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ABSTRACT 

We present the third implementation of a 

framework created jointly by NASA Ames 

Research Center, Palo Alto Research Center, 

and Delft University of Technology to com-

pare and evaluate diagnosis algorithms (DAs). 

This year‟s competition, DXC‟11, introduces a 

software track in addition to the industrial and 

synthetic tracks of previous competitions. A 

total of eleven DAs competed in the three 

tracks. The paper describes the systems, diag-

nostic problems of the tracks, fault scenarios, 

evaluation metrics, participating DAs, results 

and analysis. 

1 INTRODUCTION 

The problem of detecting and isolating faults in physi-

cal systems has led to various solution approaches in-

cluding expert, model-based, data-driven, and stochas-

tic reasoning methods. However, there have been few 

efforts to evaluate and compare these different ap-

proaches in a standardized way. NASA Ames Research 

Center (ARC), Palo Alto Research Center (PARC), and 

Delft University of Technology decided to combine 

efforts to create a generalized framework that would 

establish a common platform to evaluate and compare 

diagnosis algorithms (Kurtoglu et al., 2009a). The ob-

jectives for developing this framework are to accelerate 

research in theories, principles, and computational 

techniques for monitoring and diagnosis of complex 

systems; to encourage the development of software 

platforms that promise more rapid, accessible, and ef-

fective maturation of diagnostic technologies; and to 

provide a forum that can be utilized by algorithm de-

velopers to test and validate their technologies on real-

world physical systems. 

 The First International Diagnostic Competition 

(DXC‟09) was the first implementation of the above-

mentioned framework (Kurtoglu et al., 2009b). The 

overall goal of the competition was to systematically 

evaluate diagnostic technologies and to produce com-

parable performance assessments for different diagnos-

tic methods. DXC‟09 pitted 12 diagnosis algorithms 

competing in 3 different tiers on 2 different tracks (in-

dustrial and synthetic). In each tier, the DAs were pro-

vided a description of the system being diagnosed and 

sample data sets consisting of nominal and faulty sce-

narios. Several metrics that covered timing, technical, 

and computational performance were computed and a 

single final ranking score was calculated to determine 

the winners in each tier. 
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 Based on feedback from DXC‟09, several changes 

were made for the Second International Diagnostic 

Competition, DXC‟10 (Poll et al., 2010). The primary 

change was in the evaluation criteria. In DXC‟09 we 

used several metrics that were consolidated into a sin-

gle ranking score. In order to accurately represent real-

world problems, DXC‟10 defined use cases indicating 

what the role of the diagnosis results would be. For the 

industrial track a decision support use case was chosen, 

where the diagnosis result would be used to decide 

what recovery action(s) should be performed in order to 

minimize mission costs, which may include loss of 

mission objectives and/or loss of vehicle. We also add-

ed incipient faults and intermittent faults to one of the 

diagnostic problems to make it more challenging. For 

the synthetic track a troubleshooting use case was cho-

sen, where internal variables were not directly observa-

ble and probes were needed to gather more information. 

The goal was to correctly identify the faults with the 

fewest probes.  

 The Third International Diagnostic Competition 

(DXC‟11) includes the same diagnostic problems and 

use cases for the industrial and synthetic tracks as 

DXC‟10. This year‟s competition also features, for the 

first time, a software track. The goal of this track is to 

provide common ground to evaluate techniques that 

diagnose failures in software systems. We used the 

framework as a basis to diagnose software systems 

used by the software engineering community. In partic-

ular, the programs used in this track were taken from 

both the Siemens and Software Infrastructure Reposito-

ry (SIR) benchmark programs. This year, and as a start-

ing point (we would very much like to open the track to 

other algorithms in the future), the track was dedicated 

to techniques based on coverage information. Hence, 

the DAs have to pinpoint the failure root cause using a 

program statement‟s coverage information only. 

 The paper is organized as follows. Section 2 gives a 

quick review of the DXC framework. Section 3 de-

scribes the diagnostic problems that were presented to 

the competitors. Section 4 lists the kinds of faults that 

were injected. Section 5 explains how the evaluation 

was performed. Section 6 presents the results. Section 7 

concludes the paper.  

