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Abstract 

In this paper, a real-time composite fatigue life prognosis framework is proposed. The proposed 

methodology combines Bayesian inference, piezoelectric sensor measurements, and a 

mechanical stiffness degradation model for in-situ fatigue life prediction. First, the composites 

stiffness degradation is introduced to account for the composites fatigue damage accumulation 

under cyclic loadings and a new growth rate-based stiffness degradation model is developed.  

Following this, the general Bayesian updating-based fatigue life prediction method is discussed. 

Several sources of uncertainties and the developed stiffness degradation model are included in 

the prognosis framework. Next, an in-situ composites fatigue testing with piezoelectric sensors is 

designed and performed to collected sensor signal and the global stiffness data. Signal processing 

techniques are implemented to extract damage diagnosis features. The detected stiffness 

degradation is integrated in the Bayesian inference framework for the remaining useful life 

(RUL) prediction. Prognosis performance on experimental data is validated using prognostics 

metric. Finally, some conclusions and future work are drawn based on the proposed study.  
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1. Introduction 

The use of composite materials in engineering application has drawn extensive attention 

recently, which is mainly due to their better characteristics in the fatigue resistance and strength 

to weight ratio compared to metallic materials. Fatigue induced damage may cause serious safety 

concerns and/or performance degradation during long term lifetimes. In realistic applications, 

stress concentration are introduced at weaker sections, such as window, joints, etc., that are 

susceptible to delamination, matrix cracking, and fiber breakage damages. Composite specimen 

with notches or holes have been studied extensively to simulate these conditions in laboratory 

conditions [1-3]. For example, fatigue response of carbon/epoxy laminates containing circular 

hole was experimentally investigated and various types of laminate layup have been studied in 

[4, 5]. Sub-critical fatigue damage development in open-hole composite specimen were 

investigated both experimentally and numerically [6, 7].   

Many existing studies have been done on explicitly incorporating the different types of 

damages (e.g. cracks, delamination) in the damage evolution model for the fatigue life prediction 

[6, 8-11]. The progressive damage propagation within composite-metal interface or post-buckled 

laminates has been investigated in [12-15] , in which new interface elements are developed to 

capture the cohesive behavior of delamination growth under fatigue loading. Majority of these 

methods are based on finite element method (FEM), which focuses on the mechanisms 

investigation and modeling. In-situ fatigue life prognosis that directly uses these models will be 

very difficult due to the computational complexity. In addition, the diagnosis and quantification 

of various types of damages in-situ is a challenging problem, which makes the prediction based 
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on the high fidelity FEM model very difficult. Some researchers use an alternative approach for 

life prediction at the macro level, which is based on the strength or stiffness degradation induced 

by fatigue loading [16-21]. Whitworth [20] proposed a statistical model that describes the 

residual stiffness using a two-parameter Weibull distribution. In [21], a normal distribution was 

proposed to predict the residual stiffness of composite laminates. In both approaches, the residual 

stiffness model ignores the effect of applied stress which is generally not true for fatigue 

problems. Shirazi and Varvani-Farahani [22] proposed to use the stiffness degradation to develop 

a fatigue damage model for a unidirectional fiber-reinforce polymer (FRP)  laminates system. A 

relationship between the stiffness reduction and the remaining fatigue life ratio was developed.  

This model is relatively difficult for the in-situ fatigue prediction because the field measurements 

for stiffness are very difficult and the knowledge of ultimate fatigue life is not available 

beforehand. Unlike the stiffness measurement in the library conditions, it is difficult to obtain 

stiffness reduction measurements directly under service conditions. Thus, it would be desirable if 

the stiffness degradation can be inferred using a feasible structural health monitoring system. 

Lamb wave-based damage detection methods are more widely used [23, 24] for structural health 

monitoring because of their low cost and high efficiency [25]. Lamb waves can propagate in thin 

plate without too much dispersion in certain modes [26]. Based on the fact that Lamb wave 

propagation is highly dependent on material stiffness, it is expected that stiffness degradation 

will be captured by the received Lamb wave signal propagating through the specimen. Since 

piezoelectric sensors are embedded in the structure, system health can be measured in-situ on a 

continuous basis, which lays foundation for more effective RUL prognosis.  

Based on the above brief review, the proposed study tries to develop a macro level stiffness 

degradation model that can be used for in-situ fatigue life prediction at different stress levels. 
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Two major components are required for the proposed study: 1) a stiffness degradation model that 

depends on the different loading conditions and correlates with the fatigue life; 2) in-situ 

measurements of stiffness degradation that can provide current damage state for the remaining 

life prediction. This paper is organized as follows. First, a growth rate-based stiffness 

degradation model is proposed to express the stiffness evolution kinetics under different constant 

amplitude loading. Next, a general Bayesian inference framework is discussed for real time 

fatigue life prognosis using the developed stiffness degradation model with in-situ 

measurements. Following this, a Lamb wave-based fatigue testing setup is given, in which both 

sensor signal and true stiffness degradation measurements are collected periodically.  A 

diagnosis model for stiffness estimation using measured piezoelectric sensor signal is discussed 

and is incorporated in the Bayesian prognosis framework. Model verification and validation is 

performed using experimental measurements to show the performance of the proposed approach. 

