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Abstract—Prognostics technologies determine the health state
of a system and predict its remaining useful life. With this
information, operators are able to make maintenance-related
decisions, thus effectively streamlining operational and mission-
level activities. Experimentation on testbeds representative of
critical systems is very useful for the maturation of prognostics
technology; precise emulation of actual fault conditions on such
a testbed further validates these technologies. In this paper we
present the development of a pneumatic valve testbed, initial
experimental results and progress towards the maturation and
validation of component-level prognostic methods in the context
of cryogenic refueling operations. The pneumatic valve testbed
allows for the injection of time-varying leaks with specified
damage progression profiles in order to emulate common valve
faults. The pneumatic valve testbed also contains a battery used
to power some pneumatic components, enabling the study of the
effects of battery degradation on the operation of the valves.

I. INTRODUCTION

Prognostics technology is centered on the determination of
the health state of a component, subsystem, or system, and
the prediction of critical events, such as the end of life (EOL).
With prognostics, operators can take informed maintenance
decisions to make operational and mission-level activities more
optimal, efficient, and cost-effective. In particular, in cryo-
genic propellant loading operations, launch availability can be
maintained and maintenance cost reduced through the use of
prognostics and other health management technologies [1]. A
cryogenic propellant loading testbed has been developed at
NASA Kennedy Space Center (KSC) that transfers cryogenic
propellant from a storage tank to a vehicle tank through a
network of pipes, pumps, and valves, in order to mature health
management technologies for launch support systems [2], [3].

In propellant loading systems, and many others, pneumatic-
actuated valves play an important role [4], [5]. These valves
are used to control propellant flow, and, therefore, failures may
have a significant impact on launch availability. In this context,
we have developed a pneumatic valve testbed that allows the
controlled injection of faults on a subset of valves used in the
larger testbed at KSC. Such a testbed allows the demonstration

of prognostics for such systems, as well as maturation and
validation of the technology.

In addition to valves, the testbed also includes a set of
batteries used to power some components in the testbed,
allowing the implementation of prognostics for batteries as
well. In many launch support systems, batteries are used as a
backup power supply sources. In these contexts, it is critical
to both monitor battery health and performance and to predict
end of discharge (EOD) and EOL events. The testbed allows
for the implementation of battery prognostics and the study of
the effects of battery degradation on other system components.

In previous work, we described the initial design of the
prognostics testbed [6]. Subsequent to this, construction of the
testbed was completed, with the testbed being used to control
the injection of fault modes on a solenoid valve, a current-
pressure transducer, a pneumatic valve that can be controlled
only to open and closed positions, and a pneumatic valve that
can be controlled to any discreteposition. Additionally, battery
health monitoring and predictive methods were implemented
on the laboratory testbed. The testbed is able to inject four
different leakage faults and one battery fault. This paper
presents the final testbed design, discusses the integration with
prognostics algorithms, and describes detailed experimental
results. We discuss the prognostic results for batteries while
the details of implemented prognostics methodologies for
pneumatic valves in the testbed are discussed in [5], [7].

The structure of the paper is as follows. Section II discusses
the overall design of the prognostics testbed. Section III
describes the faults injected in the system. Section IV briefly
describes the integration with prognostics algorithms. Sec-
tion V discuss the experiments conducted and some illustrative
prognostics results. The paper ends with discussion and con-
clusions in Section VI.

II. PROGNOSTIC TESTBED DESIGN

The testbed as shown in Figure 1 has been designed
and developed to simulate valve faults and demonstrate re-
maining life prediction of valves and batteries in the con-
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text of cryogenic refueling operations. The solid lines are
the pneumatic pressure lines connecting the control valves,
solenoids, IPT(Current Pressure Transducer), LVDT (linear
variable differential transformer) etc. The dashed lines are
the electrical signals to the IPT and solenoid valve. Pressure
sensors are placed at specific locations to monitor the supply,
signal, control pressures respectively in each of the lines.

Two types of pneumatically-actuated valves are used within
the prognostics testbed. The discrete-controlled valve (DV),
illustrated in Figure 2, is a normally-closed valve with a
linear cylinder actuator. The valve is opened by filling the
chamber and piston assembly above the valve with gas up to
the actuation pressure, and closed by evacuating the chamber
down to atmospheric pressure. When pressure is lost, the valve
will close due to the force exerted by the return spring, hence
it is a normally-closed valve [4].