2 DXC FRAMEWORK 

The DXC framework allows systematic evaluation and 

comparison of diagnosis algorithms under identical 

experimental conditions. The key components of this 

framework include representation languages for the 

physical system description, sensor data and diagnosis 

results, a runtime architecture for executing DAs and 

diagnostic scenarios, and an evaluation component that 

computes performance metrics based on the results 

from diagnosis algorithm execution. 

 We provide a summary of the DXC framework 

(DXF) in this paper and refer the reader to (Kurtoglu et 

al., 2009a; Feldman et al., 2010) for additional details. 

Figure 1 shows an overview of the DXC software com-

ponents and the primary information flows. All com-

munication is ASCII-based, and all the modules com-

municate via TCP ports by using a simple message-

based protocol. Next, we provide a brief description of 

each software component. 

 

Scenario Loader: Executes the Scenario Data Source, 

Recorder, and Diagnosis Algorithm. Scenario Loader 

ensures system stability and clean-up upon scenario 

completion. This is the main entry point for performing 

a diagnostic experiment. 

 
Figure 1: DXF run-time architecture. 
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Scenario Data Source: Provides scenario data from 

previously recorded datasets. The provenance of the 

data (whether hardware or simulation) depends on the 

system in question. A scenario dataset contains sensor 

readings, commands (note that the majority of classical 

MBD literature does not distinguish commands from 

observations), and fault injection information (to be 

sent exclusively to the Scenario Recorder). Scenario 

Data Source publishes data following a wall-clock 

schedule specified by timestamps in the scenario files. 

 

Scenario Recorder: Receives fault injection data and 

diagnosis data into a scenario results file. The results 

file contains a number of time-series which are used by 

the evaluation module for the computation of metrics. 

Scenario Recorder is the main timing authority, i.e., it 

timestamps each message upon arrival before recording 

it to the results file. 

 

Diagnosis Algorithm: A DA receives sensor and 

command data, performs diagnosis, and sends the diag-

nosis results back. As long as the DAs comply to the 

provided API, there are no restrictions on a DA; for 

example, a DA may read precompiled data, or use ex-

ternal (user supplied) libraries, etc. 

 

Diagnostic Oracle: The Diagnostic Oracle is only re-

levant to the Industrial Track. It provides a querying 

capability to the DAs in one of two ways: 1) it takes a 

diagnostic output produced by a DA and returns the 

lowest cost action(s) associated with the provided diag-

nosis, or 2) it takes a diagnostic output and specific 

actions produced by a DA and returns the correspond-

ing cost. 

 

Evaluator: Takes scenario result file and applies me-

trics to evaluate DA performance. The metrics and 

evaluation procedures are detailed in Section 5. 

 

 
Figure 2: Diagnostic session sequence diagram. 
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 Figure 2 shows a diagnostic session sequence dia-

gram that shows how the different components interact.  

3 DIAGNOSTIC PROBLEMS 

Four diagnostic problems were announced for DXC‟11, 

two industrial track problems (DP-I, DP-II), one syn-

thetic (DP-III), and one software (DP-IV). There were 

no entries for the second diagnostic problem of the in-

dustrial track so we omit discussion of DP-II. Refer to 

(Poll et al., 2010) for a description of diagnostic prob-

lem II and results from DXC‟10.  

3.1 Industrial Track 

The hardware system used for the industrial track is the 

Electrical Power System testbed in the ADAPT lab at 

NASA Ames Research Center (Poll et al., 2007). A 

subset of the testbed defines the system ADAPT-Lite, 

which is shown in Figure 3. 

 Diagnostic problem I is the same as DP-I in 

DXC‟10. The problem mimics the use of the ADAPT-

Lite system in a single-string Unmanned Aircraft Sys-

tem (UAS) mission. The primary objective of the diag-

nosis algorithm in this operational scenario is to pro-

vide decision support to a remote pilot or an autonom-

ous controller by making an “abort" (land the vehicle) 

recommendation.  

 The correct recommendation for a scenario depends 

on the injected failure mode and, for certain failure 

modes, the fault parameters. Any failure which cuts off 

power to any of the three loads results in an abort rec-

ommendation. Other failure modes may lead to de-

graded performance which can be tolerated if the fault 

magnitude is below some threshold. For these scena-

rios, giving the correct recommendation requires isolat-

ing the failure mode and estimating the fault parame-

ter(s). 

