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Abstract.  This paper is about applying recurrent least squares support vector 
machines (LS-SVM) on three ESTSP08 competition datasets. Least squares 
support vector machines are used as nonlinear models in order to avoid local 
minima problems. Then prediction task is re-formulated as function approximation 
task. Recurrent LS-SVM uses nonlinear autoregressive exogenous (NARX) model 
to build nonlinear regressor, by estimating in each iteration the next output value, 
given the past output and input measurements.   

1 Introduction  

Support Vector Machines (SVM) is a powerful methodology for solving problems in 
nonlinear classification, function estimation and density estimation [4]. It has been 
originally introduced within the context of statistical learning theory and structural 
risk minimization. These methods use quadratic programming to solve convex 
optimization problems [1]. Least Square Support Vector Machines (LS-SVM) are re-
formulation to the standard SVM [6,7]. In this paper, recurrent least squares support 
vector machines are used as nonlinear models in order to avoid local minima 
problems [4,8]. The cost function is a regularized least squares function with equality 
constraints, leading to linear Karush-Kuhn-Tucker systems [4,7,8]. LS-SVMs are 
closely related to regularization networks and Gaussian processes [6,9]. Accurate 
prediction of nonlinear time series is very important in many fields: wind power 
systems, seismology, econometrics, industrial process automation systems, 
biomedicine, life sciences and etc. The main difficulty is lack of sufficient and 
necessary information for an accurate prediction. The challenge in the field of time 
series prediction is the long-term prediction, where typically more than 100 steps 
ahead ought to be predicted. Long-term prediction methods must solve many 
problems because of accumulation of errors, noise and perturbations from the 
environment. This paper is organized as follows.  In Section 2, main principle of LS-
SVM for nonlinear function estimation is presented. Section 3 presents how recurrent 
LS-SVM and nonlinear autoregressive exogenous (NARX) models are used for 
nonlinear regression and prediction. Section 4 presents ESTSP08 3 datasets and  
results.  Section 5 concludes with some final remarks and pointers to further works. 



2 Least-squares support vector machines for nonlinear function 
estimation  

For a given training set of N data points {xk, yk} with xk as n-dimensional input and yt 
as 1-dimensional output, feature space SVM models take the form [3,5]: 
     
    y(x) = ω T )(xϕ + b, 
 
where the nonlinear mapping ϕ(.) maps the input data into a higher dimensional 
feature space. In least-squares support vector machines (LS-SVM) for nonlinear 
function estimation, the following optimization problem is formulated: 
                N 
    min J(ω , e) = ½ ω Tω + γ  ½ Σek

2 , 
    e,ω             k=1 
subject to equality constraints: 
 
    y(x) =  ω Tϕ(x) + b + ek , k=1, …, N 
 
and the solution is: 
               N 
    h(x) = ΣαiK(x, xi) + b 
               i=1 
 
In the above equations, i refers to the index of a sample and K(x, xi) is the Kernel 
function defined as the dot product between the ϕ(x)T and ϕ(x). In this paper, 
Gaussian kernels are used: 
 
    K(x, xi) = exp { ׀׀x-xi2׀׀ / σ2 }  
 
The model hyperparameters σ and γ are trained and optimized according to  [2,7,8]. 

3 Recurrent least-squares support vector machines  

To predict more than 100 steps ahead values of time series, recurrent least-squares 
support vector machines can be used [3,5]. It uses the predicted values as known data 
to predict the next ones. The recurrent LS-SVM model can be constructed by first 
making one-step ahead prediction: 
 
    yt+1’ = f1(yt, yt-1, …, yt-M+1) 
 
where M denotes the number of inputs and yt+1’ denotes predicted value. The 
regressor of the model is defined as the vector of inputs: yt, yt-1, …, yt-M+1. To predict 
the next value, the same model is used: 



 
    yt+2’ = f1(yt+1’, yt, yt-1, …, yt-M+1) 
 
   In this equation, the predicted value of yt+1’ is used instead of the true value, which 
is unknown. Then, for the H-steps ahead prediction, yt+2 to yt+H’ are predicted 
iteratively. When the regressor length M is larger than H, there are M-H real data in 
regressor to predict Hth step. When H exceeds M, all inputs are predicted values.  
 
   Nonlinear autoregressive exogenous (NARX) models are built based on nonlinear 
regression by estimating in each iteration the next output value, given the past output 
and input measurements. A dataset is converted into a new input (past measurements) 
by function windowize. Prediction is done by the function predict, iteratively in 
recurrent mode, and next output is computed, based on the previous predictions and 
starting values [2]. 

4 ESTSP08 times series datasets and results  

4.1   Time Series 1 

  Function estimation is done for the 3rd variable only, which has 354 data points. 
Then prediction is computed in recurrent mode for the next 18 values. The recurrent 
LS-SVM model is trained and fine-tuning of hyperparameters σ2 and γ was done with 
cross-validation, according to [2]. 

 
 

 
Figure 1: Function Estimation of Time Series 1 



 
 

 
Figure 2: Prediction of next 18 data values for Time Series 1 

4.2   Time Series 2 

   Nonlinear function estimation is done for the 1300 data points. Then prediction is 
computed in recurrent mode for the next 100 data values. The recurrent LS-SVM 
model is trained and fine-tuning of hyperparameters σ2 and γ was done with cross-
validation, according to [2].  



 
Figure 3: Function Estimation of Time Series 2 
 

 

Figure 4:  Prediction of next 100 data values for Time Series 2  



4.3.   Time Series 3 

   Nonlinear function estimation is done for the 3900 data points, which is sufficient 
for the accurate estimation. Then prediction is computed for the next 200 data values. 
Figure 5 shows nonlinear function estimation for 3900 data points and Figure 6 shows 
prediction of next 200 data values. The rationale for truncating the original dataset is 
that after testing various lower bounds, the best candidate lower bound converged to 
3900 data points [10]. This lower bound captured all necessary fluctuations and 
dynamics in the original dataset. The recurrent LS-SVM model is trained and fine-
tuning of hyperparameters σ2 and γ was done with cross-validation, using Matlab and 
LS-SVMlab Toolbox. Details can be found in [2]. 

 

 

Figure 5:  Function Estimation of Time Series 3 



 

 

Figure 6: Prediction of next 200 data values for Time Series 3 

5 Conclusion 

This paper presents solutions for the long-term predictions of ESTSP08 datasets. LS-
SVM was chosen for modeling nonlinear time series, because of its ability to avoid 
local minima problems. The prediction task was re-formulated as the nonlinear 
function estimation task. The predictions were computed using recurrent least squares 
support vector machines.   

The recurrent least squares support vector machine iteratively predicts next output, 
based on the previous predictions and starting values. The time series 3 dataset was 
truncated to 3900 points, which was obtained as satisfactory lower bound for 
capturing all underlying fluctuations and dynamics in the original dataset. 

In further works:  

- research on parallelization of recurrent LS-SVM models will be done,  

- on-line implementation of recurrent LS-SVM for continuous data analysis of 
industrial processes and measurements.  
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