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Abstract

Electrical power systems play a critical role in spacecraft and
aircraft. This paper discusses our development of a diagnos-
tic capability for an electrical power system testbed, ADAPT,
using probabilistic techniques. In the context of ADAPT, we
present two challenges, regarding modelling and real-time
performance, often encountered in real-world diagnostic ap-
plications. To meet the modelling challenge, we discuss our
novel high-level speci�cation language which supports auto-
generation of Bayesian networks. To meet the real-time chal-
lenge, we compile Bayesian networks into arithmetic circuits.
Arithmetic circuits typically have small footprints and are op-
timized for the real-time avionics systems found in spacecraft
and aircraft. Using our approach, we present how Bayesian
networks with over 400 nodes are auto-generated and then
compiled into arithmetic circuits. Using real-world data from
ADAPT as well as simulated data, we obtain average infer-
ence times smaller than one millisecond when computing di-
agnostic queries using arithmetic circuits that model our real-
world electrical power system.

Introduction
Electrical power systems (EPS) are critical for the proper op-
eration of aircraft and spacecraft (Button & Chicatelli 2005;
Poll et al. 2007). EPS loads in an aerospace vehicle may
include crucial subsystems such as avionics, propulsion, life
support, and thermal management systems. Apart from their
crucial role in spacecraft and aircraft, electrical power sys-
tems also play central roles in other parts of society, thus
proper management of their health is important.
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There are several challenges associated with EPS fault di-
agnosis. In this paper we discuss two of these challenges,
the modelling challenge and the real-time reasoning chal-
lenge. While we discuss these challenges in the context of
diagnostic reasoning for a real-world EPS, we believe they
are of more general interest.
Themodelling challenge concerns how to model the com-

bination of deterministic and uncertain behavior seen in
EPSs. For example, there is uncertainty due to the com-
ponent and sensor failures and because of sensor noise. An-
other part of the challenge is to model the EPS in suf�cient
detail to ensure high diagnostic accuracy. At the same time,
the diagnostic model developed for a particular EPS should
be easy to construct, extend, and update.
The real-time reasoning challenge is associated with the

embedding of AI components, including diagnostic reason-
ers, into hard real-time systems (Musliner et al. 1995).
For NASA, decision support for manned missions and au-
tonomous action for unmanned missions are both of great
interest. The avionics of both manned and unmanned vehi-
cles often utilize a hard real-time operating system (RTOS).
An embedded diagnostic engine, which is part of a ve-
hicle's avionics, should therefore be designed within the
RTOS framework. For example, an RTOS task needs to de-
clare a worst-case execution time (WCET). Unfortunately,
BN inference problems are inherently computationally hard
(Cooper 1990; Shimony 1994; Park & Darwiche 2004).
In addition, many inference algorithms are associated with
high expectations and/or variances in their execution times,
and their WCETs are unknown. The real-time reasoning
challenge is to develop real-time diagnostic systems, despite
the computational hardness of diagnosis problems.



In this paper we present our novel probabilistic approach
to EPS fault diagnosis. We discuss the construction of diag-
nostic BNs for EPSs, using the Advanced Diagnostics and
Prognostics Testbed (ADAPT) as a case study (Poll et al.
2007). These BNs explicitly represent the health of sen-
sors and components. We emphasize the systematic struc-
turing of these Bayesian networks, based on EPS structure
and component types, and discuss the automatic BN gener-
ation based on a novel, high-level system speci�cation lan-
guage. While there is a variety of technology choices for
EPS diagnosis, real-time operation and resource constraints
on aircraft and spacecraft limit the usefulness of many ad-
vanced technologies. As a result, mission- or safety-critical
diagnosis applications are often performed using simple
lookup tables or production rules. The approach described
in this paper combines the expressive power and mathemat-
ical rigor of probabilistic methods with the predictability of
non-model-based approaches.
We have experimentally evaluated our approach on a

number of ADAPT fault scenarios. In order to enable RTOS
embedding, the ADAPT BN was compiled (off-line) into an
arithmetic circuit, which was then evaluated on-line (Dar-
wiche 2003; Chavira & Darwiche 2007). A unique point
compared to previous work (Chien, Chen, & Lin 2002;
Yongli, Limin, & Jinling 2006) is how a complex diagnostic
search space is reduced to an arithmetic circuit and a small-
footprint arithmetic circuit evaluator. Compiling an ADAPT
BN, which contains over 400 nodes representing over 100
EPS components, to an arithmetic circuit, and evaluating it
using the ACE arithmetic circuit evaluator, turns out to give
accurate diagnostic results as well inference times that are
less than one millisecond for all our fault scenarios. This is
a successful demonstration of our approach on a real-world
problem of great importance to NASA (Button & Chicatelli
2005; Poll et al. 2007).
The rest of this paper is structured as follows. First, we

discuss challenges associated with the diagnosis of electri-
cal power systems. Second, we present our approach to
diagnosis of electrical power systems by means of auto-
generated Bayesian networks and arithmetic circuits. Fi-
nally, we present empirical results for an electrical power
system test bed.

