal voltage of the battery rises/falls with
a charge/discharge cycle, respectively. So to get a total dc
voltage of around 24 V to operate the valves we connect 6
batteries in series. The batteries can provide a backup for a
limited amount of time and as the charge in the battery starts
decreasing the output power decreases. In addition to this,
over the period of time the battery degrades and its ability to
hold charge decreases. This degradation in performance of the
battery will affect the operation of the powered sub-systems,
which eventually will have a cascading effect on the control
valves. To avoid any incomplete operation of critical oper-
ations or accidents requires implementation of an advanced
health monitoring and predictive capabilities methodology. To
implement such technologies, it is crucial to understand how
batteries work and to capture that knowledge in the form
of models that can be used by monitoring, diagnosis, and
prognosis algorithms.

In order to predict end-of-discharge, we have developed
an electrochemistry-based model of Li-ion batteries [10] that
(i) captures the significant electrochemical processes, (ii) is
computationally efficient, (iii) captures the effects of aging,
and (iv) is of suitable accuracy for reliable EOD prediction
in a variety of usage profiles. The model can be considered
an electrochemical engineering model, but unlike most such
models found in the literature, we make certain approximations
that allow us to retain computational efficiency.
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Fig. 9. Measured 2 A discharge curves with battery aging.

The end of life of a battery depends on the chemistry,
discharge-charge cycling, temperature, and storage conditions,
among other factors. Atmospheric temperature affects the
operating performance of the batteries. At low temperatures,
ionic diffusion and migration could be hindered and also
damaging side reactions like lithium plating may take place.
High temperatures cause corrosion and generation of gases
leading to an increase in internal pressure. As the battery
ages, degradation results in the decrease of the observed
battery capacity. This is primarily due to a loss of mobile
ions due to parasitic or side reactions and an increase in the
internal resistance. Internal resistance leads to ohmic losses
that generate heat and accelerate the aging process. Some
relevant physical aging mechanisms in the electrodes are solid-
electrolyte interface (SEI) layer growth, lithium corrosion,
formation of plating on lithium, and contact loss due to the
formation of the SEI layer.

To study the charge/discharge dynamics of batteries we
characterized the batteries by taking voltage measurements
under constant current charge/discharge conditions. The rate
of charge/discharge is measured relative to the battery capacity
C. For example, a 0.1C discharge rate for a 5 Ah battery is
0.5 A. Fig. 9 shows 2 A discharge curves with the battery
at different ages. The EOD point moves earlier in time
due to diminished capacity. The voltage drops down during
discharge due to increased resistance. Steady-state voltage
after discharge increases because the battery is not discharged
as fully due to the increased resistance and the battery hitting
EOD before then.

The detailed implementation of the derived electrochemistry
model and algorithms for li-ion batteries are discussed in [10].

VI. CONCLUSION

In this paper, we presented a prognostics demonstration
testbed for cryogenics propellant loading. Using the sensor
data from the injected faults we plan to implement prognostics
algorithms such that we are able to make EOL predictions that



are accurate. The test bed will help in studying realistic degra-
dation and failure effects on the propellant loading systems
and implementing prognostic methodologies to such systems
will enable operations crews to take effective operations and
maintenance-related decisions, thus efficiently streamlining
operational and mission-level activities.

The current testbed is limited in several ways that provides
the basis for future work. For one, we are currently only look-
ing at prominent faults that could be injected in the system.
Other more complicated faults are not included in this study.
As we better understand the system and the ability to model
system better we plan to incorporate those faults. Further
integrating the testbed with the actual cryogenic propellant
system will be an interesting step to study the effects of
injected faults on the complete system and then implementing
health monitoring and prognostics methodologies for making
accurate end-of-life predictions. Earlier, much work has been
done related to cryogenic loading systems but it was not
carried out with prognostics requirements and applications in
mind. The current work is an initial step towards implementing
these methodologies to industrial process plants and similar
equipments.
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