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Abstract: Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault
masking, compensation, and relative time of fault occurrence, multiple faults can manifest in
many different ways as observable fault signature sequences. This decreases diagnosability of
multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We
develop a qualitative, event-based, multiple fault isolation framework, and derive several notions
of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition
technique that decouples faults from residuals, we can significantly improve the diagnosability
of multiple faults compared to an approach using a single global model. We demonstrate these
concepts and provide results using a multi-tank system as a case study.

Keywords: Diagnosability, multiple fault diagnosis, structural analysis, discrete-event systems

1. INTRODUCTION

Multiple simultaneous faults in a system add significant
complexity to the fault diagnosis problem, especially in
dynamic systems. Fault masking, compensation, and the
relative time of fault occurrence give rise to many different
ways that multiple faults can manifest in the system
observations. As a result, isolating multiple faults becomes
a difficult task. The larger the number of faults considered,
the more possible ways their effects can interleave, making
it less likely that the fault candidates can be uniquely
isolated given a set of measurements.

Typically, multiple fault diagnosis (MFD) solutions apply
to static systems, e.g., (de Kleer and Williams, 1987). For
dynamic systems, (Dvorak and Kuipers, 1991) performs
qualitative and semi-quantitative simulation to mimic the
evolution of the process, changing the configuration of the
model every time a fault appears. (Nyberg and Krysander,
2003) integrates FDI techniques for fault detection and
DX techniques for fault isolation that can automatically
handle multiple faults in dynamic systems.

Our previous work in MFD for continuous systems (Daigle
et al., 2007; Daigle, 2008), based on a qualitative fault
isolation (QFI) framework (Mosterman and Biswas, 1999)
described how multiple faults manifest in the measure-
ments, and provided algorithms for fault isolation. This
approach was based on using residuals computed from a
global model. Since faults affect all measurements that
have a causal path from the fault to the measurement,
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fault masking can have a significant adverse impact on
multiple fault diagnosability.

Using analytical redundancy relations (ARRs) approaches,
diagnosability is improved by deriving relations that de-
couple faults from residuals, so that a single fault affects
only a small set of residuals (Gertler, 1998). This decreases
the possibility of masking, and, as such, should intuitively
lead to improvements in multiple fault diagnosability.
In this work, we explore this idea using the model de-
composition approach of Possible Conflicts (PCs) (Pulido
and Alonso-González, 2004), which is a dependency-
compilation technique that automatically partitions the
system model into minimal over-determined subsystems,
based on the set of measurements and faulty components.
PCs are designed to be triggered only by faults within its
subsystem, thus decoupling faults from residuals.

In this paper, we develop a qualitative, event-based frame-
work for multiple fault diagnosis that takes advantage of
model decomposition. We develop several notions of mul-
tiple fault distinguishability that are applicable depending
on what assumptions the user is willing to make. We
define multiple fault diagnosability and provide a means
to quantify it for a system. Using a tank system as a case
study, we show how using residuals derived from PCs im-
proves multiple fault diagnosability of a system, and how a
combined approach using residuals derived from both the
global model and the PCs further improves diagnosability.

The paper is organized as follows. Section 2 describes
preliminary material. Section 3 reviews residual generation
and model decomposition using PCs. Section 4 overviews
the QFI framework and Section 5 describes event-based



Fig. 1. Tank system schematic.

fault modeling. Section 6 establishes distinguishability and
diagnosability of multiple faults within our framework.
Section 7 applies the framework to a tank system case
study. Section 8 concludes the paper.

2. PRELIMINARIES

We assume the system is described by

ẋ(t) = f(x(t),θ(t),u(t)) + v(t)

y(t) = h(x(t),θ(t),u(t)) + w(t),

where x(t) ∈ Rnx is the state, θ(t) ∈ Rnθ is the parameter
vector, u(t) ∈ Rnu is the input, v(t) ∈ Rnv is the
process noise, f and h are the state and output equations,
respectively, y(t) ∈ Rny is the output, and w(t) ∈ Rnw is
the measurement noise.

We denote a measurement as m, which refers to an output
variable in y, and a measurement set as M . We consider
abrupt parametric faults, with faults modeled as persistent
unexpected step changes in system parameter values. We
name faults by the associated parameter and the direction
of change, e.g., θ+ denotes a fault defined as an abrupt
increase in the value of parameter θ. We denote a fault as
f and a set of faults as F .