Diagnosis of Electrical Power Systems
In this section we discuss the crucial role of electrical power
systems in aerospace.

The Role of Electrical Power Systems in Aerospace
EPS loads in an aerospace vehicle include the following cru-
cial subsystems: avionics, propulsion, life support, and ther-
mal management systems. Loss of electrical power to any
of these subsystems could lead to serious consequences for
personnel or the vehicle.
There are, from the point of view of vehicle health man-

agement, several technical challenges associated with elec-
trical power systems. First, electrical power systems often
have a large number of distinct modes due to mode-inducing
components such as relays, circuit breakers, and loads. If an

EPS hasm such components, and we conservatively assume
2 discrete states for each, there are potentially 2m modes in
the EPS. Second, while much EPS behavior is determinis-
tic, there is both sensor noise and system state uncertainty
in EPSs. Sensor noise is due to the imperfections of sens-
ing, while system state uncertainty is due to failures of EPS
components and sensors. These two technical challenges
are our main concern in this paper. Our use of Bayesian net-
works and arithmetic circuits, rather than other approaches
to technical diagnosis, is motivated by the need to construct
EPS diagnostic models that capture both deterministic and
uncertain behavior when many modes are present.

ADAPT: An Electrical Power System Testbed
The Advanced Diagnostic and Prognostic Testbed (ADAPT)
is an electrical power system testbed developed at the NASA
Ames Research Center. ADAPT provides: (i) a standard
testbed for evaluating diagnostic algorithms and software;
(ii) a capability for controlled insertion of faults, giving re-
peatable failure scenarios; and (iii) a mechanism for matur-
ing and transitioning diagnostic technologies onto manned
and unmanned vehicles (Poll et al. 2007). The EPS
functions of ADAPT are as follows (see also http://
ti.arc.nasa.gov/adapt/). For power generation,
ADAPT currently uses utility power. For power storage,
ADAPT contains 3 sets of 24 VDC 100 Amp-hr sealed lead
acid batteries. Power distribution is aided by electromechan-
ical relays and two load banks with AC and DC outputs;
there are also several circuit breakers. ADAPT loads in-
clude pumps, fans, and light bulbs. There are sensors of sev-
eral types, speci�cally for measuring voltage, current, relay
position, temperature, light, and liquid �ow. Control and
monitoring of ADAPT takes place through programmable
automation controllers. With the sensors included, ADAPT
contains a few hundred components and is representative of
EPSs used in aerospace.

Meeting The Modelling Challenge
Bayesian networks (BNs) are used to represent multivariate
probability distributions for the purpose of reasoning and
learning under uncertainty (Pearl 1988). In BNs, random
variables are represented as nodes in directed acyclic graphs.
Each node has a conditional probability table (CPT). BNs
can contain both discrete and continuous random variables;
the EPS BNs discussed in this paper contain discrete vari-
ables only. While a joint probability table's size is expo-
nential in the number of discrete random variables, the BN
provides a mechanism to compactly represent the joint prob-
ability table.
The main points of our BN-based EPS modelling ap-

proach are as follows: (i) We use three different models
during development and deployment. (ii) We explicitly rep-
resent EPS health using random variables, thus supporting
different diagnostic queries of interest. (iii) Finally, we take
a component-oriented and causal approach, where the BN
structure re�ects the components and causal structure of an
EPS. We now discuss these three main points in turn.
(i) Figure 1 shows how the diagnostic system developer
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Figure 1: Our approach uses three distinct models that play
different roles in the development process: a system speci�-
cation, a Bayesian network, and an arithmetic circuit.