2. Stiffness degradation model development 

In this section, a general model for composites stiffness degradation is proposed. The key 

idea is to express the overall composites stiffness reduction at certain loading cycles using a 

growth rate kinetics. The proposed model is analogous to the well-known Paris’ law for the 

fatigue crack growth approach. The aim is to study the composites damage progression at the 

tensile-tensile stage. Thus, the experimental design used the stress range and stress ratio as the 

controlling parameters. This experimental design is different than the classical S-N curve testing 

for composite materials, which uses the stress range and mean stress as the controlling 

parameters. With fixed stress ratio, the stiffness degradation rate is assumed to be a function of 

the applied stress range and the current stiffness value. Detailed the discussion is given below.  
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Under fatigue loadings, different forms of damage such as matrix cracking, delamination and 

fiber breaking will occur simultaneously or sequentially, which will eventually lead to the final 

failure of the entire composite component. The concept of the stiffness degradation-based life 

prediction is to implicitly incorporate different forms of damage mechanism into different stages 

stiffness degradation curve. A schematic representation of a general stiffness degradation curve 

for composites is shown in Fig. 1.  

 

Fig. 1. The general trend for composite stiffness degradation 

As shown in Fig. 1, the x-axis is the normalized fatigue life (i.e., normalized with respect to 

the final failure life) and the y-axis is the normalized stiffness (i.e., normalized with the stiffness 

before the fatigue loading). The stiffness degradation process can be divided into three distinct 

stages. Initially, the stiffness decrease quickly during initial loading stage. In this stage, some 

initial defect in the material will quickly approaches to the stable stage. After that, the stiffness 

decreases gradually due to the development of delamination and matrix cracking. Close to the 

final failure state, the stiffness drops dramatically because of the fatigue loading induced fiber 

breakage. The last stage is usually unstable and the specimen will fail in a very short amount of 

cycles.  
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In the experimental testing shown later, the initial relaxation state will stabilize within several 

hundreds to a few thousands cycles which is very small portion of the entire fatigue life span of 

composites under high cycle fatigue conditions. Ignoring the initial relaxation stage will not 

produce large error for the final fatigue life prediction. Thus, the proposed study will focus on 

the second and third stages, which can simplify the stiffness degradation model without 

sacrificing life prediction accuracy.  In the proposed stiffness degradation model, two major 

hypotheses are made. First, the stiffness degradation rate is increasing monotonically and reaches 

its maximum at final failure stage. Second, for the same material, the stiffness degradation rate is 

assumed to be a function of the applied stress and the current stiffness. Based on the above 

assumptions, the generalized stiffness degradation model can be proposed as  

 
𝐝𝐬

𝐝𝐍
= −𝐟(∆𝛔, 𝐬) (1) 

where ∆σ is the applied stress range. s is the current normalized stiffness, which is obtained by 

dividing the current stiffness under health condition.  𝑁  is the fatigue cycles and 
𝑑𝑠

𝑑𝑁
 is the 

stiffness degradation rate during one cycle. 𝑓  is a generic function which describes the 

relationship between the stiffness degradation rate, the stress range, and stiffness. In the proposed 

study, a power law function is used to represent the general trend for the second and third stage 

of the stiffness degradation curve. Thus, the proposed stiffness degradation model is expressed as  

 
𝐝𝐬

𝐝𝐍
= −𝐂(∆𝛔𝐬−𝐫)𝐦  (2) 

where 𝑪, 𝒓 and 𝒎 are model parameters which are assumed to be positive and can be calibrated 

using experimental datasets. Using Eq. (16), the predicted stiffness for given fatigue cycles can 

be calculated by integrating both sides as  

 ∫ 𝐬𝐫𝐦 𝒅𝒔 =
𝐬

𝐬𝟎
∫ −𝐜(∆𝝈)𝒎  𝐝𝐍

𝐍

𝟎
 (3) 
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 In the fatigue life prognosis, the model proposed above is used to determine the system 

degradation under fatigue loading. Once the system response (e.g. stiffness) is available, the 

model parameter and uncertainties can be updated to achieve more effective prediction. One 

method to incorporate the stiffness measurement for the life prediction updating is the Bayesian 

inference method, which is discussed below.  

3. Fatigue life prognosis using Bayesian inference 

Remaining useful life prognosis for a structural component should be continuously updated 

using the latest measurement information. New information should be incorporated to improve 

prognostics algorithm by updating model parameters, their distributions, correcting for model 

errors, and updating future loading conditions.  Widely used Bayes’ theorem [27-29] allows 

updating of the parameter distributions based on the condition monitoring data from the system. 

A posterior distribution of the parameters can be obtained by combining its prior information and 

the current system response. Specifically, assume 𝜽 is the vector of parameters of interest, which 

are considered as random variables and will be updated using the evidence from the monitored 

data 𝑑. Then the posterior distribution of these parameters can be expressed as 

 𝒒(𝜽|𝒙′) ∝ 𝒑(𝜽)𝒑(𝒙′|𝜽) (4) 

where p(𝑥′|𝜽)  is the likelihood function, which reflects possibility of detected specimen 

stiffness 𝑥′ given parameters 𝜽, and 𝑞(𝜽|𝑥′) is the posterior distribution of updated parameters. 