In MFD, a candidate is defined as a set of faults.

Definition 1. (Candidate). A candidate c ⊆ F is a set of
faults. The set of all candidates is denoted as C.

For example, the candidate {f1, f2} (in shorthand, f1f2)
implies that both f1 and f2 have occurred.

In this paper, we focus specifically on the diagnosability of
a system with multiple faults. That is, we study the distin-
guishability of candidates in C within our fault isolation
framework. In this paper, we do not take minimality of
candidates into account, i.e., we still want to be able to
distinguish between candidates c1 and c2 even if c1 ⊂ c2.
Working with minimal candidates in our framework is
described in (Daigle et al., 2007; Daigle, 2008) and more
generally in (de Kleer and Williams, 1987).

Throughout the paper, we use a multi-tank system as a
running example. A number of tanks are connected serially
(see Fig. 1). For tank i, ui is the input flow, Ci is the tank
capacitance, and Ri is the drain pipe resistance. For tanks
i and j, Rij is the connecting pipe resistance. For an n-
tank system, the pressure of tank i, pi, is described by

ṗi =
1

Ci

(
ui + qi−1,i − qi − qi,i+1

)
+ vi,

where vi is the process noise for tank i, qi = 1
Ri

(pi) is the

output flow of tank i, and qi,i+1 = 1
Ri,i+1

(pi − pi+1) is the

flow between tanks i and i + 1. For tank 1, q0,1 = 0, and
for tank n, qn,n+1 = 0.

The complete fault set F consists of {C−i , C+
i , R

−
i , R

+
i :

i = 1, . . . , n} ∪ {R−i,i+1, R
+
i,i+1 : i = 1, . . . , n − 1}. The

complete measurement set M is defined as {pi, qi : i =
1, . . . , n} ∪ {qi,i+1 : i = 1, . . . , n − 1}. We consider single
and double faults to form the candidate set C, so there are

|F |+
(|F |

2

)
= 8 + 28 = 36 candidates 1 .

3. MODEL DECOMPOSITION

In our previous approach (Daigle et al., 2007; Daigle,
2008), a global system model was used for residual gen-
eration. An observer, based on the global model, is used
to estimate the system behavior based on the set of mea-
surements (Mosterman and Biswas, 1999). This estimate
is then used to compute a residual, r, for the measure-
ment, i.e., r is computed as the difference between an
observation, y, and its predicted nominal values, ŷ, i.e.,
r(t) = y(t) − ŷ(t). Therefore, we compute a residual for
each measurement of the system. We denote a residual
as rm, where m is the associated measurement, and the
residual set is denoted as R.

With model decomposition methods, like PCs, the global
model is decomposed into a set of minimal over-determined
subsystems, each with a single output (one submodel per
measurement) 2 (Pulido and Alonso-González, 2004). We
define residuals in the same way, only the predicted output
ŷ is computed using an observer based on the submodel
computing y. The submodels are made independent of each
other by using measurements as inputs to the submodels.
As a result, a single fault is found in only a few submodels
(ideally, one submodel), and, therefore, a fault affects only
a subset of the residuals and is decoupled from the rest.
Intuitively, this decoupling should improve multiple fault
diagnosability. For example, if two faults do not affect
any common residuals, we should be able to distinguish
between the situation where only one of the faults occurs
and both have occurred. With the global model approach,
without such decoupling, one fault may completely mask
the other, preventing distinguishability.

Applying the PCs approach to an n-tank system with
M = {pi : i = 1, . . . , n} we find a set of n minimal
submodels. Each PC, PCi, estimates the pressure in one
of the tanks, pi, and can be described in a general way as
follows:

ṗi =
1

Ci

(
ui +

(p′i−1 − pi)
Ri−1,i

− (pi)

Ri
− (pi − p′i+1)

Ri,i+1

)
,

where pi is the state variable, ui is the input to the
tank, p′i−1 and p′i+1 are the measured pressures of tanks
i − 1 and i + 1 that are used as input for the PC, and
{Ci, Ri, Ri,i−1, Ri,i+1} is the subset of (fault) parameters
that affects the estimation of PCi. For example, using
the PC approach with a three-tank system with M =
{p1, p2, p3} we find three PCs, each one of them estimating
the pressure in one of the tanks.
1 Note that our approach is not limited by candidate cardinality.
We focus here only on single and double faults for demonstration.
2 PCs have been demonstrated to be equivalent to other structural
methods for residual generation, such as minimal ARRs (Pulido and
Alonso-González, 2004).