is supported by a technique and tool pipeline for auto-
generation of an arithmetic circuit from a high-level sys-
tem speci�cation. Bayesian networks serve as interme-
diate models. Our current ADAPT BN consists of well
over 400 nodes, and a more detailed BN or a BN for a
larger EPS could easily contain 1000 BN nodes or more.
Unfortunately, developing such large BNs by hand, espe-
cially in the face of complex BN and EPS topologies, is
non-trivial. To meet this modelling challenge, the Of�ine
Generation process depicted in Figure 1 supports the auto-
matic generation of an EPS Bayesian network from a high-
level EPS system speci�cation. This architecture clearly
illustrates how our work is different from previous work
on EPS fault diagnosis using BNs (Chien, Chen, & Lin
2002; Yongli, Limin, & Jinling 2006). As an example,
the line �Relay1 : relay : 0.0005 : Wire2�
in the system speci�cation expresses that we have a re-
lay, Relay1, with failure probability 0.0005 connected
to Wire2. The line �Feedback1 : sensorTouch
: 0.0005 : Relay1� shows that a feedback sensor,
Feedback1, is attached to Relay1. These two lines re-
sult in �ve BN nodes being auto-generated as shown in the
upper right corner of Figure 2. We will explore these �ve
nodes in more detail shortly.
Our speci�cation language is quite general and supports

an interesting range of EPSs beyond ADAPT. The algorithm
that auto-generates a Bayesian network from a system spec-
i�cation works as follows. Given small BNs representing
different components, as presented above for Relay1 and
Feedback1, an overall BN is composed according to the
EPS topology as it is re�ected in the system speci�cation. A
key bene�t of the speci�cation language is that it is tailored
to EPSs and is much more succinct than a Bayesian network
(which again is much more succinct than an arithmetic cir-
cuit). In addition to making the BN and AC technologies
available to a much broader user community, this approach
accommodates rapid changes in EPS topology as well as in

Battery1      : battery              : 0.0005;
Wire1          : wire                  : 0.0000 : Battery1;
Voltage1     : sensorVoltage  : 0.0005 : Wire1;
Current1      : sensorCurrent  : 0.0005 : Wire1;
Breaker1     :  breaker            : 0.0005 : Wire1;
Status1       : sensorTouch     : 0.0005  : Breaker1;
Wire2          : wire                   : 0.0000 : Breaker1;
Relay1        : relay                  : 0.0005 : Wire2;
Feedback1 : sensorTouch      : 0.0005 : Relay1;
Load1         : load                   : 0.0005 : Relay1;
Temp1        : sensorCurrent   : 0.0005 : Load1 ;
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Figure 2: Auto-generation of a Bayesian network represent-
ing an electrical power system (bottom) from a high-level
system speci�cation (top).

individual EPS components.
(ii) We now discuss some of the different BN node types

that we have used to model an EPS. Let X denote all BN
nodes. The EPS health nodes areHE =HC [HS , where
HE � X and HC \HS = ?. Here, HC are the com-
ponent health nodes and represent the health of an EPS ex-
cluding its sensors. HS are the sensor health nodes, and
represent the health of the EPS sensors, both their failure
and nominal (healthy) modes. By introducing HC and
HS , we represent the health of EPS components and sen-
sors explicitly in the BN. The BN also contains other types
of nodes. Speci�cally, we have input or evidence nodes E,
with E = EC [ ES , where E � X and EC \ ES = ?.
Here,EC are command nodes representing commands from
a user to the EPS. ES are the sensor nodes, which are used
to input sensor readings� for example voltage, current, and
temperature � from the EPS. We also have status nodes S,
with S �X , which are nodes that re�ect the EPS structure
but do not �t into any of the categories above. Finally, we
haveX = HE[E[S, withHE\E = ?,HE\S = ?,
and E \ S = ?. The ADAPT BN currently contains over
400 nodes, and models most of ADAPT from the batteries
downstream. Since it is impossible to present this BN in its
totality here, Figure 4 shows a representative BN's condi-
tional probability tables (CPTs) along with a corresponding
arithmetic circuit.
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command nodes, and as output query nodes that provide the
health status of sensors and EPS components.