In our formulation,  𝑥′  is normalized stiffness measured in-situ, which is usually inferred 

indirectly from sensor measurements. Furthermore, the stiffness inference (e.g., the diagnosis 

model) itself introduces additional uncertainties [30]. Therefore, it is necessary to account for 

measurement noise ϵ introduced by inference model and physics model uncertainty τ  in the 

estimation. In our formulation, the relationship between 𝑥′ and 𝑀(𝜽) is expressed as 
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 𝒙′ = 𝑴(𝜽) + 𝝐 + 𝝉 (5)  

Assuming that the two error terms ϵ and τ are independent zero mean normal variables [31, 32], 

the sum of them can also be expressed as a random variable e = (ϵ + τ)~N(0, σe). Therefore, 

the likelihood function p(𝑥′|𝜽) can be expressed as 

 𝒑(𝒙𝟏
′ , 𝒙𝟐

′ , … 𝒙𝒏
′ |𝜽) =

𝟏

(√𝟐𝝅𝝈𝒆)
𝒏 𝒆𝒙𝒑 (−

𝟏

𝟐
∑ (

(𝒙𝒊
′−𝑴(𝜽))

𝝈𝒆
)

𝟐
𝒏
𝒊=𝟏 ) (6)  

where 𝑛 is the number of available measurements. Substituting Eq.(6) into Eq.(4), the posterior 

distribution of parameter 𝜽 can be expressed as 

 𝒑(𝜽|𝒙𝟏
′ , 𝒙𝟐

′ , … 𝒙𝒏
′ ) ∝ 𝒑(𝜽)

𝟏

(√𝟐𝝅𝝈𝒆)
𝒏 𝒆𝒙𝒑 (−

𝟏

𝟐
∑ (

(𝒙𝒊
′−𝑴(𝜽))

𝝈𝒆
)

𝟐
𝒏
𝒊=𝟏 )  (7) 

Then the posterior distribution of the parameter 𝜽 can be approximated by the samples drawn 

by the Markov Chain Monte Carlo (MCMC) simulation. Detailed discussion on the MCMC 

method can be found in many references [33-36] and is, therefore, not discussed here. The 

efficiency of the method depends on the MCMC sampling algorithm and the complexity of the 

stiffness degradation model used in the Bayesian inference.  A simplified analytical degradation 

model proposed in section 2 is used in the proposed method, which makes the computation very 

efficient. If expensive stiffness degradation simulation model is used, e.g., finite element 

method-based degradation  model, the computation will be more expensive. 

Based on above discussions, the general framework for the in-situ fatigue life prognosis 

framework is given below,  
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Fig. 2. The general framework for in-situ fatigue life prognosis 

4. In-situ stiffness diagnosis using Lamb waves 

In this section, the stiffness degradation model proposed in section 2 will be calibrated using 

laboratory composites fatigue experiment data. With embedded PZT sensor network system, the 

stiffness is estimated using the extracted damage features from digital signal processing.  

4.1 Experiment Setup 

The test setup for stiffness diagnosis of open-hole composites includes two major systems: 

data acquisition system and fatigue testing system (Fig. 3). Data acquisition system is used to 

generate exciting signal to the PZT sensor network and to collect the signal received by sensors.  

The specimen is subject to tensile-tensile constant loading spectrum using fatigue testing system. 

Loads with different stress amplitude are applied for different specimen. For all fatigue tests in 

the current study, stress ratio is fixed to be 0.1.   

 

 

 

 

 

 

 

 

 

Fig. 3. Open-hole fatigue testing setup 

The composite open-hole specimen is made of 12 plies of composite lamina with layup 

[903/03]s. The raw material for manufacturing the composites is carbon fiber cloth, resin, 

hardener and other consuming materials, such as nylon membrane and cloth. The fiber is 

unidirectional carbon fiber, the resin is resin epoxy system FS-A23, Part(A) and the hardener is 
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epoxy system FS-B412, Part(B). All of them are produced by Fiberglast.com.  The composite 

layup is conducted manually, and then applied with 160Mpa pressure under 100 Celsius. The 

schematic layup before the hot pressing is shown in Fig. 4. The specimen thickness and width 

varies slightly due to manufacturing variability. The nominal specimen dimension is 200x20x2 

mm with a center hole diameter of 5 mm. The nominal specimen geometry is schematically 

shown in Fig. 5. Actuators and sensors are mounted on both sides of the open-hole specimen to 

add redundancy to the measurement system. Actuator 1 and sensor 1 are mounted on the front 

side; actuator 2 and sensor 2 are mounted on the back side of the specimen. Each actuator and 

sensor pair forms a diagnosis path. In the current study, the diagnosis path is used to investigate 

stiffness degradation along the loading direction for layup [903/03]s.  The proposed stiffness 

degradation model appears to be able capture the general degradation trend for most (0/θ) 

composite laminates [22]. Additional experimental studies and theoretical work are required for 

arbitrary composite layups. 

