

Third International Diagnostic Competition – DXC’11

Scott Poll
1
, Johan de Kleer

2
, Rui Abreu

3
, Matthew Daigle

6
, Alexander

Feldman
4
, David Garcia

2
, Alberto Gonzalez-Sanchez

5
, Tolga Kurtoglu

2
,

Sriram Narasimhan
6
, and Adam Sweet

1

1
 NASA Ames Research Center, Moffett Field, CA, 94035, USA

scott.poll@nasa.gov adam.sweet@nasa.gov

2
 Palo Alto Research Center, Palo Alto, CA, 94304, USA

dekleer@parc.com dgarcia@parc.com kurtoglu@parc.com

3
 Faculty of Engineering, University of Porto, Porto, Portugal

rui@computer.org

4
 Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud, CH-1401 Yverdon-les-Bains, Switzerland

alexander.feldman@heig-vd.ch

5
 Delft Univiersity of Technology, Delft, The Netherlands

a.gonzalezsanchez@tudelft.nl

6
 University of California, Santa Cruz @ NASA Ames Research Center, Moffett Field, CA, 94035, USA

sriram.narasimhan-1@nasa.gov matthew.j.daigle@nasa.gov

ABSTRACT

We present the third implementation of a

framework created jointly by NASA Ames

Research Center, Palo Alto Research Center,

and Delft University of Technology to com-

pare and evaluate diagnosis algorithms (DAs).

This year‟s competition, DXC‟11, introduces a

software track in addition to the industrial and

synthetic tracks of previous competitions. A

total of eleven DAs competed in the three

tracks. The paper describes the systems, diag-

nostic problems of the tracks, fault scenarios,

evaluation metrics, participating DAs, results

and analysis.

1 INTRODUCTION

The problem of detecting and isolating faults in physi-

cal systems has led to various solution approaches in-

cluding expert, model-based, data-driven, and stochas-

tic reasoning methods. However, there have been few

efforts to evaluate and compare these different ap-

proaches in a standardized way. NASA Ames Research

Center (ARC), Palo Alto Research Center (PARC), and

Delft University of Technology decided to combine

efforts to create a generalized framework that would

establish a common platform to evaluate and compare

diagnosis algorithms (Kurtoglu et al., 2009a). The ob-

jectives for developing this framework are to accelerate

research in theories, principles, and computational

techniques for monitoring and diagnosis of complex

systems; to encourage the development of software

platforms that promise more rapid, accessible, and ef-

fective maturation of diagnostic technologies; and to

provide a forum that can be utilized by algorithm de-

velopers to test and validate their technologies on real-

world physical systems.

 The First International Diagnostic Competition

(DXC‟09) was the first implementation of the above-

mentioned framework (Kurtoglu et al., 2009b). The

overall goal of the competition was to systematically

evaluate diagnostic technologies and to produce com-

parable performance assessments for different diagnos-

tic methods. DXC‟09 pitted 12 diagnosis algorithms

competing in 3 different tiers on 2 different tracks (in-

dustrial and synthetic). In each tier, the DAs were pro-

vided a description of the system being diagnosed and

sample data sets consisting of nominal and faulty sce-

narios. Several metrics that covered timing, technical,

and computational performance were computed and a

single final ranking score was calculated to determine

the winners in each tier.

22
nd

 International Workshop on Principles of Diagnosis, 2011

 2

 Based on feedback from DXC‟09, several changes

were made for the Second International Diagnostic

Competition, DXC‟10 (Poll et al., 2010). The primary

change was in the evaluation criteria. In DXC‟09 we

used several metrics that were consolidated into a sin-

gle ranking score. In order to accurately represent real-

world problems, DXC‟10 defined use cases indicating

what the role of the diagnosis results would be. For the

industrial track a decision support use case was chosen,

where the diagnosis result would be used to decide

what recovery action(s) should be performed in order to

minimize mission costs, which may include loss of

mission objectives and/or loss of vehicle. We also add-

ed incipient faults and intermittent faults to one of the

diagnostic problems to make it more challenging. For

the synthetic track a troubleshooting use case was cho-

sen, where internal variables were not directly observa-

ble and probes were needed to gather more information.

The goal was to correctly identify the faults with the

fewest probes.

 The Third International Diagnostic Competition

(DXC‟11) includes the same diagnostic problems and

use cases for the industrial and synthetic tracks as

DXC‟10. This year‟s competition also features, for the

first time, a software track. The goal of this track is to

provide common ground to evaluate techniques that

diagnose failures in software systems. We used the

framework as a basis to diagnose software systems

used by the software engineering community. In partic-

ular, the programs used in this track were taken from

both the Siemens and Software Infrastructure Reposito-

ry (SIR) benchmark programs. This year, and as a start-

ing point (we would very much like to open the track to

other algorithms in the future), the track was dedicated

to techniques based on coverage information. Hence,

the DAs have to pinpoint the failure root cause using a

program statement‟s coverage information only.

 The paper is organized as follows. Section 2 gives a

quick review of the DXC framework. Section 3 de-

scribes the diagnostic problems that were presented to

the competitors. Section 4 lists the kinds of faults that

were injected. Section 5 explains how the evaluation

was performed. Section 6 presents the results. Section 7

concludes the paper.