The continuous-controlled (CV) valve, illustrated in Fig-
ure 3, on the other hand, opens in a continuous manner. Like
the DV valve, the actuator contains a chamber and piston
assembly, however, internally, the actuator contains additional
components in order to modulate the pressure applied to the
piston. The actuator has two pressure ports, one for the supply
pressure, and one for the signal pressure. The signal pressure

Pneumatic Port

Fig. 2. Discrete-controlled valve

is controlled between 3–15 psig in order to move the valve
between fully closed and fully open. The actuator contains
a 3-way, spool type pilot valve. Supply pressure is applied to
one end of the spool while the other end of the spool is vented
to the atmosphere through a diaphragm assembly. When the
valve moves up or down as directed by the imbalance between
the diaphragm and spring forces, the valve spool either vents
the positioner output port to the atmosphere or admits supply
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Fig. 4. Three-way two-position solenoid valve.

pressure to the positioner output port. Depending on the pilot
valve position, the output pressure can vary from zero to full
supply pressure, actuating the valve.

A three-way two-position solenoid valve (SV), illustrated in
Figure 4, is used for controlling the operation of the DV valve.
The cylinder port connects to the valve, the normally closed
(NC) port connects to the supply pressure, and normally open
(NO) port is left unconnected, allowing venting to atmosphere.
When the solenoid is energized, the path from the NC port to
cylinder port is open, allowing gas to pass from the supply
to the valve, thus actuating the valve. When deenergized, the
supply pressure is closed off and the path from the cylinder
port to the NO port is opened, thus venting the DV valve
which closes the valve due to the return spring. The solenoid
is powered by 24 V DC either through the power supply or
the Li-ion batteries for operation.

An IPT converts an analog current signal (4-20 mA) to a
proportional linear pneumatic output (3 to 15 psig) and is
used for controlling the operation of the CV valve. The IPT is
essentially a pressure regulator that is controlled by a current
signal. Supply pressure is connected to the input port, and,
the regulated output pressure will change depending on the

current signal.
Controllable gas leaks are introduced through a set of

proportional valves (V1-V4). These valves combine a solenoid
valve with an electronics package that digitally modulates the
control signal to provide analog proportional control. These
are two-way normally-closed valves and operate on 24 V DC,
powered through the power supply or the batteries.

The data from the different sensors is collected using an 8-
slot NI cDAQ-9188 Gigabit Ethernet chassis which is designed
for remote or distributed sensor and electrical measurements.
In the experimental testbed, for safety requirements, all the
controls and data acquisition activities are done remotely hence
this specific chassis is selected for the testbed. A single NI
CompactDAQ chassis can measure up to 256 channels of
sensor signals, analog I/O, digital I/O, and counter/timers with
an Ethernet interface back to a host machine. All the opera-
tions for the cDAQ-9188 are controlled through a LabVIEW-
designed interface from where the user can have access to all
the input data and output control.

III. SYSTEM FAULTS

As discussed earlier, the main focus of the prognostics
testbed is to emulate valve faults in order to demonstrate
remaining life prediction in the context of cryogenic refueling
operations. The most common type of fault on the propellant
loading testbed is a leak of pneumatic gas. To demonstrate
valve prognostics for leaks, we have emulated faults at selected
locations throughout the pressure distribution system where
leaks are likely to appear. The fault injection is accomplished
by adding a bypass line with a proportional solenoid valve in
the pneumatic lines. The bypass valves are remotely operated
and the position can be specified to control the leakage rate
and support desired damage progression profiles. In addition,
during certain experimental configurations, Li-ion batteries are
used to power the solenoid valve. Faults are incorporated in
the batteries to cause a premature loss of charge. Table I
summarizes the different faults that may appear in the system
and their effect on the components.

A. Solenoid Valve and DV Leak Faults

Figure 5 illustrates the setup for faults that can be injected
in the solenoid valve when energized, to study the degradation
effects on the operation of the DV. As illustrated, the leakage
faults can be injected at the NO and NC seat ports using
the bypass valve V1 which affects the DV operation due to
decreased supply pressure. The leak through V1 emulates a
leak at the cylinder port or, when energized, a leak across the
NO seat (see Table I).

