
ADAPTIVE FAULT DETECTION ON LIQUID PROPULSION SYSTEMS WITH VIRTUAL

SENSORS: ALGORITHMS AND ARCHITECTURES

Bryan L. Matthews

Stinger Ghaffarian Technologies Inc. at NASA Ames Research Center

Moffett Field, CA

Ashok N. Srivastava, Ph.D.

NASA Ames Research Center

Moffett Field, CA

ABSTRACT

Prior to the launch of STS-119 NASA had completed a study of an issue in the flow

control valve (FCV) in the Main Propulsion System of the Space Shuttle using an

adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of

algorithms that estimate the value of a time series given other potentially nonlinearly

correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is

based on an ensemble learning approach and takes sensor readings and control signals as

input to estimate the pressure in a subsystem of the Main Propulsion System. Our results

indicate that this method can detect faults in the FCV at the time when they occur. We

use the standard deviation of the predictions of the ensemble as a measure of uncertainty

in the estimate. This uncertainty estimate was crucial to understanding the nature and

magnitude of transient characteristics during startup of the engine. This paper overviews

the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle

missions and also discusses the architecture necessary for deploying such algorithms in a

real-time, closed-loop system or a human-in-the-loop monitoring system. These results

were presented at a Flight Readiness Review of the Space Shuttle in early 2009.

INTRODUCTION

During the launch of STS-126 shuttle Endeavour in November of 2008 the gaseous

hydrogen FCV experienced a fault in one of the space shuttle main propulsion system

(MPS). The fault occurred because a piece of the poppet (the component of the valve that

regulates the flow of gaseous hydrogen) in the valve broke off and was carried down the

return lines to the tank. Fortunately this did not puncture the line, which could have

resulted in fuel leak and possibly catastrophic failure. Before the next shuttle launch of

Discovery in March of 2009 a study on this issue for the STS-119 flight readiness review

was conducted. The aim was to determine if the fault that occurred could be detected in

the recorded pressure and temperature sensors and if a precursor to the faulty FCV could

be detected in the flights leading up to the faulty flight. Multiple anomaly detection

techniques were applied to the flight data including IMS
1
, Orca

2
, and Virtual Sensors

3,4

(VS), as well as manual examination of the data by the flight engineers. All three

algorithms were able to detect an non-directed unintentional drop in the outlet pressure

sensor at the suspected time of the fault in STS-126. This paper will discuss the system

integration process of merging the VS algorithm with the current system as well how the

algorithm performs on the flight data.

CURRENT METHODS

The current method for examining anomalies that occur in the liquid hydrogen system is

to set single sensor thresholds or red lines. These thresholds define the normal operating

conditions for each sensor in the system and can quickly and reliably detect events where

a sensor reading exceeds the threshold. This approach cannot detect a situation if

multiple sensors fall within the boundaries of normal operations but exhibit anomalous

behavior when taken together. If a combination of sensors deviates from their normal

operating region the anomaly may go undetected. In the case of the FCV fault discussed

here, the pressure sensor fell out of the normal bounds. For anomaly detection methods

in sequential data, these envelope detections do not apply
7
.

VIRTUAL SENSORS ALGORITHM

The Virtual Sensors algorithm works by predicting the value of one or more sensors

giving the output of another set of sensors. These sensors may be correlated with the

target sensor either linearly or nonlinearly. The algorithm uses a set of so-called base

models which could be any type of statistical regression method. For example, linear or

polynomial regression techniques, multivariate adaptive regression splines, neural

networks, and other techniques can be used to make a prediction.

In this paper, we use decision trees as the base model
6
.We build the models as follows:

We take the entire data set divided into two parts: a training part and the test part. The

training part may be comprised of a large number of previous flights with the same or

similar engine configurations. We randomize the order of this training and extract 80% of

the data. Using this sample, we build a decision tree to predict the pressure sensors given

other inputs such as the control signals to the engine, and related pressure and

temperature signals. The resulting decision tree is stored and then another 80% sample is

drawn with replacements from the entire training set. A second model is built as before.