Table 1. Fault Signatures and RMO for the
Global Model of the Tank System.

Fault rp1 rp2 rp3 Measurement Orderings

C−
1 +- 0+ 0+ rp1 ≺ rp2 , rp1 ≺ rp3 , rp2 ≺ rp3

R+
1 0+ 0+ 0+ rp1 ≺ rp2 , rp1 ≺ rp3 , rp2 ≺ rp3

R+
12 0+ 0- 0- rp2 ≺ rp3

C−
2 0+ +- 0+ rp2 ≺ rp1 , rp2 ≺ rp3

R+
2 0+ 0+ 0+ rp2 ≺ rp1 , rp2 ≺ rp3

R+
23 0+ 0+ 0- rp2 ≺ rp1

C−
3 0+ 0+ +- rp2 ≺ rp1 , rp3 ≺ rp1 , rp3 ≺ rp2

R+
3 0+ 0+ 0+ rp2 ≺ rp1 , rp3 ≺ rp1 , rp3 ≺ rp2

4. QUALITATIVE FAULT ISOLATION

Faults cause deviations in the measured variables from the
nominal values. Residual deviations are abstracted using
qualitative +, -, and 0 values to form fault signatures
(Mosterman and Biswas, 1999). Fault signatures represent
these deviations as the immediate change in magnitude
and the first nonzero derivative change.

Definition 2. (Fault Signature). A fault signature for a
fault f and residual r is the qualitative change in mag-
nitude and slope of r caused by the occurrence of f , and
is denoted by σf,r ∈ Σf,r.

Note that due to possible ambiguities in the fault signa-
tures, σf,r may not be unique. A fault signature is written
as s1s2, where s1 is the qualitative magnitude change and
s2 is the qualitative slope change, e.g., -+.

We also capture the temporal order of residual deviations
for a given submodel, termed relative measurement order-
ings (RMOs), based on the intuition that fault effects will
manifest in some parts of the system before others (Daigle,
2008). They are computed based on analysis of the transfer
functions from faults to residuals defined for measurements
within a submodel.

Definition 3. (Relative Measurement Ordering). If fault f
manifests in residual ri before residual rj , then we define
a relative measurement ordering between ri and rj for
fault f , denoted by ri ≺f rj . We denote the set of all
measurement orderings for f as Ωf,R.

Because RMOs are defined only within a given submodel,
they cannot be straightforwardly computed between resid-
uals of two different submodels because they are indepen-
dent. Such RMOs will not be considered when using PCs.

Signatures and RMOs can be computed automatically
from a system model (Daigle, 2008). Table 1 shows these
for the global model of a three-tank system with F =
{C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,R+

23}, M = {p1, p2, p3}, and
R = {rp1

, rp2
, rp3
}. Signatures derived from the PCs with

residuals from the same measurements are shown in Table
2. In this case, each residual is only affected by a subset
of the faults, e.g., C−1 , causes a discontinuous increase in
rp1

for both approaches, followed by a smooth decrease,
denoted by the signature +-. This is followed by smooth
increases in residuals rp2 and rp3 for the global model, but
no effect appears in these residuals for the PCs.

5. EVENT-BASED FAULT MODELING

Fault signatures combined with RMOs provide event-
based information for diagnosis. For a given fault, the

Table 2. Fault Signatures and RMO for the Set
of Minimal Submodels of the Tank System.

Fault rp1 rp2 rp3 Measurement Orderings

C−
1 +- 00 00 ∅

R+
1 0+ 00 00 ∅

R+
12 0+ 0- 00 ∅

C−
2 00 +- 00 ∅

R+
2 00 0+ 00 ∅

R+
23 00 0+ 0- ∅

C−
3 00 00 +- ∅

R+
3 00 00 0+ ∅

r0+p3

r+−p1

r0+p2

(a) L
C−

1
,R

r0−p3

r0+p2 r0+p1

r0+p2

r0−p3

r0−p3r0+p1

(b) L
R+

23
,R

r0+p3

r0+p1

r0+p2

(c) L
R+

3
,R

Fig. 2. Some fault models (obtained using the global
model), where R = {rp1

, rp2
, rp3
}.

combination of all fault signatures and measurement or-
derings yields all the possible ways a fault can manifest
in the residuals. We define each of these possibilities as a
fault trace.