 Table 1 summarizes the main characteristics of di-

agnostic problem I. With the sensors provided, there 

are four ambiguity groups: (i) AC483 failed off and 

EY272 stuck open, (ii) FAN416 failed off and EY275 

stuck open, (iii) DC485 failed off and EY284 stuck 

open, and (iv) INV2 failed off and CB262 failed open. 

In each case however, the recovery action is the same 

for both faults in the ambiguity group. Figure 4 illu-

strates the parametric fault profiles used in ADAPT-

Lite. 

3.2 Synthetic Track 

Diagnostic problem III builds on the synthetic track for 

DXC‟09. Table 2 summarizes the ISCAS85 digital cir-

cuits used for this problem. The task corresponds to the 

use case where internal variables are not directly ob-

servable and additional, expensive information needs to 

be gathered to isolate the fault. 

The DA is provided a system, input vector, and out-

put vector manifesting the injected fault(s). The task of 

the DA is to gather more information (via internal 

probes) to correctly identify the injected faults. We 

presume all probes are of equal cost. DAs were limited 

to 20 seconds CPU time (although in most scenarios the 

DAs took less than 1 CPU second). 

 
Figure 3: ADAPT-Lite system for diagnostic problem I. 
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Table 1: DP-I characteristics 

Aspect DP-I 

System ADAPT-Lite 

Operational scenario Single-string UAS 

mission 

Diagnostic use case Abort recommen-

dation 

Number of components 25 

Number of modes 102 

Initial relay state Closed 

Initial circuit breaker state Closed 

Nominal mode changes No 

Multiple faults No 

Fault types 

Discrete 

Offset 

Drift (incipient) 

Intermittent offset 
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Note that for many tasks of MBD (e.g., computing 

Max-Fault Min-Cardinality (MFMC) observations 

(Feldman et al., 2008)), the number of components in 

the ISCAS85 circuits can be reduced by performing 

cone identification (Siddiqi and Huang, 2007; de Kleer, 

2008). The number of components in the reduced cir-

cuits is shown in the rightmost column of Table 2. We 

left the decision to identify cones to the competitors, 

i.e., we distribute the non-reduced circuits. We inject 

all faults at one instant. For example, if 3 components 

are faulted, the first observation provided to the DA is 

the result of all three faults injected simultaneously. 

3.3 Software Track 

The diagnostic problems of the software track are taken 

from both the Siemens and Software Infrastructure Re-

pository (SIR) benchmark programs. In particular, for 

DXC‟11, we use the well-known software programs in 

the Siemens benchmark set as well as flex, grep, gzip, 

sed, and space as taken from SIR. They are all coded in 

the C programming language, and can be obtained from 

Table 2: ISCAS85 circuits for DP-III 
 original reduced 

sys |IN| |OUT| |COMPS| variables |COMPS| 

74182 9 5 19 47 6 

74L85 11 3 33 77 15 

74283 9 5 36 81 14 

74181 14 8 65 144 15 

c432 36 7 160 356 59 

c499 41 32 202 445 58 

c880 60 26 383 826 77 

c1355 41 32 546 1133 58 

c1908 33 25 880 1793 160 

c2670 233 140 1193 2695 167 

c3540 50 22 1669 3388 353 

c5315 178 123 2307 4792 385 

c2688 32 32 2416 4684 1456 

c7552 207 108 3512 7232 545 

 

  
    a)  Offset           b) Drift 

 
     c) Intermittent Offset 

 

Figure 4: Diagnostic problem I fault profiles. 

Table 3: Subject programs for DP-IV 

Program LOC Tests Program Type 

print_tokens 539 4,130 Lexical Analyzer 

print_tokens2 489 4,115 Lexical Analyzer 

replace 507 5,542 Pattern Recognition 

schedule 397 2,650 Priority Scheduler 

schedule2 299 2,710 Priority Scheduler 

tcas 174 1,608 Altitude Separation 

tot_info 398 1,052 Information Measure 

space 9,126 500 ADL Parser 

gzip 6,708 211 Compressor 

sed 9,014 184 Stream Editor 

grep 13,287 809 String Matching 

flex 14,194 107 Lexer Generator 
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the SIR‟s website (http://sir.unl.edu). Every program 

provides a set of test inputs, which were created with 

the intention of providing full branch test coverage. 

Table 3 provides some additional information about the 

subject programs (LOC is lines of code). 