Similarly, Figure 6 illustrates the setup for faults that can be
injected in the solenoid valve when de-energized, to study the
degradation effects on the operation of the DV. A leakage fault
can be injected at the NO and NC seat ports using the bypass
valve V2 which affects the DV operation due to a decreased
supply pressure. In both the injected faults, the amount the
valve will open depends on steady-state pressure and whether
it produces enough force to overcome the valve’s return spring



TABLE I
FAULT INJECTION MATRIX FOR PROGNOSTICS TESTBED

Component Fault Mode Effects Injecting Component

Solenoid Valve Leak across NC seat If SV energized, and DV valve is open, no effect; if DV valve
is closed, no effect. If SV de-energized, and DV valve is closed,
DV valve potentially opens; if DV valve is open, DV closes more
slowly

V2

Leak across NO seat If SV energized, and DV valve is open, loses pressure and DV can
start to close; if DV valve is closed, it will open more slowly. If
SV de-energized, and DV valve is closed, no effect; if DV valve
is open, will close more slowly

V1

Leak at cylinder port Same as leak across NC seat V2

DV Pneumatic gas leak at valve port Same effects as leak at SV cylinder port or leak across NO seat V1

IPT Leak at output port Lowers regulated signal pressure which affects the open time of
the CV

V3

CV Pneumatic gas leak at supply pressure port Lower supply pressure so valve may not open fully, open more
slowly

V4

Pneumatic gas leak at signal pressure port Lowers regulated pressure V3

Li-ion Battery Additional resistance Reduced charge leaves the DV unable to actuate properly R1

y

DV

Supply pressure

To Atm
Leak at NC port

Pneumatic gas leak 

at valve port

Leak across NO seat

Coil resistance 

degradation

Solenoid Valve

V1
V2

Fig. 5. Solenoid valve leak fault injection when energized on DV valve

force. The steady-state value and how long it takes to get
there depends on the orifice size and leak rate. The amount
the valve will close depends on steady-state pressure and the
return spring force to overcome it.

B. IPT and CV Valve Leak Faults

Figure 7 illustrates the setup for faults that can be injected
through the IPT and bypass valves, to study the degradation
effects on the operation of the CV. As can be seen, a leakage
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Fig. 6. Solenoid valve leak fault injection when de-energized on DV valve

fault can be injected at the supply pressure port through bypass
valve V4. Any changes in the supply pressure will have an
effect on the opening and closing of the CV valve. A leak in
the signal pressure line from the IPT to the CV can also be
injected through V3. Since the IPT modulates the amount of
pressure at its output depending upon the control signal, a leak
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on the signal line will reduce the signal pressure going to the
CV and modify its position.

C. Li-ion Batteries

Li-ion batteries are used as an alternate power source to
operate the solenoid valve. Over the period of operation the
battery charge reduces and the batteries are considered to be
fully discharged once they reach a certain threshold value.
A completely charged battery cell has a maximum potential
voltage of 4.2 V. Six batteries in series are used to operate
the solenoid valve. If the threshold for any of the 6 batteries
falls below 2.6 V, the solenoid valve connection is turned off,
which, in turn, stops operating the DV valve. An resitance
R1 was used in parallel to the SV as a load to discharge the
batteries. The solenoid takes around 40 mA of during each
operation which would take the batteries a very long time to
drain. Hence to accentuate the drain process a 18 ohm resistor
R1 is added in parallel with the solenoid which drains the
battery at a constant load of around 1.4 A to last for 100
cycles of operation of the DV valve.

D. Integration with Prognostics Algorithms

Each of the the faults discussed is exacuted independently
in the system. For both the valves, changes in the opening and
closing times are the parameters that change with leak faults.
Hence, along with the pressure sensors to observe pressure
changes, we use a LVDT sensor that is mounted on the shaft of
each valve. In real systems only LVDT senosr data is availalbe
and no pressure sensors are available. In this work the pressure
sensors were used to observe the pressure changes to study the
effects of faults in the systems. The prognostics algorithms
use only LVDT data for making RUL and EOL predictios.

Changes in the opening and closing times help detect and
isolate faults in the valves. For batteries, voltage, current,
and temperature are the three meausrements that are used to
estimate the state of charge (SOC). Experiments are controlled
through the LABView front-end. Through LABView, sensor
measurements are fed into the prognostics algorithms, imple-
mented in Matlab. The prognostics algorithms compute health
state estimates and life predictions.