Definition 4. (Fault Trace). A fault trace for a fault f over
residuals R, denoted by λf,R, is a string of length ≤ |R|
that includes, for every r ∈ R that will deviate due to
f , a fault signature σf,r, such that the sequence of fault
signatures satisfies Ωf,R.

This definition implies that fault traces are of maximal
length, i.e., a fault trace includes deviations for all resid-
uals affected by the fault. We group the set of all fault
traces into a fault language, represented by a fault model
whose accepting states correspond to maximal traces.

Definition 5. (Fault Language). The fault language of a
fault f ∈ F with residual set R, Lf,R, is the set of all
fault traces for f over the residuals in R.

Definition 6. (Fault Model). The fault model for a fault
f ∈ F with residual set R, is the finite automaton that
accepts exactly the language Lf,R, and is given by Lf,R =
(S, s0,Σ, δ, A) where S is a set of states, s0 ∈ S is an initial
state, Σ is a set of events, δ : S × Σ → S is a transition
function, and A ⊆ S is a set of accepting states.

Fault signatures and RMOs can be composed automati-
cally to form the fault models (Daigle et al., 2009). Selected
fault models for a three-tank system are shown in Fig. 2.
For example, as seen in LR+

23,R
, the fault R+

23 may manifest

as the fault traces r0−p3
r0+p2

r0+p1
, r0+p2

r0−p3
r0+p1

, and r0+p2
r0+p1

r0−p3
,

as implied by the fault signatures and RMOs.

Fault models describe how single faults manifest in the
residuals. But, candidates consist of multiple faults, so
may manifest in much more complicated ways due to fault



masking and the relative occurrence times of faults. The
traces that result from multiple faults consist of interleav-
ings of the fault signatures produced from the constituent
faults. In our diagnosis scheme, we only observe one fault
signature per residual. A second possible signature due to
a different fault cannot be produced, since the model has
changed since the introduction of the first fault, and there-
fore there is no nominal reference with which to produce
the second signature. Further, the traces from multiple
faults must still respect the measurement orderings of the
constituent faults (Daigle et al., 2007).

As an example, take R+
3 and R+

23 with R = {rp1
, rp2

, rp3
}

(see Fig. 2). According to the fault models, the first
observed deviation must be in either rp2

or rp3
, as either

r0+p3
(from R+

3 ), or either r0+p2
or r0−p3

(from R+
23). Say that

r0+p3
is observed. The next deviation must then be r0+p2

(from either R+
3 or R+

23). In the fault models, we project
out the events for residuals that have already deviated,
and that gives us the next set of possible events. Candidate
traces continue to be built up in this way.

We can now begin to define the notion of a candidate
language. We start by defining a candidate subtrace, which
extends our earlier notion of a fault trace and is based on
the notion of a prefix.

Definition 7. (Prefix). A trace λi is a prefix of trace λj ,
denoted by λi v λj , if there is some (possibly empty)
sequence of events λk that can extend λi s.t. λiλk = λj .

Definition 8. (Candidate Subtrace). Given residualsR, λ =
σ0 is a candidate subtrace for c ⊆ F , if σ0 v λ′ ∈ Lf,R for
some f ∈ c. λ = λiσi+1 is a candidate subtrace for c ⊆ F , if
λi is a candidate subtrace for c, and σi+1 v λ′ ∈ Lf,R−Ri
for some f ∈ c, where Ri is the set of residuals that have
deviated for subtrace λi.

We are only concerned with maximal traces, i.e., those for
which all residuals that will deviate for the faults of the
candidate have deviated (as with fault traces).

Definition 9. (Candidate Trace). Given residuals R, λ is a
candidate trace for c ⊆ F if for all f ∈ c, Lf,R−Ri = ∅,
where Ri is the set of deviated residuals for λ.

Now, we can define the language of a candidate c, Lc,R, as
the set of candidate traces for c.