(iii) Figure 4 and Figure 3 provide a small example
of our component-oriented and causal approach to EPS
modelling. Here, HC = fHealth_Relay1g, HS =
fHealth_Feedback1g, EC = fCommand_Relay1g, ES =
fSensor_Feedback1g, and S = fClosed_Relay1g. This
BN with �ve nodes represents an EPS relay with a feed-
back capability. Causally, the BN represents how the sta-
tus of a relay (here Closed_Relay1) depends on the com-
mand given to it, Command_Relay1, as well as its health,
Health_Relay1. In addition, the feedback message from the
relay, Sensor_Feedback1, depends not only on the relay's
status but also on the sensor's health, Health_Feedback1.
To solve the EPS health monitoring problem, we dynami-

cally clamp nodesES andEC in the BN using sensor read-
ings and user commands respectively. We then pose a max-
imum a posteriori hypothesis query MAP(Q, e) over nodes
Q for evidence e. Here, MAP(Q, e) computes the joint ex-
planation overQ � X�E with maximal probability, given
e (Park & Darwiche 2004). Depending on howQ is chosen,
we obtain three different diagnostic queries:
� Diagnosis of components MAP(HC ,e): Query regarding
the health of the EPS componentsHC

� Diagnosis of sensors MAP(HS ,e): Query regarding the
health of the EPS sensorsHS

� EPS diagnosis MAP(HE ,e): Query regarding the health
status of the entire EPS HE (both components HC and
sensorsHS)
While algorithms for ef�ciently computing MAP have

been developed (Park & Darwiche 2004), it can be useful to
approximate MAP using MPE (most probable explanation)
or MLV (most likely value, which can easily be computed
from marginals) (Pearl 1988). We say MAPMPE(Q,e) and
MAPMLV(Q,e) respectively for these two approximations.

Returning to Figure 3, we consider HE =
fHealth_Relay1, Health_Feedback1g and e =
fCommand_Relay1 = cmdClose, Sensor_Feedback1 = read-
Closedg. Using computation of marginals, as illustrated in
Figure 3, we obtain MAPMLV(HE ,e) = fHealth_Relay1
= healthy, Health_Feedback1 = healthyg. In other words,
given a command to close Relay1, and a con�rming
feedback message from Feedback1, it is inferred that
both the relay and the feedback mechanism are healthy.

Meeting The Real-Time Challenge
Musliner and his coauthors identi�ed three approaches to
real-time AI (Musliner et al. 1995); we employ what they
call �embedding AI into a real-time system�. Speci�cally,
we consider the real-time operating systems (RTOSs) used
in current aircraft and spacecraft avionics. These RTOSs
are typically based on priority-based preemptive scheduling,
where higher-priority tasks preempt lower-priority tasks.
Each periodic RTOS task has a priority, a period, a deadline,
and a worst-case execution time (WCET). A periodic diag-
nostic task, when designed as a periodic RTOS task, needs
to adhere to these hard real-time requirements (Musliner et
al. 1995; Mengshoel 2007a).
At the same time, the computational hardness of most BN

inference problems is well-known (Cooper 1990; Shimony
1994; Park &Darwiche 2004). In addition, empirical studies
have established the dif�culty of relatively small application
BNs (Shwe et al. 1991) as well as synthetic BNs (Meng-
shoel, Wilkins, & Roth 2006; Mengshoel 2007b).
A designer of BN-based diagnostic systems must care-

fully align resource consumption with the resource bounds
imposed by the computational platform. The compilation
approach to probabilistic inference is attractive in such set-
tings. Wemention two compilation paradigms, namely com-
pilation to clique trees (Lauritzen & Spiegelhalter 1988;
Andersen et al. 1989) and compilation to arithmetic circuits
(Darwiche 2003; Chavira & Darwiche 2007). The arith-
metic circuit paradigm is based on the observation that a BN
can be represented as a multi-variate polynomial (MVP) in
which terms consist of probabilities from the BN's CPTs
and indicators take into account evidence. Unfortunately,
an MVP grows exponentially with the size of a BN, hence
one compiles a BN into an equivalent but (typically) more
compact arithmetic circuit. An example is shown in Figure
4. In many cases, sparse arithmetic circuits exist for BNs
with 100s or 1000s of nodes. The arithmetic circuit's size
depends on a BN's graphical and local structure: if BN has
local structure, the arithmetic circuit may be small despite
large treewidth. A range of probabilistic queries � includ-
ing MAP, MPE, and marginals/MLVs � can be computed
using arithmetic circuits.
We now very brie�y summarize the compilation to arith-

metic circuits. Prior to compilation, we modify the CPTs to
store pointers to AC nodes rather than numbers. For exam-
ple, if 0.1 is stored in a particular slot of some CPT, then
this number would be replaced with a pointer to a single AC
node (sink) labeled with 0.1. Also prior to compilation, for
each BN variable, we add a new table over just that variable
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Figure 4: Automatic compilation of a BN representing an
electrical power system relay (top) into an equivalent arith-
metic circuit (bottom). This BN consists of the �ve nodes in
the upper right corner of Figure 2.