2 DXC FRAMEWORK

The DXC framework allows systematic evaluation and

comparison of diagnosis algorithms under identical

experimental conditions. The key components of this

framework include representation languages for the

physical system description, sensor data and diagnosis

results, a runtime architecture for executing DAs and

diagnostic scenarios, and an evaluation component that

computes performance metrics based on the results

from diagnosis algorithm execution.

 We provide a summary of the DXC framework

(DXF) in this paper and refer the reader to (Kurtoglu et

al., 2009a; Feldman et al., 2010) for additional details.

Figure 1 shows an overview of the DXC software com-

ponents and the primary information flows. All com-

munication is ASCII-based, and all the modules com-

municate via TCP ports by using a simple message-

based protocol. Next, we provide a brief description of

each software component.

Scenario Loader: Executes the Scenario Data Source,

Recorder, and Diagnosis Algorithm. Scenario Loader

ensures system stability and clean-up upon scenario

completion. This is the main entry point for performing

a diagnostic experiment.

Figure 1: DXF run-time architecture.

Diagnosis

Algorithm

Scenario

Data Source

Scenario

Recorder

Scenario

Results
Evaluator

sends diagnosis

Outputs

Processed

by

sends sensor values,

commands

sends fault injection

data

Scenario

Loader

Loads Data Source,

Algorithm, Recorder,

Oracle

Oracle
queries

sends recovery

info

22
nd

 International Workshop on Principles of Diagnosis, 2011

 3

Scenario Data Source: Provides scenario data from

previously recorded datasets. The provenance of the

data (whether hardware or simulation) depends on the

system in question. A scenario dataset contains sensor

readings, commands (note that the majority of classical

MBD literature does not distinguish commands from

observations), and fault injection information (to be

sent exclusively to the Scenario Recorder). Scenario

Data Source publishes data following a wall-clock

schedule specified by timestamps in the scenario files.

Scenario Recorder: Receives fault injection data and

diagnosis data into a scenario results file. The results

file contains a number of time-series which are used by

the evaluation module for the computation of metrics.

Scenario Recorder is the main timing authority, i.e., it

timestamps each message upon arrival before recording

it to the results file.

Diagnosis Algorithm: A DA receives sensor and

command data, performs diagnosis, and sends the diag-

nosis results back. As long as the DAs comply to the

provided API, there are no restrictions on a DA; for

example, a DA may read precompiled data, or use ex-

ternal (user supplied) libraries, etc.

Diagnostic Oracle: The Diagnostic Oracle is only re-

levant to the Industrial Track. It provides a querying

capability to the DAs in one of two ways: 1) it takes a

diagnostic output produced by a DA and returns the

lowest cost action(s) associated with the provided diag-

nosis, or 2) it takes a diagnostic output and specific

actions produced by a DA and returns the correspond-

ing cost.

Evaluator: Takes scenario result file and applies me-

trics to evaluate DA performance. The metrics and

evaluation procedures are detailed in Section 5.

Figure 2: Diagnostic session sequence diagram.

Scenario

Loader

Scenario

Data Source
Diagnosis

Algorithm

Scenario

Recorder

state/ready message

state/ready message

state/ready message

state/start message

sensor/command message

sensor/command message

fault message

fault message

diagnosis message

diagnosis message

recovery action

Oracle

query for fault set

send recovery info/cost

22
nd

 International Workshop on Principles of Diagnosis, 2011

 4

 Figure 2 shows a diagnostic session sequence dia-

gram that shows how the different components interact.

3 DIAGNOSTIC PROBLEMS

Four diagnostic problems were announced for DXC‟11,

two industrial track problems (DP-I, DP-II), one syn-

thetic (DP-III), and one software (DP-IV). There were

no entries for the second diagnostic problem of the in-

dustrial track so we omit discussion of DP-II. Refer to

(Poll et al., 2010) for a description of diagnostic prob-

lem II and results from DXC‟10.

3.1 Industrial Track

The hardware system used for the industrial track is the

Electrical Power System testbed in the ADAPT lab at

NASA Ames Research Center (Poll et al., 2007). A

subset of the testbed defines the system ADAPT-Lite,

which is shown in Figure 3.

 Diagnostic problem I is the same as DP-I in

DXC‟10. The problem mimics the use of the ADAPT-

Lite system in a single-string Unmanned Aircraft Sys-

tem (UAS) mission. The primary objective of the diag-

nosis algorithm in this operational scenario is to pro-

vide decision support to a remote pilot or an autonom-

ous controller by making an “abort" (land the vehicle)

recommendation.

 The correct recommendation for a scenario depends

on the injected failure mode and, for certain failure

modes, the fault parameters. Any failure which cuts off

power to any of the three loads results in an abort rec-

ommendation. Other failure modes may lead to de-

graded performance which can be tolerated if the fault

magnitude is below some threshold. For these scena-

rios, giving the correct recommendation requires isolat-

ing the failure mode and estimating the fault parame-

ter(s).

 Table 1 summarizes the main characteristics of di-

agnostic problem I. With the sensors provided, there

are four ambiguity groups: (i) AC483 failed off and

EY272 stuck open, (ii) FAN416 failed off and EY275

stuck open, (iii) DC485 failed off and EY284 stuck

open, and (iv) INV2 failed off and CB262 failed open.