This process is replicated between 20 and 100 times. In this paper, we replicated the

decision trees 100 times.

The addition of the virtual sensors is made by using the testing data as input into all 100

decision trees. The average of all 100 decision trees is used as the prediction of the target

sensor value and the standard deviation of the predictions of the 100 decision trees is

used as an estimate of the uncertainty. This approach is based on the concept of bagging

predictors and leads to a mean prediction as well as an estimate of uncertainty for each

point in the test set. In more complex situations, the regression functions can be modified

to include prior information about the expected correlations between inputs and outputs.

RESULTS

For the STS-119 flight readiness review the VS algorithm had been applied to a set of 11

shuttle flights with the same valve configuration monitoring the FCVs on each SSME.

The algorithm was able to detect two flights with persistent anomalies.

STS-126

The first flight detected was STS-126, which was the faulty flight that resulted in the

damaged poppet. Using the outlet pressure sensor as the target, the algorithm was able to

detect the anomalous event at the point in the flight where the engineers believe the fault

occurred. Figure 1 shows the three anomaly scores for each of the FCVs corresponding to

each SSME. The fault was detected on the FCV for SSME 2, which can be seen in the

high prediction error in the figure, where as the FCVs for SSME 1 and 3 showed no signs

of faults (the FCV for SSME 1 contained single exceedances, which were due to noisy

data and can be corrected by applying the data quality filter as well as only signaling

alarms only when consecutive exceedances are detected). Notice at approximately 50

seconds in all three FCV anomaly scores the adaptive threshold is able to adjust to

transients induced by throttle changes and other system state changes. By incorporating

the high variance in the model predictions to adjust the alarm threshold, false positives

can be avoided that would otherwise be flagged when using a fixed threshold throughout

the entire flight.

Figure 1: This figure shows the output of the Virtual Sensors algorithm on the y-axis as a function

of time on the x-axis. The blue line corresponds to the prediction of the Virtual Sensor and the red

lines indicate the point-wise estimate of uncertainty in the model. The points where the blue line falls

outside the envelope defined by the redlines are tagged with a black dot. Notice that the MPS E2

GH2 Pressure Outlet Pressure is anomalous from about 93.6 seconds for the remainder of ascent.

STS-88

The other anomalous flight that the VS algorithm detected was STS-88. Notice in Figure

2 the FCV for SSME 3’s prediction error is much lower, indicating that the outlet

pressure is higher than predicted, while the FCV for SSME 1 & 2 appear to be

functioning normally. This was presented to the domain experts and it was determined

that SSME 3 was set up under a different engine configuration than the remaining 10

flights as well as the other two engines on STS-88. The alternate configuration results in

a higher chamber pressure and therefore a higher input and output pressures for the FCV.

The detection of this flight demonstrates that the algorithm is working correctly, however

the flight engineers still consider this is a false positive, since the engine and FCV were

operating normally. As with most data-driven algorithms, including additional training

data that represents this particular SSME operating configuration would allow the models

to learn this system mode, account for the adjusted pressure, and therefore report that the

FCV is operating normally.

Figure 2. This figure shows the output of the Virtual Sensors algorithm on the y-axis as a function of

time on the x-axis. The blue line corresponds to the prediction of the Virtual Sensor and the red lines

indicate the point-wise estimate of uncertainty in the prediction. The points where the blue line falls

outside the envelope defined by the redlines are tagged with a black dot. Notice that the MPS E3

GH2 Pressure Outlet Pressure shows an anomaly. However, further investigation shows that this

anomaly was not due to a fault or failure in the system but was due to a different engine

configuration.