representing the values of that variable. For example, vari-
able X with values 0 and 1 would generate a table over X
where the �rst slot contains a pointer to an AC node (sink)
labeled with �0 and the second slot contains a pointer to an
AC node (sink) labeled with �1.
After these two preprocessing steps, we run a slightly

modi�ed version of the standard variable elimination (VE)
algorithm (Zhang & Poole 1996; Dechter 1999). The only
difference occurs when the standard version wishes to add
or multiply two numbers. In each of these situations, the
standard algorithm will identify two slots A and B in ta-
bles, add (multiply) the two numbers residing there, and
store the result back into some slot C of some table. When
the modi�ed algorithm looks into A and B, it �nds point-
ers to AC nodes � and � rather than numbers. Instead of
performing the arithmetic operation, the modi�ed algorithm

creates a new AC node 
 labeled with �+� or �*�, makes
� and � children of 
, and stores a pointer to 
 into C.
Upon completion, standard VE yields a single table contain-
ing a single slot containing a number. The modi�ed algo-
rithm will be the same, except that rather than a number,
we will have a pointer to an AC node, which is the root of
the compiled arithmetic circuit. By exploiting local struc-
ture, this modi�ed VE algorithm has compiled BNs with
prohibitively large treewidths (Chavira & Darwiche 2007;
Chavira 2007). Using our Of�ine Generation approach,
we auto-generate BNs such that the structure of the underly-
ing EPSs is maintained to a great degree; in addition a high
proportion of CPTs generated are deterministic (see Figure
4 for examples). The BNs developed for ADAPT in other
words have substantial local structure, and AC compilation
has worked well on similar BNs in the past.

Experimental Results
We now turn to experiments using ADAPT and different
inference algorithms. Experiments are divided into two
sets: hand crafted, real-world scenarios from ADAPT and
simulated scenarios that were automatically generated from
an ADAPT BN. In both cases, we executed probabilistic
queries over the health variables HE in order to �nd out
which components or sensors, if any, were in non-healthy
states. Figure 3 presents the inputs and outputs in terms of
the ADAPT BN along with a small example.
The ACE system was used to (i) compile an ADAPT BN

into an arithmetic circuit and (ii) evaluate that arithmetic cir-
cuit (see http://reasoning.cs.ucla.edu/ace/
for details on ACE). The timing measurements reported
here were made on a PC with an Intel 4 1.83 Ghz proces-
sor, 1 GB RAM, and Windows XP.

Experiments using Real-World Data
For experimentation using real-world data, EPS failure sce-
narios were generated using the ADAPT EPS at NASA
Ames. These scenarios cover both component failures (ex-
periments 304, 306, 309, and 310 in Table 1) and sensor
failures (experiments 305, 308, and 311); many previous
efforts have only considered one type of failure. In each
of these experiments, ADAPT's initial state was as follows:
Circuit breakers were commanded closed; they had evidence
e clamped to cmdClose. Relays were commanded open;
they had evidence clamped to cmdOpen in e. In this ini-
tial state, all health nodes HE are deemed healthy when
computing MAP, MAPMPE, and MAPMLV.
After ADAPT system recon�gurations and fault insertion

(for example insertion of �Relay EY260 failed open� � see
ID 304 in Table 1), the ADAPT BN or an arithmetic circuit
compiled from it is used to compute a diagnosis. The variant
of the ADAPT BN used here was largely auto-generated and
contains 434 nodes and 482 edges; the BN node cardinalities
range from 2 to 4 with mean 2.27. ACE was used to compute
MPEs and marginals/MLVs. We report here on the queries
MAPMPE(HE , e) and MAPMLV(HE , e) computed by ACE.
To compute MAP(HE , e), SamIam was used (see http:
//reasoning.cs.ucla.edu/samiam/ for details).



ID Fault Description Diagnosis: MAP, MAPMPE, and MAPMLV Correct
304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes
305 Relay feedback sensor ESH175 failed Health_relay_ey175_cl = stuckOpen Yes
306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes
308 Voltage sensor E261 failed Health_e261 = stuckVoltageLo Yes
309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes
310 Inverter INV1 failed off Health_inv1 = stuckOpen Yes
311 Load sensor LT500 failed Health_LT500 = stuckLow Yes

Table 1: Diagnostic results for different fault scenarios (with IDs 304, 305, . . . ) for the electrical power system testbed ADAPT.

MAPMPE(HE ; e) Results
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Figure 5: Execution time results for ACE for the ADAPT
testbed. Top: Results for the most probable explanation
(MPE); Bottom: Results for the most likely value (MLV).