In each case however, the recovery action is the same

for both faults in the ambiguity group. Figure 4 illu-

strates the parametric fault profiles used in ADAPT-

Lite.

3.2 Synthetic Track

Diagnostic problem III builds on the synthetic track for

DXC‟09. Table 2 summarizes the ISCAS85 digital cir-

cuits used for this problem. The task corresponds to the

use case where internal variables are not directly ob-

servable and additional, expensive information needs to

be gathered to isolate the fault.

The DA is provided a system, input vector, and out-

put vector manifesting the injected fault(s). The task of

the DA is to gather more information (via internal

probes) to correctly identify the injected faults. We

presume all probes are of equal cost. DAs were limited

to 20 seconds CPU time (although in most scenarios the

DAs took less than 1 CPU second).

Figure 3: ADAPT-Lite system for diagnostic problem I.

E265

CB236

CB266

Battery Cabinet

EY260

INV

2
IT267

EY272

EY275

EY284

Load Bank 2

120V AC >>

24V DC >>

ISH

262

CB262

CB280

BAT2

TE

228

E240

EY244
IT240

ESH

244A

ISH

236

IT281

ST

516

AC483

FAN416

DC485

E281

E242

Table 1: DP-I characteristics

Aspect DP-I

System ADAPT-Lite

Operational scenario Single-string UAS

mission

Diagnostic use case Abort recommen-

dation

Number of components 25

Number of modes 102

Initial relay state Closed

Initial circuit breaker state Closed

Nominal mode changes No

Multiple faults No

Fault types

Discrete

Offset

Drift (incipient)

Intermittent offset

22
nd

 International Workshop on Principles of Diagnosis, 2011

 5

Note that for many tasks of MBD (e.g., computing

Max-Fault Min-Cardinality (MFMC) observations

(Feldman et al., 2008)), the number of components in

the ISCAS85 circuits can be reduced by performing

cone identification (Siddiqi and Huang, 2007; de Kleer,

2008). The number of components in the reduced cir-

cuits is shown in the rightmost column of Table 2. We

left the decision to identify cones to the competitors,

i.e., we distribute the non-reduced circuits. We inject

all faults at one instant. For example, if 3 components

are faulted, the first observation provided to the DA is

the result of all three faults injected simultaneously.

3.3 Software Track

The diagnostic problems of the software track are taken

from both the Siemens and Software Infrastructure Re-

pository (SIR) benchmark programs. In particular, for

DXC‟11, we use the well-known software programs in

the Siemens benchmark set as well as flex, grep, gzip,

sed, and space as taken from SIR. They are all coded in

the C programming language, and can be obtained from

Table 2: ISCAS85 circuits for DP-III
 original reduced

sys |IN| |OUT| |COMPS| variables |COMPS|

74182 9 5 19 47 6

74L85 11 3 33 77 15

74283 9 5 36 81 14

74181 14 8 65 144 15

c432 36 7 160 356 59

c499 41 32 202 445 58

c880 60 26 383 826 77

c1355 41 32 546 1133 58

c1908 33 25 880 1793 160

c2670 233 140 1193 2695 167

c3540 50 22 1669 3388 353

c5315 178 123 2307 4792 385

c2688 32 32 2416 4684 1456

c7552 207 108 3512 7232 545

 a) Offset b) Drift

 c) Intermittent Offset

Figure 4: Diagnostic problem I fault profiles.

Table 3: Subject programs for DP-IV

Program LOC Tests Program Type

print_tokens 539 4,130 Lexical Analyzer

print_tokens2 489 4,115 Lexical Analyzer

replace 507 5,542 Pattern Recognition

schedule 397 2,650 Priority Scheduler

schedule2 299 2,710 Priority Scheduler

tcas 174 1,608 Altitude Separation

tot_info 398 1,052 Information Measure

space 9,126 500 ADL Parser

gzip 6,708 211 Compressor

sed 9,014 184 Stream Editor

grep 13,287 809 String Matching

flex 14,194 107 Lexer Generator

22
nd

 International Workshop on Principles of Diagnosis, 2011

 6

the SIR‟s website (http://sir.unl.edu). Every program

provides a set of test inputs, which were created with

the intention of providing full branch test coverage.

Table 3 provides some additional information about the

subject programs (LOC is lines of code).

4 FAULT INJECTION AND SCENARIOS

Test scenarios were created for use in the DXC frame-

work. Scenarios included faults of various types and

complexity. We describe the general characteristics of

the scenarios and faults in the industrial, synthetic and

software tracks in this section.

4.1 Industrial Track Scenarios

Experimental scenarios of approximately four minutes

in length were acquired using the ADAPT Electrical

Power System (EPS) testbed for diagnostic problem I.

The testbed allows for the repeatable injection of faults

into the system in three ways: hardware-induced faults

(e.g., turning off inverters, tripping circuit breakers,

manipulating loads); software-induced faults (e.g.,

sending extraneous relay commands or blocking in-

tended relay commands); introduction of faulty compo-

nents (e.g., inserting a burned out light bulb). The first

two methods were used for DXC‟11.