4 FAULT INJECTION AND SCENARIOS 

Test scenarios were created for use in the DXC frame-

work. Scenarios included faults of various types and 

complexity. We describe the general characteristics of 

the scenarios and faults in the industrial, synthetic and 

software tracks in this section.  

4.1 Industrial Track Scenarios 

Experimental scenarios of approximately four minutes 

in length were acquired using the ADAPT Electrical 

Power System (EPS) testbed for diagnostic problem I. 

The testbed allows for the repeatable injection of faults 

into the system in three ways: hardware-induced faults 

(e.g., turning off inverters, tripping circuit breakers, 

manipulating loads); software-induced faults (e.g., 

sending extraneous relay commands or blocking in-

tended relay commands); introduction of faulty compo-

nents (e.g., inserting a burned out light bulb). The first 

two methods were used for DXC‟11.  

 Diagnostic problem I includes 154 scenarios pre-

viously used in DXC‟10 and 73 new scenarios. There 

are 30 nominal and 197 single-fault scenarios. The pa-

rametric fault profiles illustrated in Figure 4 are in-

jected for sensor faults as well as AC and DC load 

faults. For the latter, a programmable electronic load is 

used to vary the AC and DC load resistances. Of the 

227 scenarios, 96 are “abort” and 131 are “no-abort” 

cases. Table 4 summarizes the faults and scenarios used 

for DP-I.  

4.2 Synthetic Track Scenarios 

The synthetic track benchmark includes 1074 scenarios. 

Each scenario consists of an input vector, an injected 

fault (hidden from the DA), an output vector and all 

internal values (hidden from the DA but which the 

framework uses to supply values for any probe requests 

from the DA). The benchmark has many very high-

cardinality (> 20) injected faults. 

Constructing a good set of benchmark scenarios has 

many challenges. If we presume components fail inde-

pendently, a fair sampling would primarily yield low 

cardinality faults. Or, if we included faults which yield 

no observable symptom for the input vector, there 

would be no possibility for the DA to isolate the correct 

fault. Or, if we included faults which had no causal 

influence on the output observation, most DAs would 

be penalized for not finding such faults. Therefore, we 

have two principles for constructing these scenarios: (1) 

every injected fault produces a symptom (often called 

„strong‟ faults) and (2) every injected fault causally 

affects the output vector. 

 The scenarios are generated as follows. We generate 

scenarios with ever increasing fault cardinality. For 

each scenario, we generate a random input vector and 

then compute the correct corresponding output vector. 

We randomly choose some output vector bits to flip. 

For each such pair we compute one minimum cardinali-

ty (minc) diagnosis. If the minc is not the desired cardi-

nality we flip a random input/output vector bit, and 

follow the gradient to find an input/output vector pair 

which yields the desired minc. In most cases, there is a 

very large ambiguity group. We generate 10,000 candi-

dates of that ambiguity group and randomly choose one 

as the injected fault. Generating a benchmark in this 

way takes days of CPU time. 

Table 4: DP-I faults 

Type Subtype Fault # abort / 

no-abort 

nominal  no fault 30 0 / 30 

circ. 

breaker 

 failed open 6 6 / 0 

inverter  failed off 2 2 / 0 

load 

fan 

failed off 2 2 / 0 

over speed 2 2 / 0 

under speed 1 0 / 1 

AC load 

resistance 

offset 

11 5 / 6 

resistance 

drift 

12 6 / 6 

intermittent 

res. offset 

11 5 / 6 

failed off 1 1 / 0 

DC load 

resistance 

offset 

12 6 / 6 

resistance 

drift 

13 6 / 7 

intermittent 

res. offset 

12 6 / 6 

failed off 2 2 / 0 

relay  stuck open 7 7 / 0 

sensor 

position stuck 3 0 / 3 

current, 

temp., 

voltage 

offset 31 13 / 18 

stuck 11 6 / 5 

drift 26 10 / 16 

intermittent 

offset 

32 11 /21 

  Totals: 227 96 / 131 

 

http://sir.unl.edu/
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4.3 Software Track Scenarios 

Although versions with seeded faults are provided with 

the programs in the Siemens/SIR benchmark sets, we 

do not use them in the competition. Instead, we seed 

random faults in the program by randomly altering the 

source code (a technique known as mutation). For each 

program we generate 25 scenarios with a single fault, 

and 25 scenarios with multiple faults. The faults we 

introduce affect only the „functional‟ statements. We 

change additions into subtractions, relational operators 

(less than into less or equal than), etc. We do not alter 

„static‟ code, e.g., function prototypes, data types, vari-

able declarations, etc. Several example injected faults 

are presented in Table  5. 