 

Fig. 4. Schematic representation of composite layup 
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Fig. 5. The nominal geometry for the open-hole specimen 

4.2 Experimental results and diagnosis model development 

In this study, a hamming-windowed sinusoidal tone burst with 3.5 cycles is used as the 

actuating signal. Central frequency of this signal is set to be 200kHz, as shown in Fig. 6. Under 

fatigue loading, initially matrix cracking starts to appear in 90∘  plies, and then delamination 

follows and grows between 0∘   and 90∘  plies with fiber breaking at the same time. Most 

specimen fails near the center hole location. Some specimen fails at the other locations due to the 

splitting of the laminates. The final failure for some open-hole specimen is shown in Fig. 7.  

 
Fig. 6. A tone burst signal of 3.5 cycles with 200kHz central frequency 
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Fig. 7. The final failure pattern for open-hole specimen 

After installing the specimen on the hydraulic machine, a baseline PZT signal under pristine 

condition is collected first. Subsequent data are collected periodically during fatigue loading 

cycles. The PZT signals are collected by pausing the loading machine and holding a constant 

load on the specimen. Band-pass filter are used to eliminate the environmental low and high 

frequency noises [37]. Fig. 8 illustrates a typical signal obtained for specimen S2 with a 13kN 

maximum force. Fig. 8(a) is the overall raw signals collected during the testing. Fig. 8(b) shows 

the first time-window of interest between the dashed lines in the Fig. 8(a).   With further signal 

processing, changes in selected features, such as normalized amplitude, correlation coefficient,  

and cross correlation are calculated. All of these feature changes can be obtained by comparing 

the received signals under pristine and damage conditions. Normalized amplitude change reflects 

the energy dissipation due to the damage and correlation coefficient change reflects the first time 

window signal perturbation due to the new waves generated at the delamination or matrix 

cracking [37] . Cross correlation measures the similarity between these two time series. For the 

cross correlation at different time lags, the maximum value is extracted and normalized with 

respect to the maximum value under pristine condition. Specimen stiffness is measured using the 

force-displacement curve from the hydraulic machine output. Multiple specimen are tested here 

to assess reproducibility of the diagnosis method and investigate the effect of variability among 

different specimen. A detailed experiment summary for these specimen is provided in Table 1. 

To compare with different specimen under different stress range, the extracted features and 
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specimen stiffness are normalized with respect to their maximum value under pristine conditions. 

Normalized stiffness vs. different sensor signal features for different specimen is shown in Fig. 9. 

 
a)                                                                              b) 

Fig. 8. The received signal for specimen S2 at different cycles 

Table 1. Testing information summary for different specimen 

Specimen # Max stress (𝑀𝑝𝑎) 

()(

Type equation here.) 

Stress ratio Fatigue life (cycles) 

S1 296 0.1 423500 

S2 325 0.1 163400 

S3 326 0.1 85600 

S4 428 0.1 10680 

S5 410 0.1 45000 

S6 379 0.1 41257 
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(b) 

 

(c) 

Fig. 9. These three features vs. normalized stiffness for six specimen 

As seen in the above figures, large uncertainties are observed across different specimen. It is 

observed that these three features have generally monotonic relationship with the normalized 

stiffness. However, it is difficult to predict the normalized stiffness using a single feature due to 

the large uncertainties in different specimen. Thus, all features are combined into a second order 

multiple variable regression model to estimate the normalized stiffness. Collected sensor data 

from specimen (S1, S2, S3, S4, and S5) are used as calibration to get the regression coefficients 

in Eq.(8). Values for those coefficients in Eq.(8) are listed in Table 2. Sensor data from specimen 
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S6 is used as validation. Fig. 10 shows the predicted normalized stiffness using the proposed 

second order regression model.  

𝒔 = 𝜶𝟎 + 𝜶𝟏𝒙 + 𝜶𝟐𝒚 + 𝜶𝟑𝒛 + 𝜶𝟒𝒙𝟐 + 𝜶𝟓𝒚𝟐 + 𝜶𝟔√𝒛 + 𝜶𝟕𝒙𝒚 + 𝜶𝟖𝒙√𝒛 + 𝜶𝟗𝒚√𝒛 (8) 

s:   normalized stiffness 

x:   normalized amplitude 

y:  correlation coefficient 

z:  cross correlation 
 

 

Table 2. Coefficients for the second order multivariate regression model 

Coefficient Value 

𝜶𝟎 0.5108 

𝜶𝟏 0.0919 

𝜶𝟐 -0.0440 

𝜶𝟑 -0.5370 

𝜶𝟒 0.2938 

𝜶𝟓 -0.0250 

𝜶𝟔 0.9516 

𝜶𝟕 -0.1060 

𝜶𝟖 -0.4040 

𝜶𝟗 0. 2675 

 

 

Fig. 10. The predicted normalized stiffness vs. experimental measurements (R^2=0.8819) 
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From Fig. 10 above, it can be seen that the proposed model can provide reasonable prediction 

for the normalized stiffness. The predicted normalized stiffness for specimen S6 will be used in 

the following section as a demonstration example for RUL prediction. 