 Diagnostic problem I includes 154 scenarios pre-

viously used in DXC‟10 and 73 new scenarios. There

are 30 nominal and 197 single-fault scenarios. The pa-

rametric fault profiles illustrated in Figure 4 are in-

jected for sensor faults as well as AC and DC load

faults. For the latter, a programmable electronic load is

used to vary the AC and DC load resistances. Of the

227 scenarios, 96 are “abort” and 131 are “no-abort”

cases. Table 4 summarizes the faults and scenarios used

for DP-I.

4.2 Synthetic Track Scenarios

The synthetic track benchmark includes 1074 scenarios.

Each scenario consists of an input vector, an injected

fault (hidden from the DA), an output vector and all

internal values (hidden from the DA but which the

framework uses to supply values for any probe requests

from the DA). The benchmark has many very high-

cardinality (> 20) injected faults.

Constructing a good set of benchmark scenarios has

many challenges. If we presume components fail inde-

pendently, a fair sampling would primarily yield low

cardinality faults. Or, if we included faults which yield

no observable symptom for the input vector, there

would be no possibility for the DA to isolate the correct

fault. Or, if we included faults which had no causal

influence on the output observation, most DAs would

be penalized for not finding such faults. Therefore, we

have two principles for constructing these scenarios: (1)

every injected fault produces a symptom (often called

„strong‟ faults) and (2) every injected fault causally

affects the output vector.

 The scenarios are generated as follows. We generate

scenarios with ever increasing fault cardinality. For

each scenario, we generate a random input vector and

then compute the correct corresponding output vector.

We randomly choose some output vector bits to flip.

For each such pair we compute one minimum cardinali-

ty (minc) diagnosis. If the minc is not the desired cardi-

nality we flip a random input/output vector bit, and

follow the gradient to find an input/output vector pair

which yields the desired minc. In most cases, there is a

very large ambiguity group. We generate 10,000 candi-

dates of that ambiguity group and randomly choose one

as the injected fault. Generating a benchmark in this

way takes days of CPU time.

Table 4: DP-I faults

Type Subtype Fault # abort /

no-abort

nominal no fault 30 0 / 30

circ.

breaker

 failed open 6 6 / 0

inverter failed off 2 2 / 0

load

fan

failed off 2 2 / 0

over speed 2 2 / 0

under speed 1 0 / 1

AC load

resistance

offset

11 5 / 6

resistance

drift

12 6 / 6

intermittent

res. offset

11 5 / 6

failed off 1 1 / 0

DC load

resistance

offset

12 6 / 6

resistance

drift

13 6 / 7

intermittent

res. offset

12 6 / 6

failed off 2 2 / 0

relay stuck open 7 7 / 0

sensor

position stuck 3 0 / 3

current,

temp.,

voltage

offset 31 13 / 18

stuck 11 6 / 5

drift 26 10 / 16

intermittent

offset

32 11 /21

 Totals: 227 96 / 131

http://sir.unl.edu/

22
nd

 International Workshop on Principles of Diagnosis, 2011

 7

4.3 Software Track Scenarios

Although versions with seeded faults are provided with

the programs in the Siemens/SIR benchmark sets, we

do not use them in the competition. Instead, we seed

random faults in the program by randomly altering the

source code (a technique known as mutation). For each

program we generate 25 scenarios with a single fault,

and 25 scenarios with multiple faults. The faults we

introduce affect only the „functional‟ statements. We

change additions into subtractions, relational operators

(less than into less or equal than), etc. We do not alter

„static‟ code, e.g., function prototypes, data types, vari-

able declarations, etc. Several example injected faults

are presented in Table 5.

 The software diagnostic competition is based on a

regression testing scenario. We assume a developer has

committed a new revision of the subject program,

which has to be tested for defects (regressions). The

DA must choose test inputs from the test pool to ex-

ecute and obtain a diagnosis. The DA is given 30

seconds to select tests, send probe commands, and re-

turn a diagnosis to the scenario loader.

5 EVALUATION

Using the scenarios described in the previous section,

the DAs were executed using the DXC framework on

similar hardware within each track and evaluated using

a set of metrics.

5.1 Industrial Track Metrics

Diagnosis algorithms were ranked using a decision cost

metric, Mdc. The decision cost is the cost incurred had

the DA‟s recommendation been acted upon. Addition-

ally, we compute the metrics used in DXC‟09.

 For DP-I, the two main categories of costs are cost

of losing the vehicle and cost of not completing the

mission. In this use case the DA is only responsible for

deciding if a mission should be aborted or not. Hence

there are 4 outcomes (2 answers from the DA versus 2

actual situations). Let the cost of losing the mission be

cmission and the cost of losing the vehicle be cvehicle. Table

6 shows the costs incurred in each of the 4 possible

outcomes. For DP-I cmission is set to 25, cvehicle is set

to100.

 The metrics used for evaluating DAs in DXC‟09 are

summarized in Table 7. Please see (Kurtoglu et al.,

2009; Feldman et al., 2010) for detailed definitions and

related discussion. Note that DXC‟09 metric Mia has

been renamed Merr in the table. The metrics in the table

are per scenario metrics. To calculate “per system”

metrics an unweighted average is taken over all scena-

rios and indicated with an overbar.