 The software diagnostic competition is based on a 

regression testing scenario. We assume a developer has 

committed a new revision of the subject program, 

which has to be tested for defects (regressions). The 

DA must choose test inputs from the test pool to ex-

ecute and obtain a diagnosis. The DA is given 30 

seconds to select tests, send probe commands, and re-

turn a diagnosis to the scenario loader. 

5 EVALUATION 

Using the scenarios described in the previous section, 

the DAs were executed using the DXC framework on 

similar hardware within each track and evaluated using 

a set of metrics.  

5.1 Industrial Track Metrics 

Diagnosis algorithms were ranked using a decision cost 

metric, Mdc. The decision cost is the cost incurred had 

the DA‟s recommendation been acted upon. Addition-

ally, we compute the metrics used in DXC‟09. 

 For DP-I, the two main categories of costs are cost 

of losing the vehicle and cost of not completing the 

mission. In this use case the DA is only responsible for 

deciding if a mission should be aborted or not. Hence 

there are 4 outcomes (2 answers from the DA versus 2 

actual situations). Let the cost of losing the mission be 

cmission and the cost of losing the vehicle be cvehicle. Table 

6 shows the costs incurred in each of the 4 possible 

outcomes. For DP-I cmission is set to 25, cvehicle is set 

to100. 

 The metrics used for evaluating DAs in DXC‟09 are 

summarized in Table 7. Please see (Kurtoglu et al., 

2009; Feldman et al., 2010) for detailed definitions and 

related discussion. Note that DXC‟09 metric Mia has 

been renamed Merr in the table. The metrics in the table 

are per scenario metrics. To calculate “per system” 

metrics an unweighted average is taken over all scena-

rios and indicated with an overbar. 

5.2 Synthetic Track Metrics 

For DP-III, we used the following metric to score the 

result for each DA: 

   tEtEn 
 

where n  is the number of probes the DA made before 

it reported fault isolation, and    tEtE   is the ex-

pected number of tests needed to identify the correct 

diagnosis when the DA isolates the wrong diagnosis as 

defined in (Feldman et al., 2010). In many cases the 

DA isolates the correct diagnosis and     0 tEtE . 

This metric assumes the cost of a measurement is the 

same as the cost of testing an individual component, 

which is not valid in general. 

Table 5: Example injected DP-IV faults 

Type Nominal Faulty 

Relational 

a < b a <= b 

a > b a >= b 

a == b a != b 

Arithmetic 

a + b a – b 

a * b a / b 

Increment 

a++ ++a 

a-- --a 

Indexing 

a[i] a[i+1] 

a[i] a[i-1] 

Assignment a = b; a; 

 

Table 6: DP-I decision costs, Mdc 

          Actual Case 

DA rec. 

abort non-abort 

abort 0 cmission 

non-abort cmission + cvehicle 0 

 

Table 7: DXC'09 metrics summary 

Metric Name Class 

Mfd fault detection time detection 

Mfn false negative scenario detection 

Mfp false positive scenario detection 

Mda scenario detection accuracy detection 

Mfi fault isolation time isolation 

Merr classification errors isolation 

Mcpu CPU load computation 

Mmem memory load computation 
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5.3 Software Track Metrics 

 For DP-IV, DAs were ranked according to two main 

metrics: probing cost (Mprobe), and residual diagnostic 

effort (Mcd). Mprobe measures how many tests had to be 

executed to obtain the definitive diagnosis, with a cost 

ctest=1. Mcd measures the quality of the final diagnosis 

assuming a developer would inspect the suspect candi-

dates top to bottom in the ranking. Mmem and Mcpu were 

also recorded for DP-IV algorithms. 

5.4 Computing platform 

 DP-I diagnosis algorithms were evaluated using the 

DXC framework on two computers with identical 

hardware (Intel
®
 Pentium™ 2x3GHz, 2 GB RAM), one 

running Windows™ and the other Linux. AntigenDX 

was run on Linux, QED and QED-PC were run on 

Windows. DP-III algorithms were evaluated on one 

processor core of an Intel XEON™ 6x3.33GHz, 12GB 

RAM, running Linux. DP-IV algorithms were eva-

luated on a dual processor Intel XEON 8x2.93GHz, 32 

GB RAM, running Linux. 