4.3 Probability of detection 

The probability of detection (PoD) measures the detection capability of Non-destructive 

technique (NDT) under certain inspection conditions [38]. As discussed above, the system 

response (i.e. the stiffness degradation) is estimated using ultrasonic signal features. The PoD of 

the diagnosis model is derived and presented in detailed below. Assume �̂�  is the detected 

normalized stiffness and s is the true system response of interest, then the PoD curve for these 

data can be approximated using linear relationship between ln ( �̂�)  and ln (𝑠)  [38], which is 

expressed as, 

 𝐥𝐧(�̂�) = 𝛃𝟎 + 𝛃𝟏 𝐥𝐧(𝐬) + 𝛅 (9) 

where 𝛿 is an error term, which is normally distributed with zero mean and standard deviation 𝜎𝛿, 

𝛽0 and 𝛽1 are model coefficients. In this problem, the normalized stiffness will be considered as 

detected if ŝ is less than the pre-specified threshold 𝑠𝑡ℎ. Therefore, the function PoD(𝑠) can be 

given as,  

 𝐏𝐨𝐃(𝐬) = 𝐏(𝐥𝐧(�̂�) < 𝐥𝐧( 𝐬𝐭𝐡)) = 𝟏 − 𝚽((𝐥𝐧(𝐬) − 𝛍)/𝛔) (10) 

 𝛍 = (𝐥𝐧( 𝐬𝐭𝐡) − 𝛃𝟎)/𝛃𝟏 (11) 

 𝛔 = 𝛔𝛅/𝛃𝟏 (12) 

where Φ is the cumulative distribution function of the standard normal distribution. Given the 

detected �̂� and available true system response 𝑠, the coefficients in Eq. (9) can be estimated using 

linear regression, which is expressed as, 

 𝐥𝐧(�̂�) = −𝟎. 𝟎𝟎𝟗𝟔 + 𝟎. 𝟖𝟒𝟔𝟓 𝐥𝐧(𝐬) + 𝛅 (13) 
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where 𝛿 is the error term. In order to validate the distribution of 𝛿, its histogram and normal 

probability paper are shown in Fig. 11.  

 

  

Fig. 11. The histogram and probability plot of term δ 

From Fig. 11, it can be observed that the probability plot shows highly linear trend based on the 

linear regression statistics, which also substantiates that the error term is normally distributed. 

Observation from the data suggests that the normalized stiffness can be detected once it is less 

than 1, thus the pre-specified threshold 𝑠𝑡ℎ is set to be 1. With above information, the parameter 

𝜇 and σ can be calculated as,  

 𝛍 =
𝐥𝐧( 𝐬𝐭𝐡)−𝛃𝟎

𝛃𝟏
=

𝐥𝐧( 𝟏)−(−𝟎.𝟎𝟎𝟗𝟔)

𝟎.𝟖𝟒𝟔𝟓
= 𝟎. 𝟎𝟏𝟏𝟑 (14) 

 𝛔 =
𝛔𝛅

𝛃𝟏
=

𝟎.𝟎𝟐𝟓𝟓

𝟎.𝟖𝟒𝟔𝟓
= 𝟎. 𝟎𝟑𝟎𝟏 (15) 

Using Eq. (10), the PoD for different normalized stiffness is illustrated below in Fig. 12. It can 

be seen that over 90% PoD can be achieved when normalized stiffness is less than 0.97. It 

demonstrates the accuracy and sensitivity of the proposed detection method for stiffness 

degradation.  
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Fig. 12. The histogram and probability plot of term δ 

4.4 Stiffness degradation model validation  

To validate the general stiffness degradation  trend shown in Fig. 1, measured stiffness 

degradation curves for all the specimen are shown in Fig. 13. In order to get the kinetics equation 

for the stiffness degradation, local time derivatives (i.e., rate) are required. To get a smooth 

estimation for local derivatives, 5 point local polynomial regression is used [39]. The stiffness 

changing rate per cycle is shown in Fig. 13. 

 

Fig. 13. The stiffness degradation curves for all specimen 
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(a)                                                                                                  (b) 

Fig. 14. The stiffness degradation rate for different specimen (Log-log scale). 

(a),  Versus normalized stiffness. (b), Versus applied stress 

From Fig. 14, it can be observed that normalized stiffness decreases very fast at the initial stage 

and so does the stiffness degradation rate. The degradation rate reaches its minimum at the 

transition point from stage 1 to stage 2 shown as red dashed line in Fig. 14(a). During stage 2, the 

degradation rate is increasing gradually and reaching to its maximum at its final failure stage. Fig. 

14 indicates that the stiffness degradation rate is log-linear with respect to the current normalized 

stiffness value and applied stress. The stiffness degradation rate is plotted with respect to a mixed 

stiffness and stress term in Fig. 15.  
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Fig. 15. The stiffness degradation rate considering the applied stress(Log-log scale) 

From Fig. 15, all the curves coalesce and form a general linear relationship can be obtained 

between the stiffness degradation rate and the term of  ∆𝜎𝑠−1.2 in log-scale. Based on that, the 

proposed stiffness degradation model is calibrated as,  

 𝐝𝐬/𝐝𝐍 = −𝐂(∆𝝈𝒔−𝟏.𝟐)𝒎  (16) 

where 𝑁  is the fatigue cycle at time t,  𝑠  is the normalized stiffness,  𝐶  and 𝑚  are model 

parameters, which may vary for different specimen. These two parameters will be considered as 

random variables so as to capture the uncertainties between different specimen. There 

distributions will be updated using the proposed Bayesian inference framework.  A 

demonstration example will be given in the following section. 

