An Event-based Approach to Hybrid Systems Diagnosability

Matthew Daigle¹, Xenofon Koutsoukos², and Gautam Biswas²

¹ University of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA, USA

² Institute for Software Integrated Systems/Department of EECS, Vanderbilt University, Nashville, TN, USA

Motivation

 Many practical, modern engineering systems are hybrid systems

- Mix continuous and discrete behaviors
- Faults can be parametric (change in parameter) and discrete (change in mode)
- Diagnosability is a measure of ability to achieve unique diagnosis results
 - Definitions required for measurement selection task
 - Challenging in hybrid systems due to mode changes

Advanced Diagnostics and Prognostics Testbed, NASA Ames

Outline

- Problem Formulation
- Diagnosis Architecture
- Modeling
- Diagnosis Using Transients
- Event-based Fault Modeling
- Candidate Languages
- Diagnosers
- Diagnosability
- Case Study: Advanced Diagnostics and Prognostics Testbed
- Conclusions

Problem Formulation

- Starting from hybrid system model
 - Set of faults $F = \{f_1, f_2, ..., f_n\}$ (events)
 - Set of measurements $M = \{m_1, m_2, ..., m_p\}$
 - Set of modes $Q = \{q_1, q_2, ..., q_r\}$
- Assumptions
 - Single faults
 - No autonomous mode changes after fault occurrence
- Terminology
 - Candidate = hypothesized fault and a hypothesized mode, i.e., c = (f,q)
 - Diagnosis = set of **consistent** candidates, e.g., $d = \{(f_1,q_1), (f_2,q_2)\}$

Diagnosis Architecture

Modeling

- Hybrid bond graphs (HBGs)
 - Energy-based, topological, lumped parameter models
 - Ideal switching of energy connections through locally-defined automata termed control specifications (CSPECs)
- Modeling faults
 - Parametric faults captured as change in HBG element parameter (e.g., resistance change)
 - Discrete faults captured as fault events in CSPECs

19th International Workshop on Principles of Diagnosis

Temporal Causal Graphs (TCGs)

- Diagnosis model of our approach
- Derived automatically from HBG, for a particular mode
- Similar to signal flow graphs
- Causality represented by directional links
- Temporal relations (delays) captured by integration operators
- Allow automatic generation of fault signatures and relative measurement orderings

19th International Workshop on Principles of Diagnosis

Diagnosis Using Transients

- Fault signatures
 - Effects of fault on measurements expressed as qualitative changes (+, 0, and -) in magnitude and slope of signal
 - Additional symbols for discrete behavior including nonzero to zero (Z), from zero to nonzero (N), or no change (X)
- Relative measurement orderings
 - Faults manifest in some measurements before others due to delays
 - If fault f manifests in m_1 before m_2 , define as $m_1 <_f m_2$

Event-based Fault Modeling

- Signatures with orderings can be combined into an event-based fault representation
 - Fault trace = sequence of measurement deviations produced by a fault in a mode
 - Fault language = all possible fault traces for a fault in a mode
- Fault model = Automata representation of fault language

_	Accepting	states	correspond	to	maximal	traces
---	-----------	--------	------------	----	---------	--------

Candidate	i_1	v_2	i_3	Measurement Orderings
(C_1^+, q_1)	0+,X	-+,X	-+,X	$v_2 \prec i_1, i_3 \prec i_1$
(C_1^-, q_1)	0-,X	+-,X	+-,X	$v_2 \prec i_1, i_3 \prec i_1$
(L_1^+, q_1)	-+,X	0-,X	0-,X	$i_1 \prec v_2, i_1 \prec i_3$
(L_{1}^{-}, q_{1})	+-,X	0+,X	0+,X	$i_1 \prec v_2, i_1 \prec i_3$
(R_1^+, q_1)	0-,X	0-,X	0-,X	$i_1 \prec v_2, i_1 \prec i_3$
(R_1^-, q_1)	0+,X	0+,X	0+,X	$i_1 \prec v_2, i_1 \prec i_3$
(R_2^+, q_1)	0-,X	0+,X	-+,X	$v_2 \prec i_1, i_3 \prec i_1, i_3 \prec v_2$
(R_2^-, q_1)	0+,X	0-,X	+-,X	$v_2 \prec i_1, i_3 \prec i_1, i_3 \prec v_2$

Candidate Traces

Candidate trace =

event sequence that is consistent with a candidate

- For continuous systems diagnosis, candidate trace = fault trace
- For hybrid systems, candidate trace = interleavings of fault traces with mode change events

EXAMPLE Start in q₀: $v_2^{-+,X} i_1^{0+,X} \sigma_{q1} i_3^{-+,X}$

Candidate trace for C₁⁺,q₁

Candidate Languages

- Candidate traces may be infinitely long if mode change events keep occurring
- Only maximal traces are helpful
 - Maximal candidate trace = trace for (c,q) is maximal if all measurements that should deviate in mode q for c have deviated
- **Candidate language** = set of maximal traces for a candidate
- From an initial mode, two candidates are distinguishable if no maximal trace for one candidate is a prefix of a maximal trace for the other
 - Otherwise, when the shorter maximal trace occurs, no new measurement deviations may occur to distinguish the candidates
- System is **diagnosable** if all candidates distinguishable for each initial mode

Diagnosers

- Finite automata extended with diagnoses
- Capture possible traces of candidates
- Diagnoser **isolates** a candidate if:
 - It accepts all its traces
 - Each accepting state contains the candidate in its diagnosis
- Diagnoser uniquely isolates a candidate c if:
 - It accepts all its traces
 - Each accepting state contains only c in its diagnosis
- Unique isolation occurs if maximal traces always linked back to a unique fault
 - Links back to diagnosability