Definition 10. (Candidate Language). The candidate lan-
guage for candidate c with residual set R, Lc,R, is the set
of all candidate traces for c over the residuals in R.

Similar to fault models, we can define candidate models.

Definition 11. (Candidate Model). The candidate model
for a candidate c with residual set R, is the finite automa-
ton that accepts exactly the language Lc,R, and is given
by Lc,R = (S, s0,Σ, δ, A) where S is a set of states, s0 ∈ S
is an initial state, Σ is a set of events, δ : S × Σ → S is a
transition function, and A ⊆ S is a set of accepting states.

Accepting states correspond to maximal traces. For single
faults, the fault languages and fault models define the
corresponding candidate languages and candidate models.

Conceptually, fault isolation works by observing the se-
quence of residual deviations and mapping that to consis-
tent candidates by checking the candidate languages or by

r0+p3

r+−p1

r+−p1

r0+p1

r0+p3

r0+p2 r+−p1

r0+p3

r0+p2

r0+p2

Fig. 3. Candidate model LC−
1 R+

3 ,R (obtained using the

global model), where R = {rp1 , rp2 , rp3}.
tracking the candidate models. This can be implemented
efficiently online and does not require precomputation of
the candidate languages or models (Daigle, 2008).

6. DIAGNOSABILITY

Distinguishability of candidates is derived from the candi-
date languages. A general definition of distinguishability
is as follows.

Definition 12. (Distinguishability). With residuals R, a
candidate ci is distinguishable from a candidate cj , de-
noted by ci �R cj , if ci always eventually produces effects
on the residuals that cj cannot.

Within our framework, a basic implementation of this
definition is expressed as the following proposition.

Proposition 13. (Strict Distinguishability). With residuals
R, a candidate ci is strictly distinguishable from a candi-
date cj if there is no λi ∈ Lci,R where for some λj ∈ Lcj ,R,
λi v λj .
For example, consider the single fault candidates shown in
Fig. 2a and 2c, and the double fault candidate shown in
Fig. 3, which use residuals from the global model. Clearly,
C−1 and R+

3 are distinguishable from each other, because
the first observable deviation is different for the two faults.
But, C−1 and C−1 R

+
3 are not distinguishable from each

other, and neither are R+
3 and C−1 R

+
3 . The reason is that

one fault can completely mask the other, e.g., r+−p1
r0+p2

r0+p3

may be observed either because C−1 has occurred by itself,
or because C−1 and R+

3 have both occurred, and R+
3 has

been completely masked.

But, the decoupling introduced by PCs can eliminate some
of this masking. Fig. 4 shows the candidate models for
these candidates with the PC-based residuals. Since rp1

is
decoupled from R+

3 , and rp3
is decoupled from C−1 , if both

faults occur together, we see deviations in both residuals
and either fault by itself will not be consistent. Therefore,
C−1 R

+
3 is distinguishable from both C−1 and R+

3 . However,
the converse is still not true, i.e., C−1 is not distinguishable
from C−1 R

+
3 . If C−1 occurs, then we see r+−p1

, which so far,
is consistent with both the single and the double fault. We
then have to wait infinitely long to ensure that rp3 does
not deviate and confirm that C−1 has occurred by itself,
and so we say they are not distinguishable.

In practice, however, this is a fairly strong distinguisha-
bility requirement to be working with. If C−1 occurs and



r+−p1

(a) L
C−

1
,R

r0+p3

(b) L
R+

3
,R

r0+p3

r+−p1

r+−p1

r0+p3

(c) L
C−

1
R+

3
,R

Fig. 4. Candidate models (obtained using the PCs) where
R = {rp1 , rp2 , rp3}.

we see r+−p1
, then, since it is not possible for the effects of

C−1 to mask the effects that will be produced by R+
3 , if it

happens to occur, we will definitely see evidence for it (i.e.,
r0+p3

). So, before we see such evidence, we are safe in assum-

ing that R+
3 has not also occurred. In this case we want

to be able to say that C−1 is distinguishable from C−1 R
+
3 .

This leads to a new implementation of distinguishability.

Proposition 14. (Partial Masking Distinguishability).With
residuals R, a candidate ci is distinguishable under partial
masking from a candidate cj if (i) ci ⊂ cj and Rci ∩
Rcj−ci = ∅ or if (ii) ci and cj are strictly distinguishable.