SYSTEM INTEGRATION

When integrating any algorithm into an established system, two important factors must

be considered. How the algorithm will interface with the system as well as requirements

for the algorithm will need to be thoroughly reviewed before the algorithm can be

implemented. In the proposed method of integration the algorithm will be running in a

monitoring fashion and alert controllers to an anomaly that has been detected in any of

the three FCVs. This method is similar to the implementation of the IMS algorithm,

which has been used for monitoring International Space Station’s Attitude Control and

Thermal Operations
8
. This level of implementation allows the current system to operate

normally and places a human in-the-loop for decision making purposes. The sensors that

the algorithm will be monitoring are currently telemetered to the ground where the

algorithm could cleanly connect to the streaming data for analysis. Figure 3 shows where

the algorithm might be integrated into the current system, with the components in the

dotted box representing the additions to the system. Since the VS algorithm operates on

each time sample independently, the core functionality is already well-suited for a

streaming real time environment without the need for modifications to the algorithm.

Figure 3: This figure is the system level diagram for the FCVs. The blocks in the dotted box are

where the proposed algorithm may be inserted.

REQUIREMENTS

To properly integrate the algorithm into the current system, a set of requirements must

first be specified to outline the algorithm’s functionality and expected performance. The

algorithm and resulting code must also go through both rigorous quality assurance tests

as well as a thorough verification and validation process to assure the requirements have

been fully met. A few set of high level requirements are as follows:

1. The algorithm must be able to process streaming data at the current sampling rate
for the sensors being monitored (10Hz). The algorithm will be expected to

provide alarm feedback (either nominal or anomalous) at the same input rate.

2. Any fixed delays between the measured signal and the alarm signal (such as
processing time and/or windowed effect) should not exceed 1 second.

3. Algorithm’s performance metric shall be determined by a false positive rate of
less than 1% and correct detection rate of greater than 99% when tested on

simulated or true nominal and faulty data.

4. The algorithm shall be able to detect and respond appropriately without reporting
false positives to sensor failure events due to data drop-out and/or noisy sensors.

As the algorithm implementation process is explored additional software and hardware

requirements may need to be described to help ensure the algorithm meets the

performance requirements, such as programming languages, memory, and CPU speeds.

Note the algorithm is currently coded in the Matlab environment and has not been tested

for the speed requirements outlined above. A more efficient programming language such

as C/C++ may be more appropriate for meeting the speed requirement. The false positive

and correct detection rate requirements have been met when examining the two faulty

flights discussed in the results section. For the requirement regarding the handling of the

faulty and noisy sensors: more examples and feedback from domain experts will need to

be obtained so a successful filter can be designed and tested.

SYSTEM ARCHITECTURE

The algorithm’s system architecture is divided up into 2 main operations: an offline

training phase and an online monitoring phase. For the offline phase there is no need for a

strict training time requirement; only that the algorithm needs to compute the models

within a reasonable time given the size of the training data (i.e. on the order of seconds

for megabytes of data and minutes for 1 to 10 gigabytes of data). The algorithm in the

training phase will take N sets of samples from historical and/or simulated flights to

produce N models. These models will then be fixed and supplied to the online monitoring

phase of the algorithm. Since the core functionality of the algorithm does not require the

models to be of any one type, various regression techniques can be employed in this

framework. At this point a set of requirements must be established to standardize and

describe the model format that will be passed between the training and testing phases as

well as any limits to the number of models that can be passed between the two sets of

code due to any processing limitations of the hardware. This will ensure that the two

portions of the algorithm are compatible and can be executed on the defined platform. A

common technique is to allow the model building portion of the code to be modularized

to allow various methods, including linear or nonlinear regression techniques, to be

“plugged in”. In this case the training and testing modules will have to define a common

model format for each type that is passed between the two portions of code. The

interfaces between module and the framework on both the training & monitoring sides

must be standardized as well to allow the modules to be interchangeable.