5. Demonstration example 

Following the framework shown in Fig. 2, the stiffness degradation model and diagnosis model 

proposed above are integrated using Bayesian inference for fatigue life prognosis. In the stiffness 

degradation shown in Eq.(3), the lower integration limit S0 should be determined initially in 

order to obtain the predicted stiffness at cycle 𝑁.  Due to ignorance of the initial stage of stiffness 

degradation. The parameter S0 is approximated with initial stage stiffness degradation data 

obtained from all specimen. The value is around 0.99 for all specimen. The prior distribution of 
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parameters 𝐶 and 𝑚 are determined by the linear regression statistics illustrated in Table 3. In 

this study, the normalized stiffness is inferred from piezoelectric sensor signal and is estimated 

using the quadratic regression model given in Eq.(8) . The failure threshold is set to be 0.75, 

because it is within the final failure stage for all specimen. When the stiffness degradation 

reaches 0.75 of the original stiffness, the degradation rate becomes very fast and specimen fails 

after only a few to few hundred cycles. The remaining life of the specimen after reaching 0.75 is 

less than 3% of the entire life for the current investigation. It should be noted that the  threshold 

should depend on the layups as the failure mechanisms will be different for different layups. 

Detailed and quantitative study requires significant amount of experimental and theoretical work 

in the future. 

Predictions using the proposed diagnosis and prognosis framework and the experimentally 

measured stiffness and life are compared together in Fig. 16-17. In Fig. 16-17, the x-axis is the 

fatigue cycles and the y-axis is the normalized stiffness. The measured stiffness using hydraulic 

machine (ground truth), the inferred stiffness from piezoelectric sensor signal (diagnosis), and 

the Bayesian updating results (prognosis) are shown together. Fig. 16 shows the predictions with 

prior distribution of parameters. The prior distributions for the two parameters are listed in Table 

3. As can be seen, the prior distribution of parameters are from other testing specimen data and is 

very different from the investigated specimen. Thus, a large error is observed for the prediction 

of stiffness degradation and life (i.e., the fatigue cycles when the unstable stiffness degradation 

occurs). Fig. 17 shows the updated results from the proposed prognosis method with different 

numbers of observation points. Blue solid line is the median prediction using the prior 

distribution. Hollow rectangular points are the experimentally measured stiffness. Black solid 

points are the stiffness inferred from the Lamb wave-based damage detection method. 

Table 3. The prior distribution of two model parameters 

Parameter 𝐶 m 

PDF Log-normal normal 

Mean -60 8.3 
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Standard      

deviation 
0.2 0.1 

 

 
Fig. 16. The prior belief and experimental datasets 
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(e) 

Fig. 17. Bayesian updating result. (a) Updating one, (b) updating two, 

(c) updating three, (d), updating four, and (e) updating five.  

From Fig. 17, it can also be seen that the median prediction trend gets closer to the 

experimentally measured ground truth with additional updating using inferred stiffness data. The 

uncertainty bounds become narrower with additional updating, which indicates the effectiveness 

of the Bayesian updating method in reducing prognostic uncertainties. This trend can also be 

observed in the updated parameter distribution, shown in Fig. 18. 

  

Fig. 18. Parameters updating result. (a), updated Log(c), (b), updated m 
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detailed discussion of metrics-based model validation can be found in [40-43]. Several relevant 
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Prognostic Horizon is used to assess prognostic algorithms performance. The Prognostic Horizon 

describes the length of time before end–of–life (EoL) when a prognostic algorithm starts 

predicting with desired accuracy limits. The limit is expressed using an α-bound given by 

±α ∙ tEoF. In contrast, α − λ Accuracy determines whether prediction accuracy is within desired 

accuracy levels (specified by α) around RUL at any given time specified by λ. The smaller α 

means the higher desired accuracy. The performance is visually depicted on an RUL vs. Time 

plot, where effective predictions would lie on the ground truth RUL line (black solid line) for all 

times. The red dots in the plots represent predicted performance at times when the Bayesian 

updating was applied. Error bars represent the spread of predicted PDF for corresponding 

prediction. The validation of the proposed prognostic method is given in Fig. 19. 