Here, the notation Rc ⊆ R refers to the subset of the
residuals that will deviate due to candidate c. Applied to
our example in Fig. 4, this says that, since it is not possible
for C−1 to mask any of the residuals that R+

3 affects, we can
say C−1 is distinguishable from C−1 R

+
3 (since C−1 ⊂ C−1 R+

3

and RC−
1
∩ RC−

1 R+
3 −C

−
1

= ∅). Similarly, we can say R+
3

is distinguishable from C−1 R
+
3 . A weaker version of this

distinguishability implementation allows partial masking
but disallows complete masking.

Proposition 15. (Complete Masking Distinguishability).
With residuals R, a candidate ci is distinguishable under
complete masking from a candidate cj if (i) ci ⊂ cj and
Rcj−ci * Rci or if (ii) ci and cj are strictly distinguishable.

For example, if both C−1 and R+
3 also affected some other

residual other than rp1
and rp3

, and C−1 occurs and we see
r+−p1

, then even if we see this other residual deviate, we

are somewhat safe in assuming R+
3 has not yet occurred,

because if it does we will eventually see evidence for it.

We can improve distinguishability even more if we can
confidently observe the lack of a deviation, e.g., by assum-
ing that faults will cause residual deviations at most x
seconds after they occur. That is, if a fault should affect
some residuals r1 and r2 and we have observed r1 deviate,
but r2 has not deviated x seconds since r1 was observed to
deviate, then we can assume that fault has not occurred 3 .
In this case, distinguishability checks only for common
candidate traces and the prefix of traces does not matter.

Proposition 16. (Weak Distinguishability). With residuals
R, a candidate ci is weakly distinguishable from a candi-
date cj if Lci,R ∩ Lcj ,R = ∅.

3 In practice, this can be difficult to achieve because it would be
affected by fault magnitude, sensor noise, and properties of the fault
detectors.

Table 3. Diagnosability results for F =
{C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,R+

23}.
M Distinguishability Global model PCs Combined

Mp

Strict 522 (0.41) 196 (0.16) 179 (0.14)
Partial masking 522 (0.41) 164 (0.13) 147 (0.12)
Complete masking 522 (0.41) 154 (0.12) 137 (0.11)
Weak 522 (0.41) 62 (0.05) 62 (0.05)

Mq

Strict 448 (0.36) 335 (0.27) 305 (0.24)
Partial masking 448 (0.36) 329 (0.26) 299 (0.24)
Complete masking 448 (0.36) 314 (0.25) 284 (0.23)
Weak 448 (0.36) 314 (0.25) 284 (0.23)

With distinguishability defined, we can now begin to define
diagnosability. Diagnosability assumes a given implemen-
tation of distinguishability. It depends on the set of can-
didates being considered and the chosen set of residuals.
First we define a system.

Definition 17. (System). A system S is a tuple (F, C, M,
R, LC,R), where F is a set of faults, C = {c1, c2, . . . , cn} ⊆
2F is a set of candidates, M is a set of measurements, R
is a set of residuals, and LC,R = {Lc1,R, Lc2,R, . . . , Lcn,R}
is the set of candidate languages.

Here, the set of candidates does not have to be the full
powerset 2F , e.g., it may include only single faults, single
faults and double faults, etc.

A system is diagnosable if all pairs of candidates are dis-
tinguishable for the given implementation of distinguisha-
bility. If diagnosable, then we can make guarantees about
the unique isolation of every candidate in the system.

Definition 18. (Multiple Fault Diagnosability). A system
S = (C,F,M,R,LC,R) is diagnosable if (∀ci, cj ∈ C)
ci 6= cj =⇒ ci �R cj .

Even with PCs, in many cases we do not expect complete
diagnosability, therefore, we introduce a diagnosability
score in order to compare different approaches. For a
candidate set C, the score is computed as the number of
indistinguishable candidate pairs. The worst possible score

is 2
(|C|

2

)
. 4 We compute the normalized score, describing

the fraction of undiagnosability, as the diagnosability score
divided by the worst score.