Individual Diagnosers

- Augment fault model with diagnoses
 - States contain the fault as the sole candidate
- Easy to show that this diagnoser $D_{f,a}$ $v_2^{-+,X}$, isolates the fault for the fault model it is derived from for that mode only
 - By definition of its fault model, it accepts all traces

 l_3

 $\{(C_1^+, q_1)\}$

 $i_3^{-+,X}$

 $v_2^{-+,X}$

 $\{(C_1^+, q_1)\}$

 $i_{1}^{0+,X}$

 $\{(C_1^+, q_1)\}$

 $v_2^{-+,X}$

 $\{C_1^+, q_1\}$

 $i_{3}^{-+,X}$

+, X

 $^{-+,X}$

 l_3

,0+,X

Diagnoser Composition

• Define $D_{F,Q} = \prod_{L} (D_{f1,q1}, D_{f2,q1}, ..., D_{fn,qn})$

- Common subtraces map to common states with both candidates in the diagnosis
- Composition defined such that composed diagnoser contains all possible interleaved traces of single faults, for all possible sequences of controlled mode changes
 - Result of measurement deviation event is a new state where new diagnosis retains only consistent candidates
 - Result of controlled mode change event is new state where new diagnosis has updated modes for candidates in the diagnosis
- Have shown the following (proofs in paper)
 - $D_{F,Q}$ isolates all candidates
 - System is diagnosable iff diagnoser uniquely isolates all valid candidates

Hybrid Diagnoser Example

19th International Workshop on Principles of Diagnosis

Hybrid Systems Diagnosability

- Diagnosability for hybrid systems
 - For any possible maximal candidate trace, unique candidate can be isolated
- Q-diagnosability
 - Controlled mode changes can affect whether traces are maximal
 - In some modes, fault has different effect on a measurement
 - System is Q-diagnosable if for every trace that "breaks" diagnosability, we can prevent that maximal trace
 - Can block certain controlled mode changes or execute certain controlled mode changes
 - Actions prevent bad maximal traces, or change to a mode where the trace is no longer maximal

Case Study

 Advanced Diagnostics and Prognostics Testbed (ADAPT) at NASA Ames Research Center

ADAPT

- Consider subset to demonstrate our approach
 - Battery discharging to two DC loads
 - Measure battery voltage and load currents
 - Faults include battery capacitance and resistance, load resistances, and sensor bias

	Fault	V_B	I_{L1}	I_{L2}	Measurement Orderings
	(V_B^+, q_{**})	+0,X	00 , X	00,X	$V_B \prec I_{L1}, V_B \prec I_{L2}$
	(V_B^-, q_{**})	-0,X	00 , X	00 , X	$V_B \prec I_{L1}, V_B \prec I_{L2}$
	(I_{L1}^{\mp}, q_{**})	00,X	+0,X	00 , X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	(I_{L1}^{-}, q_{**})	00,X	-0,X	00 , X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	(I_{L2}^+, q_{**})	00,X	00 , X	+0,X	$I_{L1} \prec V_B, I_{L2} \prec I_{L1}$
	(I_{L2}^-, q_{**})	00 , X	00 , X	-0,X	$I_{L1} \prec V_B, I_{L2} \prec I_{L1}$
_	(C_0^-, q_{11})	+-,X	+-,X	+-,X	Ø
C	(R_1^+, q_{11})	0-,X	0-,X	0-,X	Ø
	(R_{L1}^+, q_{11})	0* , X	-+,X	0* , X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	$(R_{L1}^{=-}, q_{11})$	0* , X	+-,X	0* , X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	(R_{L2A}^{+}, q_{11})	0* , X	0* , X	-+,X	$I_{L2} \prec V_B, I_{L2} \prec I_{L1}$
	(R_{L2A}^{-}, q_{11})	0* , X	0* , X	+-,X	$I_{L2} \prec V_B, I_{L2} \prec I_{L1}$
	$(\alpha_0, q_{\alpha_0 1})$	0*,X	-*,Z	0*,X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	$(\alpha_1, q_{\alpha_1 1})$	0* , X	+*,N	0* , X	$I_{L1} \prec V_B, I_{L1} \prec I_{L2}$
	$(\beta_0, q_{1\beta_0})$	0*,X	0*,X	-*,Z	$I_{L2} \prec V_B, I_{L2} \prec I_{L1}$
	$(\beta_1, q_{1\beta_1})$	0*,X	0*,X	+*,N	$I_{L2} \prec V_B, I_{L2} \prec I_{L1}$
C_{I}	C_2 C	-3			
		(
		\sim	▲ 17	C	
R_{I}	R_2 R_2	23	V_B	SW	$V_{1} \uparrow \downarrow^{I_{L1}} \qquad Sw_{2} \uparrow \downarrow^{I_{L2}}$
C_{a}		$R_p \lesssim$			$\leq R_{L2E}$
0		· <			$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
				$\{ \prod_{i=1}^{n} \{ \prod_{j=1}^{n} \} \}^{L_{L_2}}$	
			₩		\Box \Box C_{L2}

Battery

Load 2

Load 1

Diagnosability Analysis

- System is not diagnosable
 - But it is Q-diagnosable

Conclusions

- Systematic framework to create event-based diagnosers for hybrid systems
 - HBG model → TCG → signatures and orderings → fault models → individual diagnosers → global diagnoser
- Diagnosers useful for diagnosability analysis
- Introduced Q-diagnosability, where unique isolation results can be achieved by blocking or executing certain controlled mode changes
- Demonstrated framework for ADAPT
 Is not diagnosable, but is Q-diagnosable