The results of the ADAPT experiments are provided in
Table 1 and in Figure 5. Since HE contains over 120
nodes, we only show the variables deemed to be non-healthy
in Table 1. Further, the diagnostic results of the queries
MAPMPE(HE , e), MAPMLV(HE , e), and MAP(HE , e)
turned out to be the same, hence we consolidate them into
one column in Table 1. ADAPT uses a 2 Hz sampling rate,
and a probabilistic query was posed to ACE after each sam-
ple in an experimental run. The execution time statistics
displayed in Figure 5 are based on the execution times for
all probabilistic queries during an experimental run. Each
execution time is for an entire inference step, i.e. translat-
ing measurements to evidence, committing evidence to the

Inference MPE Marginals
Time (ms) VE ACE CTP ACE
Minimum 17.25 0.1967 8.527 0.4934
Maximum 38.45 2.779 54.51 5.605
Median 17.63 0.1995 9.204 0.5624
Mean 17.79 0.2370 10.02 0.6981
St. Dev. 1.513 0.2137 4.451 0.6669

Table 2: Results for different inference algorithms (VE,
ACE, and CTP) when computing MPEs and marginals us-
ing data generated from the ADAPT BN.

arithmetic circuit, and evaluating the arithmetic circuit.
Our main observations regarding these experiments are as

follows. First, we see in Table 1 that the different diag-
nostic queries correctly diagnose all these component and
sensor failure scenarios. Second, we emphasize the fast and
predictable inference times for the ACs in Figure 5. These
are both very important factors in real-time electrical power
system health management.

Experiments using Simulated Data
The variant of the ADAPT BN used here was completely
auto-generated and contains 453 nodes and 509 edges; the
BN node cardinalities range from 2 to 4 with mean 2.28.
Simulated data was created by a program that (i) generated
a set of failure scenarios according to the probabilities of the
ADAPT BN's health nodesHE , and (ii) for each failure sce-
nario, generated an evidence set on sensor nodes. This large
number of evidence sets was then run through different in-
ference systems. In addition to arithmetic circuit evaluation
(ACE), we performed experiments with variable elimination
(VE) and clique tree propagation (CTP).
Table 2 summarizes the results of experiments with 200

simulated evidence sets generated from the ADAPT BN.
ACE is, on average, over 75 times faster than VE when
computing MPEs (see Table 2). In addition, we note how
ACE can compute all marginals, or MAPMLV(Q,e), using
just slightly more time than what is used for MPEs, or
MAPMPE(Q,e). In other words, ACE can compute over
400 probabilities 25 times faster than VE computes a sin-
gle probability. CTP can be used to compute marginals in
order to overcome VE's limitation of computing only one
probability at a time, but even CTP is over 14 times slower
and has higher standard deviation than AC.
In summary, VE, CTP, and ACE all run quite ef�ciently



on the ADAPT system, but ACE is one or two orders of mag-
nitude more ef�cient than the other algorithms, while having
lower standard deviation. Diagnostic inference for ADAPT
is therefore very ef�cient for two reasons. First, the BN was
carefully generated, using our novel auto-generation algo-
rithm, in manner that supports ef�cient inference using any
reasonable exact inference algorithm. Second, the particular
arithmetic circuit algorithms we have emphasized here, as
implemented in ACE, provides very large additional gains.

Conclusion
Electrical power systems (EPSs) are crucially important in
spacecraft and aircraft. In this paper, we have presented a
probabilistic approach to fault diagnosis in such systems.
Speci�cally, we have discussed how ADAPT, an electri-
cal power system testbed at NASA, can be represented as
Bayesian networks and arithmetic circuits which are used to
answer diagnostic queries. We have highlighted two chal-
lenges, the modelling and real-time reasoning challenges,
often associated with the development of model-based di-
agnostic engines for spacecraft and aircraft, and shown how
they are overcome in our setting.
Meeting the modelling challenge, we have discussed how

EPS BNs can easily be described in a novel, easy-to-use
speci�cation language that is component-based and re�ects
EPS structure. This language is the basis for our auto-
generation of EPS BNs, including ADAPT BNs with over
400 nodes. We have also considered how to meet the real-
time requirements of spacecraft and aircraft. Our approach
meets this challenge by compilation into arithmetic circuits,
where inference is fast and predictable, thereby enabling em-
bedding into real-time settings. Our probabilistic fault di-
agnosis methodology has been successfully evaluated using
real-world data from ADAPT.
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