In Figure 4 a flow chart of the online phase of the algorithm is shown. The algorithm will

receive the streaming data from a well defined interface such as a TCP network

connection. The proposed platform for the algorithm is not intended to be a true hardware

real time operating system, but rather software that can be run on a desktop machine

while being able to keep pace with the streaming data without dropping data or

accumulating a delay. For this application a TCP network connection is sufficient. The

data will be processed through a data quality filter, which will check each sensor for data

loss or noise and correct the signal. Once the sensors have been corrected, each time

sample vector will be passed through all models in parallel. The models will predict the

target variables for the FCV for each SSME. The variance of the predictions across the

multiple models will provide the adaptive threshold used to determine if the prediction

error is large enough to signal an alarm. To reduce false positives, consecutive

exceedance may be monitored before reporting an alarm. It is important to consider that

this technique will result in a delay, which must not exceed the maximum delay specified

in the requirements.

To ensure the algorithm is meeting the false positive and correct detection metrics

specified in the requirements the algorithm must be tested on either simulated or real data

with an associated ground truth. A technique known as cross validation, which selects

multiple subsets for training and testing to evaluate the algorithm across the possible

model parameters, can be used to select optimal parameters and appropriate thresholds

that meet the specified metrics. The results can be compared against the ground truth to

produce a Receiver Operating Characteristic (ROC) curve. The area under the curve

(AUC) is an established metric
6
 for determining the tradeoff between false positives and

true positives. Once this metric is calculated for all possible model candidates then the

optimal model parameters can be selected and fixed for operational use.

Figure 4: This figure is the flow chart of the system level monitoring phase of the algorithm. The

models are built offline and are fixed throughout the testing.

SUMMARY AND CONCLUSIONS

This paper has discussed the benefit to using a multi-dimensional anomaly detection

approach to detect anomalous behavior in the shuttle’s FCV subsystem over the current

single variant exceedance method. The algorithm has also shown an ability to detect

significant anomalies in the data while also minimizing false positives. Since the

algorithm is fundamentally constructed to operate on single sample vectors of sensors,

few modifications to the underlining algorithm are needed to adapt the anomaly detector

to the current system. Additionally, system level integration issues have been discussed,

considered, and proposed for the implementation of the algorithm with minimal

modifications to the current system.

ACKNOWLEDGMENTS

This research was supported by the Integrated Vehicle Health Management Project in the

NASA Aviation Safety Program and the NASA Engineering and Safety Center (NESC).

The authors would like to thank Melissa Levy for providing us with the pre-processed

data as well as Bill Lane and Bob Beil for their valuable insights into shuttle’s engine

configurations, FCV and fuel supply system.

REFERENCES

1. Iverson, D. L., Inductive system health monitoring, In Proceedings of The 2004
International Conference on Artificial Intelligence (IC-AI04), Las Vegas, Nevada, June
2004. CSREA Press.

2. S. D. Bay and M. Schwabacher, Mining distance-based outliers in near linear time
with randomization and a simple pruning rule, Proceedings of The Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 2003.

3. A. N. Srivastava, N. C. Oza, and J. Stroeve, Virtual sensors: Using data mining
techniques to efficiently estimate remote sensing spectra, IEEE Transactions on
Geoscience and Remote Sensing 43 2005, no. 3.

4. M. J. Way and A. N. Srivastava, Novel methods for predicting photometric redshifts
from broad band photometry using virtual sensors, Submitted to Astrophysical
Journal 2006.

5. A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7):1145 – 1159, 1997.

6. L. Breiman, J. H. Friedman, R. A. Olshen, and J. C. Stone. (1983). Classification and
Regression Trees. Wadsworth.

7. A. N. Srivastava, Discovering Anomalies in Sequences with Applications to System
Health, Proceedings of the 2005 Joint Army Navy NASA Air Force Interagency
Conference on Propulsion, Charleston SC, 2005.

8. Iverson, D. L., Martin, R., Schwabacher, M., et. al. General Purpose Data-Driven
System Monitoring for Space Operations, Proceedings of the InfoTech Conference,
Dayton Ohio, October 2009.