 

             

Fig. 19. Prognostic performance assessment 
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6. Conclusions 

In this paper, an integrated fatigue damage diagnostics and prognostics methodology is 

proposed, which combines a piezoelectric sensor network-based damage detection method, data- 

driven stiffness degradation model in a Bayesian updating framework. The proposed method is 

demonstrated and validated using open-hole specimen datasets. Finally, the model predictions 

are evaluated using prognostic metric quantitatively. Based on the results obtained, several 

conclusions can be drawn: 

1. Three stages of stiffness degradation are observed from the experimental testing results. The 

degradation rate is not monotonic and decreases initially and increases later; 

2. The stiffness degradation rate is shown to be dependent on the current stiffness value and 

applied loading. A power law stiffness degradation model is proposed to consider the 

stiffness degradation and is shown to provide satisfactory predictions for the fatigue life; 

3.  The remaining useful life of composite specimen is negligible when the stiffness is below 

0.75 of the virgin material stiffness in the current study; 

4. Single feature from piezoelectric sensor is not able to correlates with the stiffness 

degradation in the current testing and multiple features need to be combined to reduce the 

estimation uncertainties. 90% probability of detection when the normalized stiffness is less 

than 0.97 is achieved using the proposed feature integration model; 

5. Bayesian updating with the estimated stiffness degradation from piezoelectric sensor can 

greatly reduce the prognosis uncertainties as more measurements are available.  

Only constant loading spectrum is used in this study. The composites stiffness degradation 

under variable amplitude loading should be explored for future studies. Stiffness degradation and 

damage detection using other SHM/NDT techniques, such as thermography, X-ray diffraction 
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imaging, and ultrasound scanning, will need more investigation. A multi-modality damage 

diagnosis framework may be able to further reduce the prediction uncertainties. Physics-based 

models will need further investigation to couple the different types of damage and damage 

detection simulation for integrated diagnosis and prognosis of composite materials.  

Acknowledgement 

The research reported in this paper was partially supported by the NASA through Global 

Engineering and Materials, Inc. (GEM) under the project NNX12CA86C. The support is 

gratefully acknowledged. 

References 

1.Choi N-S, Takahashi K,Hoshino K. Characteristics of acoustic emission during the damage process in 
notched short-fibre-reinforced thermoplastics. NDT & E International 1992; 25(6):271-278. 

2.Hallett SR, Green BG, Jiang WG,Wisnom MR. An experimental and numerical investigation into the 
damage mechanisms in notched composites. Composites Part A 2009; 40(5):613-624. 

3.Mallick PK. Effects of hole stress concentration and its mitigation on the tensile strength of sheet 
moulding compound (SMC-R50) composites. Composites 1988; 19(4):283-287. 

4.Yudhanto A, Iwahori Y, Watanabe N,Hoshi H. Open hole fatigue characteristics and damage growth of 
stitched plain weave carbon/epoxy laminates. Int J Fatigue 2012; 43:12-22. 

5.McNulty JC, He MY,Zok FW. Notch sensitivity of fatigue life in a Sylramic TM/SiC composite at elevated 
temperature. Compos Sci Technol 2001; 61:1331–1338. 

6.Nixon-Pearson OJ, Hallett SR, Harper PW,Kawashita LF. Damage development in open-hole composite 
specimens in fatigue. Part 2: Numerical modelling. Compos Struct 2013; 106(0):890-898. 

7.Nixon-Pearson OJ, Hallett SR, Withers PJ,Rouse J. Damage development in open-hole composite 
specimens in fatigue. Part 1: Experimental investigation. Compos Struct 2013; 106(0):882-889. 

8.RINDERKNECHT S,KROPLIN B. A finite element model for delamination in composite plates. Mech 
Compos Mater Struct 2007; 2(1):19-47. 

9.Keshava Kumar S, Ganguli R,Harursampath D. Partial delamination modeling in composite beams using 
a finite element method. Finite Elem Anal Des 2013; 76(0):1-12. 

10.Zhang J, Liu K, Luo C,Chattopadhyay A. Crack initiation and fatigue life prediction on aluminum lug 
joints using statistical volume element-based multiscale modeling. J Intell Mater Syst Struct 
2013; 24(17). 

11.Zhang J, Johnston J,Chattopadhyay A. Physics-based multiscale damage criterior for fatigue crack 
prediction in aluminum alloy. Fatigue Fract Eng M 2014; 37(2):119-131. 

12.Hosseini-Toudeshky H, Jahanmardi M,Goodarzi MS. Progressive debonding analysis of composite 
blade root joint of wind turbines under fatigue loading. Compos Struct 2015; 120:417-427. 

13.Hosseini-Toudeshky H, Jasemzadeh A,Mohammadi B. Fatigue debonding analysis of repaired 
aluminium panels by composite patch using interface elements. Appl Compos Mater 2011; 
18(6):571-584. 



27 
 

14.Mazaherial F,Hosseini-Toudeshky H. Low-cycle fatigue delamination initiation and propagation in 
fibre metal laminates. Fatigue Fract Eng M 2014; DOI: 10.1111/ffe. 

15.Hossein H-T, Goodarzi MS,Mohammadi B. Prediction of through the width delamination growth in 
post-buckled laminates under fatigue loading using decohesive law. Struct Eng Mech 2013; 
48(1):41-56. 

16.Highsmith A,Reifsnider KL. Stiffness reduction mechanisms in composite laminates. In: Reifsnider KL, 
editor. Damage in Composite Materials. American Society for Testing and Materials 1982; 
775:103-117. 