6 RESULTS 

Using the evaluation approach described in the pre-

vious section, we computed metrics and rankings for 

the eleven diagnosis algorithms that participated in the 

Third International Diagnostic Competition.  

6.1 Diagnosis Algorithms 

The teams that participated in the industrial, synthetic 

and software tracks are listed in Table 8. In what fol-

lows we provide a brief description of each DA. 

 

1. AntigenDX: A real-time, two-tier system which 

first utilizes Artificial Immune System (AIS) mod-

els to detect and categorize sensor faults, then ag-

gregates all detected sensor-level faults and asso-

ciated characteristics and, through a rule-based ex-

pert system, identifies the electrical system com-

ponent most likely to have produced those faults, 

as well as estimates of the significant parameters of 

its failure (Mange et al., 2011). 

2. QED: A model-based diagnosis system based on 

qualitative event-based fault isolation. Statistically 

significant deviations of measured from model-

predicted values imply the presence of faults. 

These deviations are abstracted into symbolic 

event-based descriptions of fault-induced behavior, 

which are compared to predicted event sequences 

to isolate faults. Fault identification uses quantita-

tive methods to compute fault parameters and fur-

ther refine fault hypotheses (Daigle and Roy-

choudhury, 2010). 

3. QED-PC: Similar to QED, but uses the Possible 

Conflicts diagnosis approach (Pulido and Alonso-

Gonzalez, 2004). The global system model is de-

composed into minimal submodels containing a 

sufficient analytical redundancy to generate fault 

hypothesis from observed measurement deviations. 

(Daigle et al., 2011). 

4. NGDE-NP: An Allegro Common Lisp implemen-

tation of the classic GDE. NGDE (de Kleer, 2011) 

uses an improved minimum-cardinality candidate 

generator to construct diagnoses from conflicts. It 

performs no probes, and returns a probability 

weighted set of diagnoses (max 1000). 

5. NGDE-E: An elaboration of NGDE-NP. After de-

termining the minc (< 1000) diagnoses, uses a min-

imum entropy technique to determine the best 

probe to make next. Once a single minc candidate 

is isolated it verifies this candidate is the actual 

fault with more probes. 

6. NGDE-F: Identifies one minc candidate and at-

tempts to verify it. 

7. Optimist: Always returns all components working 

correctly. 

8. Probee: Probes all measurable points to determine 

a candidate. 

9. Ochiai: A statistics-based algorithm for software 

fault diagnosis. It takes as input component in-

volvement in the execution of a given test case and 

whether or not the test case has passed. The diag-

nostic report yielded by Ochiai is a ranked list of 

components likely to be responsible for observed 

failures (Abreu et al., 2011). 

10. Raptor-H: A DA that combines test selection and 

diagnosis, both using a spectrum-based model. 

Test selection is done through an ambiguity reduc-

tion approach, similar to (Gonzalez-Sanchez et al., 

2011). The outcome of the selected test and cov-

ered source code statements are then passed to the 

diagnosis algorithm. The diagnosis algorithm is 

based on a minimal hitting set computation, fol-

lowed by a Bayesian update that takes advantage 

Table 8: DXC‟11 participating DAs 

DA DP Algorithm Type 

AntigenDX I AIS + Rule-based 

QED I Model-based, global 

QED-PC I Model-based, local 

NGDE-NP III Model-based 

NGDE-E III Model-based 

NGDE-F III Model-based 

Optimist III Edge case DA 

Probee III Edge case DA 

Ochiai IV Similarity coefficient 

Raptor-H IV Model-based + Bayes 

Raptor-EPS2 IV Model-based + Bayes 
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of precompiled fault intermittency information 

(Gonzalez-Sanchez et al., 2011). 

11. Raptor-EPS2 is similar to Raptor-H, but the Baye-

sian diagnosis step uses fault intermittency infor-

mation derived from the current set of observa-

tions, using the EPS2 policy (Abreu et al., 2009). 