IV. PROGNOSTICS APPROACH

In this section we discuss the general prognosis frame-
work used for the valves and batteries, following the gen-
eral estimation-prediction framework of model-based prog-
nostics [9], [10], [11]. Details of the specific algorithms are
described in [5], [7] for the pneumatic valves, [12], [13]
for the IPT, and [14] for the batteries. Here, we summarize
the formulation the prognostics problem, followed by a brief
description of the estimation approach and a description of the
prediction approach.

A. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)),

y(k) = h(k,x(k),θ(k),u(k),n(k)),

where k is the discrete time variable, x(k) ∈ Rnx is the state
vector, θ(k) ∈ Rnθ is the unknown parameter vector, u(k) ∈
Rnu is the input vector, v(k) ∈ Rnv is the process noise
vector, f is the state equation, y(k) ∈ Rny is the output vector,
n(k) ∈ Rnn is the measurement noise vector, and h is the
output equation.1

In prognostics, we predict the occurrence of an event E that
is defined with respect to the states, parameters, and inputs of
the system. We define the event as the earliest instant that
some event threshold TE : Rnx × Rnθ × Rnu → B, where
B , {0, 1} changes from the value 0 to 1. That is, the time
of the event kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP .

For systems health management, TE is defined via a set
of performance constraints that define what the acceptable
states of the system are, based on x(k), θ(k), and u(k) [11].
For valves, timing requirements are provided that define the
maximum allowable time a valve may take to open or close [4].
For batteries, we are interested in EOD, defined by a voltage
threshold VEOD.

Models of the system components are constructed in this
paradigm that capture both nominal behavior, as well as
faulty behavior and damage progression. Using these models,
observations can be mapped back to the health state of the
system as represented in x and θ. An estimation algorithm,

1Bold typeface denotes vectors, and na denotes the length of a vector a.



Fig. 8. Prognostics architecture.

such as the Kalman filter, unscented Kalman filter, or particle
filter, is used to solve this problem [15]. This state-parameter
estimate, along with a prediction of the future usage of
the component, is used as input to a prediction algorithm
that computes EOL and remaining useful life (RUL) [11],
[16]. In order to account for fault effects propagating across
different components, such as a leak through a solenoid valve
causing changes in pneumatic valve behavior, a system-level
perspective is needed for prognostics [17].

B. Prognostics Architecture

In a model-based prognostics architecture [11], there
are two sequential problems, (i) the estimation problem,
which requires determining a joint state-parameter estimate
p(x(k),θ(k)|y(k0:k)) based on the history of observations
up to time k, y(k0:k), and (ii) the prediction problem, which
determines at kP , using p(x(k),θ(k)|y(k0:k)), a probability
distribution p(kE(kP )|y(k0:kP )). The distribution for ∆kE
can be trivially computed from p(kE(kP )|y(k0:kP )) by sub-
tracting kP .

The prognostics architecture is shown in Fig. 8 [11]. In
discrete time k, the system is provided with inputs uk and
provides measured outputs yk. The estimation module uses
this information, along with the system model, to compute an
estimate p(x(k),θ(k)|y(k0:k)). The prediction module uses
the joint state-parameter distribution and the system model,
along with hypothesized future inputs, to compute the prob-
ability distribution p(kE(kP )|y(k0:kP )) at given prediction
times kP .

C. Estimation

For both the valves and the batteries, we developed a
detailed physics model of component behavior using nominal
data from the testbed which is discussed in [7] and [14]
respectively. For the valves, we then simulate for various
leakage rates, computing the corresponding open and close
times. This information is encoded in a lookup table, so,
given measured open and close times, we can quickly obtain
the corresponding leakage rate. For the batteries, we use an
unscented Kalman filter (UKF) to obtain the state estimate
from the sensor measurements, as described in [14].

D. Prediction

For the valves, from estimation we have estimated leakage
rates under different fault assumptions. We can then project
out the leakage rates to determine the time at which they
reach values corresponding to EOL, assuming a progression

profile. Different faults have different effects on open and
close times, allowing to distinguish which fault is present.
Predictions are made once the measured valve timing exceeds
specified nominal thresholds.

For the batteries, we simulate for various SOC values and
load values the corresponding remaining time until discharge,
and compuate a lookup table. Given the SOC, as computed
by the UKF, and expected future load, we can then quickly
compute the corresponding time of EOD.

V. EXPERIMENTS AND RESULTS

We present here results observed for the fault injection
experiments conducted using the prognostic testbed. In each of
the experiment the fault is injected into one of the components
until the fault progression reaches its maximum extent, i.e., the
component reaches its end of life condition.