17.Philippidis TP,Vassilopoulos AP. Fatigue design allowable for GRP laminates based on stiffness 
degradation measurements Compos Sci Technol 2000; 60:2819-2828. 

18.Agarwal BD,Joneja SK. Flexural fatigue properties of Unidirectional GRP in the transverse direction. 
Composites 1979; 10(1):28-30. 

19.Ambu R, Aymerich F,Bertolino F. Investigation of the effect of damage on the strength of notched 
composite laminates by digital image correlation. J Strain Anal Eng Des 2005; 40(5):451-461. 

20.Whitworth HA. A stiffness degradation model for composite laminates under fatigue loading. Compos 
Struct 1998; 40(2):95-101. 

21.Yang JN, Jones DL, Yang SH,Meskini A. A stiffness degradation model for Graphite/Epoxy laminates. J 
Compos Mater 1990; 24:753-769. 

22.Shirazi A,Varvani-Farahani A. A Stiffness Degradation Based Fatigue Damage Model for FRP 
Composites of (0/θ) Laminate Systems. Applied Composite Materials 2010; 17:137-150. 

23.Lemistre M,Balageas D. Structural health monitoring system based on diffracted Lamb wave analysis 
by multiresolution processing. Smart Mater Struct 2001; 10:504 doi:10.1088/0964-
1726/10/3/312. 

24.Giurgiutiu V, Zagrai A,Bao JJ. Piezoelectric wafer embedded active sensors for aging aircraft structural 
health monitoring. Struct Health Monit 2002; 1(1):41-61. 

25.Constantin N, Sorohan S,Gavan M. Efficient and low cost PZT network for detection and localizaiton of 
damage in low curvature panels. Journal of Theoretical and Applied Mechanics 2011; 49(3):685-
704. 

26.Scalea d, Francesco L, Robinson JS, Tuzzeo D,Bonomo M. Guided wave ultrasonics for NDE of aging 
aircraft components Proc SPIE 2002; 4704:123-32. 

27.Press S. Subjective and objective Bayesian statistics: principles, models, and applications. Wiley-
Interscience, Hoboken, NJ 2003. 

28.Caticha A,Giffin A. "Updating probabilities" in Bayesian Inference and Maximum Entropy Methods in 
Science and Engineering. AIP Conference Proceedings 2007; 872:31. 

29.Peng T, Saxena A, Goebel K, Xiang Y, Sankararaman S,Liu Y. A novel Bayesian imaging method for 
probabilistic delamination detection of composite materials. Smart Mater Struct 2013; 
22(12):125019. 

30.Peng T, He J, Xiang Y, Liu Y, Saxena A, Celaya J,Goebel K. Probabilistic fatigue damage prognosis of lap 
joint using Bayesian updating. J Intell Mater Syst Struct 2014; 1045389X14538328. 

31.Adam MT. G104-A2L Guide for estimation of measurement uncertainty in testing. American 
Association for Laboratory Accreditation, 2002. p.10-18. 

32.Bell S. A beginner’s guide to uncertainty of measurement. The National Physical Laboratory 2001; 2:9-
16. 

33.Cowles MK,Carlin BP. Markov Chain Monte Carlo convergence diagnostics: A comparative review. J 
Amer Statist Assoc 1996; 91(434):883-904. 

34.Fort G, Moulines E,Priouret P. Convergence of adaptive and interacting Markov Chain Monte Carlo 
algorithms. Ann Stat 2012; 39(6):3262-3289. 



28 
 

35.Hasting WK. Monte Carlo sampling methods using Markov Chain and their applications. Biometrika 
1970; 57:97-109. 

36.Peskun PH. Aptimum Monte Carlo sampling using Markov chains. Biometrika 1973; 57:97-109. 
37.He J, Guan X, Peng T, Liu Y, Saxena A, Celaya J,Goebel K. A multi-feature integration method for 

fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves Smart 
Mater Struct 2013; 22(10):105007. 

38.Kurz JH, Jüngert A, Dugan S, Dobmann G,Boller C. Reliability considerations of NDT by probability of 
detection (POD) determination using ultrasound phased array. Eng Fail Anal 2013; 35(0):609-
617. 

39.ASTM E647-13ae1, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM 
International, West Conshohocken, PA, 2013, www.astm.org. 

40.Saxena A, Celaya J, Balaban E, Goebel K, Saha B, Saha S,Schwabacher M. Metrics for evaluating 
performance of prognostic techniques. Prognostics and Health Management, Denver, CO, 2008. 
p.1-17. 

41.Guan X, Liu Y, Jha R, Saxena A, Celaya J,Goebel K. Comparison of two probabilistic fatigue damage 
assessment approaches using prognostic performance metrics. International Journal of 
Prognositics and Health Management 2011; 2(1):11. 

42.Saxena A, Celaya J, Saha B, Saha S,Goebel K. Uncertainty quantification in fatigue crack growth 
prognosis. International Journal of Prognositics and Health Management 2011; 2(1):15. 

43.Saxena A, Celaya J, Saha B, Saha S,Goebel K. Metrics for offline evaluation of prognostic performance. 
International Journal of Prognositics and Health Management 2010; 1(1):20. 

 

 

http://www.astm.org/