6.2 Industrial Track Results 

The metrics for DP-I are shown in Table 9; diagnosis 

algorithm QED had the lowest cost and is the winner of 

DP-I. For comparison, a DA that always recommends 

abort would have received a cost of 131 * 25 = 3275; a 

DA that always recommends no-abort would have re-

ceived a cost of 96 * 125 = 12,000. The DAs had sig-

nificantly lower cost scores than participants in 

DXC‟10. This is somewhat expected given that more 

than 2/3 of the test scenarios are from DXC‟10 and 

were available for validating the diagnostic approach.  

 AntigenDX incurred costs of 25 on 4 scenarios for 

recommending an abort when not required and 125 on 

2 scenarios for not recommending when required; QED 

incurred costs of 25 for 2 no-abort scenarios, it always 

recommended abort when needed. QED-PC incurred 

costs of 25 for 5 no-abort scenarios and 125 for 2 abort 

scenarios. 

 We show the breakdown of costs by fault type for 

each DA in Figure 5. Offset, drift, and intermittent 

faults include hardware (AC483, DC485) and sensor 

(e.g., IT267, IT281, etc.) fault injection scenarios. Cat-

egory “other” includes circuit breaker, inverter, fan, 

and AC and DC load failed-off fault scenarios. None of 

the DAs incurred any costs for nominal scenarios.  

 AntigenDX and QED had the same detection accu-

racy, with AntigenDX having a lower false negative 

rate while QED had a lower false positive rate. As men-

tioned for DXC‟10, the fault detection and isolation 

times are noticeably higher than DXC‟09 because of 

the need to accumulate more evidence in the case of 

drift and intermittent fault types.  

 Figure 6 shows the breakdown of classification er-

rors by fault type. In a scenario, the number of classifi-

cation errors is the number of misclassified compo-

nents. Ruling out guessing, a perfect DA would have 12 

classification errors, all in the category “other”, because 

of the ambiguity groups identified in section 3.1.  

6.3 Synthetic Track Results 

The results for DP-III are shown in Table 10. The Pro-

bee DA uses minimal CPU time and its score is com-

pletely determined by the number of internal nodes of 

the system. It always identifies the correct diagnosis. 

The Optimist DA uses minimal CPU time and its score 

is completely determined by the non-probe portion of 

the metric. NGDE-NP does no probing, so its score is 

also purely determined by the non-probe factor of the 

metric. NGDE-E and NGDE-F both selectively probe 

so their total score is determined by the sum of the 

probes and the utility penalty of the metric. All CPU 

figures are in seconds. All numbers in the table are av-

erages for each system. 

 Probee is the worst strategy, followed by Optimist. 

NGDE-NP performs a bit better than these edge-case 

DAs, but not significantly. NGDE-E and NGDE-F per-

form similarly on simpler examples. The difference 

Table 9: Diagnostic problem I metrics 
DA 

dcM  fdM (s) fnM  fpM  daM  fiM (s) errM  cpuM (ms) memM (kb) 

AntigenDX 350 62.8 0.005 0.009 0.987 62.8 34 680 1935 
QED 50 10.5 0.010 0.004 0.987 124.1 22 824 5356 
QED-PC 375 15.2 0.020 0.026 0.956 123.9 38 589 5320 

 

 
Figure 5: DP-I cost breakdown by scenario fault 

type. 
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Figure 6: DP-I classification error breakdown by 

scenario fault type. 
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becomes apparent for more complex scenarios. NGDE-

E would perform best on all scenarios given infinite 

CPU time as it uses the theoretically optimum strategy. 

However, generating enough candidate diagnoses 

needed to determine the optimum probe can exceed the 

CPU limit. In those cases, it returns its current best es-

timate of the diagnoses. It pays a very significant me-

tric penalty for its incorrect diagnoses. NGDE-F per-

forms on average the best as making probes are rela-

tively inexpensive and greatly improves the CPU time 

to compute diagnoses. NGDE-F significantly reduces 

the utility component of the metric – far more than the 

slight increase in probes. NGDE-F is a far simpler me-

thod as its strategy of confirming component failure by 

simply measuring its io-behavior avoids more complex 

minimum entropy evaluation of possible probe points.  

The table suggests a better strategy would be a mix: use 

NGDE-E for smaller examples and NGDE-F for more 

complex ones. 

6.4 Software Track Results 

We show the averaged metrics for each of the three 

DAs in Table 11. Both Raptor-H and Raptor-EPS2 

have much lower probing costs than Ochiai. Please note 

that this is an unfair comparison since Raptor includes a 

test selection heuristic, whereas Ochiai just requests 

every possible test. 