5.2 Synthetic Track Metrics

For DP-III, we used the following metric to score the

result for each DA:

   tEtEn 

where n is the number of probes the DA made before

it reported fault isolation, and    tEtE  is the ex-

pected number of tests needed to identify the correct

diagnosis when the DA isolates the wrong diagnosis as

defined in (Feldman et al., 2010). In many cases the

DA isolates the correct diagnosis and     0 tEtE .

This metric assumes the cost of a measurement is the

same as the cost of testing an individual component,

which is not valid in general.

Table 5: Example injected DP-IV faults

Type Nominal Faulty

Relational

a < b a <= b

a > b a >= b

a == b a != b

Arithmetic

a + b a – b

a * b a / b

Increment

a++ ++a

a-- --a

Indexing

a[i] a[i+1]

a[i] a[i-1]

Assignment a = b; a;

Table 6: DP-I decision costs, Mdc

 Actual Case

DA rec.

abort non-abort

abort 0 cmission

non-abort cmission + cvehicle 0

Table 7: DXC'09 metrics summary

Metric Name Class

Mfd fault detection time detection

Mfn false negative scenario detection

Mfp false positive scenario detection

Mda scenario detection accuracy detection

Mfi fault isolation time isolation

Merr classification errors isolation

Mcpu CPU load computation

Mmem memory load computation

22
nd

 International Workshop on Principles of Diagnosis, 2011

 8

5.3 Software Track Metrics

 For DP-IV, DAs were ranked according to two main

metrics: probing cost (Mprobe), and residual diagnostic

effort (Mcd). Mprobe measures how many tests had to be

executed to obtain the definitive diagnosis, with a cost

ctest=1. Mcd measures the quality of the final diagnosis

assuming a developer would inspect the suspect candi-

dates top to bottom in the ranking. Mmem and Mcpu were

also recorded for DP-IV algorithms.

5.4 Computing platform

 DP-I diagnosis algorithms were evaluated using the

DXC framework on two computers with identical

hardware (Intel
®
 Pentium™ 2x3GHz, 2 GB RAM), one

running Windows™ and the other Linux. AntigenDX

was run on Linux, QED and QED-PC were run on

Windows. DP-III algorithms were evaluated on one

processor core of an Intel XEON™ 6x3.33GHz, 12GB

RAM, running Linux. DP-IV algorithms were eva-

luated on a dual processor Intel XEON 8x2.93GHz, 32

GB RAM, running Linux.

6 RESULTS

Using the evaluation approach described in the pre-

vious section, we computed metrics and rankings for

the eleven diagnosis algorithms that participated in the

Third International Diagnostic Competition.

6.1 Diagnosis Algorithms

The teams that participated in the industrial, synthetic

and software tracks are listed in Table 8. In what fol-

lows we provide a brief description of each DA.

1. AntigenDX: A real-time, two-tier system which

first utilizes Artificial Immune System (AIS) mod-

els to detect and categorize sensor faults, then ag-

gregates all detected sensor-level faults and asso-

ciated characteristics and, through a rule-based ex-

pert system, identifies the electrical system com-

ponent most likely to have produced those faults,

as well as estimates of the significant parameters of

its failure (Mange et al., 2011).

2. QED: A model-based diagnosis system based on

qualitative event-based fault isolation. Statistically

significant deviations of measured from model-

predicted values imply the presence of faults.

These deviations are abstracted into symbolic

event-based descriptions of fault-induced behavior,

which are compared to predicted event sequences

to isolate faults. Fault identification uses quantita-

tive methods to compute fault parameters and fur-

ther refine fault hypotheses (Daigle and Roy-

choudhury, 2010).

3. QED-PC: Similar to QED, but uses the Possible

Conflicts diagnosis approach (Pulido and Alonso-

Gonzalez, 2004). The global system model is de-

composed into minimal submodels containing a

sufficient analytical redundancy to generate fault

hypothesis from observed measurement deviations.

(Daigle et al., 2011).

4. NGDE-NP: An Allegro Common Lisp implemen-

tation of the classic GDE. NGDE (de Kleer, 2011)

uses an improved minimum-cardinality candidate

generator to construct diagnoses from conflicts. It

performs no probes, and returns a probability

weighted set of diagnoses (max 1000).

5. NGDE-E: An elaboration of NGDE-NP. After de-

termining the minc (< 1000) diagnoses, uses a min-

imum entropy technique to determine the best

probe to make next. Once a single minc candidate

is isolated it verifies this candidate is the actual

fault with more probes.

6. NGDE-F: Identifies one minc candidate and at-

tempts to verify it.

7. Optimist: Always returns all components working

correctly.

8. Probee: Probes all measurable points to determine

a candidate.

9. Ochiai: A statistics-based algorithm for software

fault diagnosis. It takes as input component in-

volvement in the execution of a given test case and

whether or not the test case has passed. The diag-

nostic report yielded by Ochiai is a ranked list of

components likely to be responsible for observed

failures (Abreu et al., 2011).

10. Raptor-H: A DA that combines test selection and

diagnosis, both using a spectrum-based model.