A. Leak to Atmosphere : DV Fault

The leak to atmosphere fault is injected by controlling the
position of the leak valve V1. Faults in the valves are injected
by linearly increasing the open percentage of the desired leak
valve in increments of 1%. This emulates a leak across the NO
seat of the solenoid valve, or a leak on the gas line going to
the pneumatic valve. This fault causes a decrease in opening
times and an increase in closing times. Fig. 9 shows the open
times of the valve during the fault progression, and Fig. 10
shows the close times. It is difficult to determine a trend in
the open times, and they do not cross the detection threshold.
The close times are very noisy, and typically cross the closing
time threshold at the 48th cycle. Based on the open and close
times, the fault must be a leak to atmosphere, in agreement
with the model.

B. Leak from Supply: DV Fault

As described in Section II, the leak from supply fault is
injected by controlling the position of the leak valve V2. This
emulates a leak across the NC seat of the solenoid valve. This
fault causes an increase in opening times and a slight decrease
in closing times. Fig. 11 shows the open times of the valve
during the fault progression, and Fig. 12 shows the close times.
The observed trends are in agreement with the model. A fault
is detected at the 43rd cycle based on the opening times.

C. Leak from Signal: CV Fault

The leak from signal fault is injected by controlling the
position of the leak valve V3. This fault emulates a leak a
leak at the output port of the IPT or leak at the input port of
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the CV valve. This fault causes a increase in the opening time
as shown in Fig.13 while the close time does not change. It
is also observed from Fig. 14 that the steady state value of
the CV decreases in this fault. It is difficult to determine a
trend in the close times, and they do not cross the detection
threshold. Since nominal open times are noisy a threshold of
7.6 sec is set with a mean of last 3 values. A threshold of
0.997 for steady state percent values is set to detect a fault in
the operation of the valve.

D. Leak from Supply: CV Fault

The leak from supply fault is injected by controlling the
position of the leak valve V4. This fault emulates a leak in
the supply line or the supply input port of the CV. This fault
causes a increase in the opening time as shown in Fig. 15
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while the close time does not change. It is also observed from
Fig. 16 that the steady state value of the CV decreases in this
fault. It is difficult to determine a trend in the close times, and
they do not cross the detection threshold. Since nominal open
times are noisy a threshold of 7.6 sec is set with a mean of
last 3 values.

E. Battery Degradation Fault

As mentioned earlier in Section II, 6 batteries with a
combined voltage of around 24.5 V are used to power the
solenoid operating the DV. Fig. 17 shows the discharge cycle
for one of the batteries reaching the threshold voltage.

We discuss the prognostics results based on the experiments
conducted using the derived model. We use the architecture
described in [14]. To acheive accurate prognostics results the
developed model should be accurate which in this case is the
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electrochemistry Li-ion battery model [14] along with known
future inputs.

Fig.18 shows the plots for state of charge (SOC) for all the
6 batteries and Fig.19 shows the voltage drop due to load till
one of the batteries reaches the cutoff voltage of 2.6 V. The
experiment was stopped when any one of the batteries reached
a threshold of 2.6 V which avoided the batteries going into
deep discharge.

We plot results in α-λ plots, where α (e.g. 10%) defines an
accuracy cone around the ground truth, and λ is a time point
[20]. As seen from the RUL plot in Fig.20 it is observed that
the prediction during discharge cycle experiment is within the
α-λ cone. This indicates the model is predicting EOL with
high accuracy.
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VI. CONCLUSION

In this paper, we presented a prognostics demonstration
testbed for pneumatic valves and batteries in the context of
cryogenic propellant loading systems. We injected controlled
faults and collected data in the system using the developed
hardware interface. This data was used to develop component
models and to implement prognostic algorithms such that we
are able to make accurate EOL predictions. The testbed helps
in studying relalistic degradation phenomenona and failure
effects in the different components of propellant loading
systems. The study will help us implement the developed
prognostic methodologies in the field and aid operations crew
to make effective maintenance-related decisions.

In the current testbed we able to inject few major faults since
over the period of time through the experiments we have found
that the operational relationship between the injected faults
and the components is very complicated. We are currently
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studying more faults that could be injected as well as detected
and isolated using our algorithms. As we better understand
the system and are able to model the system better, we can
incorporate those faults. The developed testbed was integrated
with the field system to conduct similar experiments, for which
the analysis and results are part of our future work.
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