 Besides a lower probe cost, Raptor-H and Raptor-

EPS2 have lower residual diagnostic effort as well. Per 

program, Raptor-H performs better in the cases where 

the precomputed intermittency information has a low 

error. On average, however, there is little difference 

between both algorithms. 

 Finally, when it comes to memory consumption, 

Ochiai is the winner since it is a much lighter-weight 

approach than Raptor-* Bayesian diagnosis. The DX 

framework was not able to measure CPU time reliably 

and therefore the results are not given in this paper. 

 Figure 7 provides a detailed breakdown of the Mcd 

per program. For the large programs (flex, grep, gzip, 

sed, space) the results of Raptor-H are better than Rap-

tor-EPS2. On the other hand, for the other, smaller pro-

grams, Raptor-EPS2 surpasses Raptor-H. Raptor-EPS2 

requires a larger number of observations than Raptor-H 

to obtain a good diagnosis. Since the number of obser-

vations is limited by the number of tests that Raptor is 

able to select in 30 seconds, on big programs Raptor-H 

has an advantage. 

7 CONCLUSION 

We presented the implementation of the Third Interna-

tional Diagnostic Competition, DXC‟11. We were 

pleased to introduce the software track in this year‟s 

competition and have DAs in all three tracks. A number 

of people expressed interest in participating in DXC‟11 

and submitted placeholder algorithms but unfortunately 

many had to withdraw from the competition for varying 

reasons. The participants in the industrial track were 

competitors in DXC‟10 as well and showed greatly 

improved performance this year.  

 We hope that this work can be continued moving 

forward by identifying new physical systems and new 

diagnostic problems. The DXC framework provides an 

easy way to create an evaluation platform for new prob-

lems. Our sincere hope is that the framework is adopted 

by a growing number of people and applied to a wide 

Table 10: Diagnostic problem III scores 
System Probee 

(CPU<0.01) 

Optimist 

(CPU<0.01) 

NGDE-NP NGDE-E NGDE-F 

 Probes, Score 
(E=0) 

E, Score 
(Probes=0) 

E, Score 
(Probes=0) 

CPU Probes E Score CPU Probes E Score CPU 

74182 14 14 5.0 0.03 2.5 0 2.5 0.28 2.5 0 2.5 0.02 

74L85 30 21 13.8 0.07 3.5 0 3.5 0.22 3.5 0 3.5 0.02 

74283 31 25 21.8 0.10 7.4 0 7.4 0.50 7.8 0 7.8 0.07 

74181 57 47 35 0.04 8.1 0 8.1 0.55 8.1 0 8.1 0.07 

C432 153 118 96 0.08 12.4 0 12.4 0.79 15.8 0 15.8 0.21 

C499 170 169 146 1.06 13.9 17.4 31.3 3.1 16.9 0 16.9 0.3 

C880 357 306 260 2.2 16.2 38.2 54.4 4.5 17.5 0 17.5 0.30 

C1355 514 439 365 4.0 11.8 88.5 100.3 5.6 13.4 0 13.4 0.36 

C1908 855 639 571 0.69 11.6 13.1 24.7 6.6 10.2 0 10.2 0.89 

C2670 1129 1043 705 3.5 12.5 258 270.5 6.3 14.7 12.9 27.6 1.3 

C3540 1647 1094 602 0.47 7.6 0 7.6 2.24 3.2 0 3.2 0.47 

C5315 2184 1969 1464 2.9 14 319.8 333.8 6.9 12.5 0 12.5 0.71 

C6288 2384 1208 1149 7.4 5.25 443.9 449.15 10.6 6.4 331 337.4 6.4 

C7552 3405 2244 1725 1.1 4.2 0 4.2 2.0 2.6 0 2.6 0.98 

 

Table 11: Diagnostic problem IV metrics 

DA 
probeM  cdM  memM (kb) 

Ochiai 109200 1138 3114 

Raptor-H 26413 862 8804 

Raptor-EPS2 11056 889 10320 
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variety of physical systems including diagnosis algo-

rithms from several different research communities. 

The long-term goal is to create a database of perfor-

mance evaluation results which will allow system de-

signers to choose the appropriate DA for their system 

given the constraints and metrics in their application.  
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