Test selection is done through an ambiguity reduc-

tion approach, similar to (Gonzalez-Sanchez et al.,

2011). The outcome of the selected test and cov-

ered source code statements are then passed to the

diagnosis algorithm. The diagnosis algorithm is

based on a minimal hitting set computation, fol-

lowed by a Bayesian update that takes advantage

Table 8: DXC‟11 participating DAs

DA DP Algorithm Type

AntigenDX I AIS + Rule-based

QED I Model-based, global

QED-PC I Model-based, local

NGDE-NP III Model-based

NGDE-E III Model-based

NGDE-F III Model-based

Optimist III Edge case DA

Probee III Edge case DA

Ochiai IV Similarity coefficient

Raptor-H IV Model-based + Bayes

Raptor-EPS2 IV Model-based + Bayes

22
nd

 International Workshop on Principles of Diagnosis, 2011

 9

of precompiled fault intermittency information

(Gonzalez-Sanchez et al., 2011).

11. Raptor-EPS2 is similar to Raptor-H, but the Baye-

sian diagnosis step uses fault intermittency infor-

mation derived from the current set of observa-

tions, using the EPS2 policy (Abreu et al., 2009).

6.2 Industrial Track Results

The metrics for DP-I are shown in Table 9; diagnosis

algorithm QED had the lowest cost and is the winner of

DP-I. For comparison, a DA that always recommends

abort would have received a cost of 131 * 25 = 3275; a

DA that always recommends no-abort would have re-

ceived a cost of 96 * 125 = 12,000. The DAs had sig-

nificantly lower cost scores than participants in

DXC‟10. This is somewhat expected given that more

than 2/3 of the test scenarios are from DXC‟10 and

were available for validating the diagnostic approach.

 AntigenDX incurred costs of 25 on 4 scenarios for

recommending an abort when not required and 125 on

2 scenarios for not recommending when required; QED

incurred costs of 25 for 2 no-abort scenarios, it always

recommended abort when needed. QED-PC incurred

costs of 25 for 5 no-abort scenarios and 125 for 2 abort

scenarios.

 We show the breakdown of costs by fault type for

each DA in Figure 5. Offset, drift, and intermittent

faults include hardware (AC483, DC485) and sensor

(e.g., IT267, IT281, etc.) fault injection scenarios. Cat-

egory “other” includes circuit breaker, inverter, fan,

and AC and DC load failed-off fault scenarios. None of

the DAs incurred any costs for nominal scenarios.

 AntigenDX and QED had the same detection accu-

racy, with AntigenDX having a lower false negative

rate while QED had a lower false positive rate. As men-

tioned for DXC‟10, the fault detection and isolation

times are noticeably higher than DXC‟09 because of

the need to accumulate more evidence in the case of

drift and intermittent fault types.

 Figure 6 shows the breakdown of classification er-

rors by fault type. In a scenario, the number of classifi-

cation errors is the number of misclassified compo-

nents. Ruling out guessing, a perfect DA would have 12

classification errors, all in the category “other”, because

of the ambiguity groups identified in section 3.1.

6.3 Synthetic Track Results

The results for DP-III are shown in Table 10. The Pro-

bee DA uses minimal CPU time and its score is com-

pletely determined by the number of internal nodes of

the system. It always identifies the correct diagnosis.

The Optimist DA uses minimal CPU time and its score

is completely determined by the non-probe portion of

the metric. NGDE-NP does no probing, so its score is

also purely determined by the non-probe factor of the

metric. NGDE-E and NGDE-F both selectively probe

so their total score is determined by the sum of the

probes and the utility penalty of the metric. All CPU

figures are in seconds. All numbers in the table are av-

erages for each system.

 Probee is the worst strategy, followed by Optimist.

NGDE-NP performs a bit better than these edge-case

DAs, but not significantly. NGDE-E and NGDE-F per-

form similarly on simpler examples. The difference

Table 9: Diagnostic problem I metrics
DA

dcM fdM (s) fnM fpM daM fiM (s) errM cpuM (ms) memM (kb)

AntigenDX 350 62.8 0.005 0.009 0.987 62.8 34 680 1935
QED 50 10.5 0.010 0.004 0.987 124.1 22 824 5356
QED-PC 375 15.2 0.020 0.026 0.956 123.9 38 589 5320

Figure 5: DP-I cost breakdown by scenario fault

type.

0

100

200

300

400
other

intermittent

drift

stuck

offset

nominal

Figure 6: DP-I classification error breakdown by

scenario fault type.

0

10

20

30

40
other

intermittent

drift

stuck

offset

nominal

22
nd

 International Workshop on Principles of Diagnosis, 2011

 10

becomes apparent for more complex scenarios. NGDE-

E would perform best on all scenarios given infinite

CPU time as it uses the theoretically optimum strategy.

However, generating enough candidate diagnoses

needed to determine the optimum probe can exceed the

CPU limit. In those cases, it returns its current best es-

timate of the diagnoses. It pays a very significant me-

tric penalty for its incorrect diagnoses. NGDE-F per-

forms on average the best as making probes are rela-

tively inexpensive and greatly improves the CPU time

to compute diagnoses. NGDE-F significantly reduces

the utility component of the metric – far more than the

slight increase in probes. NGDE-F is a far simpler me-

thod as its strategy of confirming component failure by

simply measuring its io-behavior avoids more complex

minimum entropy evaluation of possible probe points.