7. RESULTS

As a first scenario, consider the three-tank system with
F = {C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,R+

23} and two different
measurement sets Mp = {p1,p2,p3} and Mq = {q1,q2,q3}.
Table 3 shows the diagnosability results using both mea-
surement sets for PCs and the global system model for
each one of the four distinguishability definitions. For this
example, the worst possible score is 2

(
36
2

)
= 1260. In

the table, the columns show the measurement set used,
the distinguishability definition, and scores for the global
model and PC approaches, respectively. Normalized scores
are shown in parentheses.

From the results, diagnosability using PCs is clearly much
better than using the global model. Also, the improve-
ment is much more substantial for Mp than for Mq, since
measurement set Mp provides more decoupling. This is

4 The factor of 2 appears because distinguishability is not a sym-
metric property.
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Fig. 5. Scalability of diagnosability.

consistent with the intuition that decoupling improves di-
agnosability. Comparing the distinguishability definitions,
we see that using weak distinguishability is the best in
all cases, followed by complete masking, partial masking,
and strict distinguishability. This is expected, since weak
distinguishability definition is least restrictive, and then
complete masking, partial masking, and strict.

Here, many candidates can be distinguished using PCs
compared to the global model. However, there is also a
small subset of candidates that can be distinguished using
the global model, but not using the PCs. For example,
consider distinguishing C−1 R

+
1 from R+

12. With the global
model, we can distinguish these candidates because they
produce different effects on rp2

and rp3
(see Table 1). With

PCs, however, if C−1 R
+
1 occurs and we see r0+p1

, then R+
12

remains consistent and we will not see another deviation in
order to eliminate it, so they are not distinguishable with
strict, partial masking, and complete masking definitions.

Therefore, improvements in diagnosability can be achieved
in an approach that combines the residual sets from both
the global model and the PCs. In such an approach, two
candidates are distinguishable if they are distinguishable
using either the global model-based residuals or the PC-
based residuals. The fifth column of Table 3 provides the
diagnosability results in this case, confirming that in all
the cases, a combined approach provides results equal to
or better than the approach with only PC-based residuals.

Although we cannot obtain complete multiple fault di-
agnosability in this case, sometimes it can be achieved.
For example, consider F = {C−1 ,C−2 ,C−3 } and Mp =
{p1,p2,p3}. Here, it is not diagnosable for PCs with strict
distinguishability (score of 6 (0.2)) and the global model
(score of 18 (0.6)), but otherwise we get perfect diag-
nosability. This occurs because the faults are completely
decoupled from each other by the PCs. In fact, whenever
the measurement set is such that we get full decoupling
with PCs, we will always achieve perfect diagnosability
for any of the distinguishability definitions.

It is also interesting to investigate the scalability of these
diagnosability properties. We computed diagnosability
scores for 2-6 tanks (see Fig. 5). The worst possible score
increases significantly as the number of tanks increases,
because each tank adds three new faults to the system.
The scores for the global approach increase as well, but at a
significantly smaller rate. For the PC-based diagnosability
results, the growth rate is reduced even further. In fact,
when using weak distinguishability, the scores for the PC-

based approach, for 3 tanks and higher, increase at a linear
rate, with only 30 new indistinguishable candidate pairs
being added for each new tank. Clearly, diagnosability
scales much better with the PC-based approach.

8. CONCLUSIONS

In this work, we have presented a qualitative, event-based
framework for multiple fault isolation with PCs. The de-
coupling of faults from residuals provided by PCs leads
to a great improvement in multiple fault diagnosability
since the possibility of fault masking, when multiple faults
occur, is reduced. We have established a definition for mul-
tiple fault diagnosability within our framework, providing
several notions of distinguishability. Diagnosability analy-
sis of a system may then be used to determine the expected
amount of ambiguity after QFI, and which ambiguities
will need to be resolved by more expensive quantitative
methods.

Experimental results on a multi-tank system show the
improvement of multiple fault diagnosability when PCs
are used instead of the global system model. Moreover,
using a combined approach of global model- and PC-based
residuals, we obtain further improvements in diagnosabil-
ity. Diagnosability is also more scalable with the PC-based
approach, and in fact, diagnosability scores grow only
linearly for the tank system using weak distinguishability.

In this paper, we considered only single and double faults
for the case study, but, in future work, we will study how
the approach scales with candidates of higher cardinality.
Also, we will extend this approach to develop an MFD
framework including multiple fault identification.
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