The table suggests a better strategy would be a mix: use

NGDE-E for smaller examples and NGDE-F for more

complex ones.

6.4 Software Track Results

We show the averaged metrics for each of the three

DAs in Table 11. Both Raptor-H and Raptor-EPS2

have much lower probing costs than Ochiai. Please note

that this is an unfair comparison since Raptor includes a

test selection heuristic, whereas Ochiai just requests

every possible test.

 Besides a lower probe cost, Raptor-H and Raptor-

EPS2 have lower residual diagnostic effort as well. Per

program, Raptor-H performs better in the cases where

the precomputed intermittency information has a low

error. On average, however, there is little difference

between both algorithms.

 Finally, when it comes to memory consumption,

Ochiai is the winner since it is a much lighter-weight

approach than Raptor-* Bayesian diagnosis. The DX

framework was not able to measure CPU time reliably

and therefore the results are not given in this paper.

 Figure 7 provides a detailed breakdown of the Mcd

per program. For the large programs (flex, grep, gzip,

sed, space) the results of Raptor-H are better than Rap-

tor-EPS2. On the other hand, for the other, smaller pro-

grams, Raptor-EPS2 surpasses Raptor-H. Raptor-EPS2

requires a larger number of observations than Raptor-H

to obtain a good diagnosis. Since the number of obser-

vations is limited by the number of tests that Raptor is

able to select in 30 seconds, on big programs Raptor-H

has an advantage.

7 CONCLUSION

We presented the implementation of the Third Interna-

tional Diagnostic Competition, DXC‟11. We were

pleased to introduce the software track in this year‟s

competition and have DAs in all three tracks. A number

of people expressed interest in participating in DXC‟11

and submitted placeholder algorithms but unfortunately

many had to withdraw from the competition for varying

reasons. The participants in the industrial track were

competitors in DXC‟10 as well and showed greatly

improved performance this year.

 We hope that this work can be continued moving

forward by identifying new physical systems and new

diagnostic problems. The DXC framework provides an

easy way to create an evaluation platform for new prob-

lems. Our sincere hope is that the framework is adopted

by a growing number of people and applied to a wide

Table 10: Diagnostic problem III scores
System Probee

(CPU<0.01)

Optimist

(CPU<0.01)

NGDE-NP NGDE-E NGDE-F

 Probes, Score
(E=0)

E, Score
(Probes=0)

E, Score
(Probes=0)

CPU Probes E Score CPU Probes E Score CPU

74182 14 14 5.0 0.03 2.5 0 2.5 0.28 2.5 0 2.5 0.02

74L85 30 21 13.8 0.07 3.5 0 3.5 0.22 3.5 0 3.5 0.02

74283 31 25 21.8 0.10 7.4 0 7.4 0.50 7.8 0 7.8 0.07

74181 57 47 35 0.04 8.1 0 8.1 0.55 8.1 0 8.1 0.07

C432 153 118 96 0.08 12.4 0 12.4 0.79 15.8 0 15.8 0.21

C499 170 169 146 1.06 13.9 17.4 31.3 3.1 16.9 0 16.9 0.3

C880 357 306 260 2.2 16.2 38.2 54.4 4.5 17.5 0 17.5 0.30

C1355 514 439 365 4.0 11.8 88.5 100.3 5.6 13.4 0 13.4 0.36

C1908 855 639 571 0.69 11.6 13.1 24.7 6.6 10.2 0 10.2 0.89

C2670 1129 1043 705 3.5 12.5 258 270.5 6.3 14.7 12.9 27.6 1.3

C3540 1647 1094 602 0.47 7.6 0 7.6 2.24 3.2 0 3.2 0.47

C5315 2184 1969 1464 2.9 14 319.8 333.8 6.9 12.5 0 12.5 0.71

C6288 2384 1208 1149 7.4 5.25 443.9 449.15 10.6 6.4 331 337.4 6.4

C7552 3405 2244 1725 1.1 4.2 0 4.2 2.0 2.6 0 2.6 0.98

Table 11: Diagnostic problem IV metrics

DA
probeM cdM memM (kb)

Ochiai 109200 1138 3114

Raptor-H 26413 862 8804

Raptor-EPS2 11056 889 10320

22
nd

 International Workshop on Principles of Diagnosis, 2011

 11

variety of physical systems including diagnosis algo-

rithms from several different research communities.

The long-term goal is to create a database of perfor-

mance evaluation results which will allow system de-

signers to choose the appropriate DA for their system

given the constraints and metrics in their application.

ACKNOWLEDGMENT

We extend our gratitude to Shekhar Gupta (PARC),

Callie Kwiatkowski (University of Wisconsin – Mil-

waukee), David Nishikawa (NASA), all DXC‟11 com-

petitors, and many others for valuable discussions, crit-

icism and help.

REFERENCES

(Abreu et al. 2009) R. Abreu, P. Zoeteweij, A.J.C. van

Gemund. A New Bayesian Approach to Multiple In-

termittent Fault Diagnosis. In Proceedings of the

21st International Joint Conference on Artifical In-

telligence (IJCAI'09), pp. 653--658, Pasadena, CA,

USA, July 2009.

(Abreu et al., 2011) R. Abreu, P. Zoeteweij, A.J.C. van

Gemund. Simultaneous Debugging of Software

Faults. In Journal of Systems and Software (JSS),

vol. 84(4), pp. 573-586, Elsevier, 2011.

(Daigle and Roychoudhury, 2010) M. Daigle and I.

Roychoudhury. Qualitative Event-based Diagnosis:

Case Study on the Second International Diagnostic

Competition. In Proceedings of 21
st
 International

Workshop on Principles of Diagnosis, Portland, OR,

2010.

(Daigle et al., 2011) M. Daigle, A. Bregon, and I. Roy-

choudhury. Qualitative Event-based with Possible

Conflicts: Case Study on the Third International Di-

agnostic Competition. In Proceedings of 22
nd

 Inter-

national Workshop on Principles of Diagnosis, Mu-

nich, Germany, 2011.

(de Kleer and Williams, 1987) J. de Kleer and B. C.

Williams. Diagnosing Multiple Faults. Artificial In-

telligence, 32(1):97-130, 1987.

(de Kleer, 2008) J. de Kleer. An Improved Approach

for Generating Max-Fault Min-Cardinality Diagno-

ses. In Proceedings of 19
th

 International Workshop

on Principles of Diagnosis, Blue Mountains, Aus-

tralia, 2008.

(de Kleer, 2011) J. de Kleer. Hitting Set Algorithms for

Model-based Diagnosis. In Proceedings of 22
nd

 In-

ternational Workshop on Principles of Diagnosis,

Munich, Germany, 2011.

(Feldman et al., 2008) A. Feldman, G. Provan, A. van

Gemund. Computing observation vectors for Max-

Fault Min-Cardinality diagnoses. In Proc. AAAI’08,

pp. 919–924.

(Feldman et al., 2010) A. Feldman, T. Kurtoglu, S.

Narasimhan, S. Poll, D. Garcia, J. de Kleer, L.

Kuhn, A. van Gemund. Empirical Evaluation of Di-

agnostic Algorithm Performance Using a Generic

Framework. In International Journal of Prognostics

and Health Management, Vol. 1 (2), 2010.

(Gonzalez-Sanchez et al., 2011) A. Gonzalez-Sanchez,

R, Abreu, H.G. Gross, A.J.C. van Gemund. Priori-

Figure 7: DP-IV residual diagnosis effort breakdown by program.

0

500

1000

1500

2000

2500

Ochiai

Raptor-H

Raptor-EPS2

22
nd

 International Workshop on Principles of Diagnosis, 2011

 12

tizing Tests for Fault Localization through Ambi-

guity Group Reduction. In Proceedings of the 26th

International Conference on Automated Software

Engineering (ASE'11). Lawrence, KA, November

2011. To appear.

(Kurtoglu et al., 2009a) T. Kurtoglu, S. Narasimhan, S.

Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Ge-

mund, and A. Feldman. Towards a Framework for

Evaluating and Comparing Diagnosis Algorithms.

In Proceedings of 20
th

 International Workshop on

Principles of Diagnosis, Stockholm, Sweden, 2009.

(Kurtoglu et al., 2009b) T. Kurtoglu, S. Narasimhan, S.

Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Ge-

mund, A. Feldman. First International Diagnosis

Competition – DXC‟09. In Proceedings of 20
th

 In-

ternational Workshop on Principles of Diagnosis,

Stockholm, Sweden, 2009.

(Mange et al., 2011) J. Mange, D Daniszewski, and A.

Dunn. Artificial Immune Systems for Diagnostic

Classification Problems. In Proceedings of 21
st
 In-

ternational Workshop of Principles of Diagnosis,

Munich, Germany, 2011.

(Mosterman and Biswas, 1999) P. J. Mosterman and G.

Biswas. Diagnosis of Continuous Valued Systems in

Transient Operating Regions. In IEEE Trans. on

Systems, Man and Cybernetics, vol. 29, no. 6, pp.

554-565, Nov. 1999.

(Narasimhan and Brownston, 2007) S. Narasimhan and

Lee Brownston. HyDE – A General Framework for

Stochastic and Hybrid Model-based Diagnosis. In

Proceedings of 18
th

 International Workshop on

Principles of Diagnosis, Nashville, TN, 2007.

(Poll et al., 2010) S. Poll, J. de Kleer, A. Feldman, D.

Garcia, T. Kurtoglu, and S. Narasimhan. Second In-

ternational Diagnostic Competition – DXC‟10. In

Proceedings of 21
st
 International Workshop on

Principles of Diagnosis, Portland, OR, 2010.

(Pulido and Alonso-Gonzalez, 2004) B. Pulido and C.

Alonso-Gonzalez. Possible conflicts: a compilation

technique for consistency-based diagnosis. IEEE

Trans. Syst. Man Cy. B., 34(5):2192–2206, 2004.

(Siddiqi and Huang, 2007). S. Siddiqi and J. Huang.

Hierarchical Diagnosis of Multiple Faults. In Proc.

IJCAI’07, pp. 581–586.

