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ABSTRACTDe�ning outliers by their distane to neighboring examplesis a popular approah to �nding unusual examples in a dataset. Reently, muh work has been onduted with the goalof �nding fast algorithms for this task. We show that a sim-ple nested loop algorithm that in the worst ase is quadratian give near linear time performane when the data is inrandom order and a simple pruning rule is used. We testour algorithm on real high-dimensional data sets with mil-lions of examples and show that the near linear saling holdsover several orders of magnitude. Our average ase analy-sis suggests that muh of the eÆieny is beause the timeto proess non-outliers, whih are the majority of examples,does not depend on the size of the data set.
Categories and Subject DescriptorsH.2.8 [Database Management℄: Database Appliations|data mining
KeywordsOutliers, distane-based operations, anomaly detetion, disk-based algorithms
1. INTRODUCTIONDeteting outliers, examples in a database with unusualproperties, is an important data mining task. Reently re-searhers have begun fousing on this problem and have at-tempted to apply algorithms for �nding outliers to taskssuh as fraud detetion [7℄, identifying omputer network in-trusions [10, 18℄, data leaning [21℄, and deteting employerswith poor injury histories[17℄.Outlier detetion has a long history in statistis [3, 13℄, buthas largely foussed on data that is univariate, and datawith a known (or parametri) distribution. These two lim-itations have restrited the ability to apply these types ofmethods to large real-world databases whih typially have
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many di�erent �elds and have no easy way of harater-izing the multivariate distribution of examples. Other re-searhers, beginning with the work by Knorr and Ng [16℄,have taken a non-parametri approah and proposed usingan example's distane to its nearest neighbors as a measureof unusualness [2, 10, 17, 19℄.Although distane is an e�etive non-parametri approahto deteting outliers, the drawbak is the amount of om-putation time required. Straightforward algorithms, suh asthose based on nested loops, typially require O(N2) dis-tane omputations. This quadrati saling means that itwill be very diÆult to mine outliers as we takle inreas-ingly larger data sets. This is a major problem for manyreal databases where there are often millions of reords.Reently, researhers have presented many di�erent algo-rithms for eÆiently �nding distane-based outliers. Theseapproahes vary from spatial indexing trees to partitioningof the feature spae with lustering algorithms [19℄. Theommon goal is developing algorithms that sale to largereal data sets.In this paper, we show that one an modify a simple al-gorithm based on nested loops, whih would normally havequadrati saling behavior, to yield near linear time miningon real, large, and high-dimensional data sets. Spei�ally,our ontributions are:� We show that an algorithm based on nested loops inonjuntion with randomization and a simple pruningrule has near linear time performane on many largereal data sets. Previous work reported quadrati per-formane for algorithms based on nested loops [16, 17,19℄.� We demonstrate that our algorithm sales to real datasets with millions of examples and many features, bothontinuous and disrete. To our knowledge we haverun our algorithm on the largest reported data setsto date and obtained among the best saling resultsfor distane-based outliers on real data sets. Otherwork has reported algorithms with linear time miningof distane-based outliers but only for low-dimensionalproblems (less than 5) [16, 17℄ or have only tested thesaling properties on simple syntheti domains.� We analyze why our algorithm performs so well. The



result of an average ase analysis suggests that underertain onditions, the time to proess non-outliers,whih are the large majority of points, does not dependon the size of the data set.The remainder of this paper is organized as follows. In thenext setion, we review the notion of distane-based outliersand present a simple nested loop algorithm that will be thefous of this paper. In Setion 3, we show that althoughour simple algorithm has poor worst ase saling properties,for many large, high-dimensional, real data sets the atualperformane is extremely good and is lose to linear. InSetion 4, we analyze our algorithm and attempt to explainthe performane with an average ase analysis. In Setion 5,we present examples of disovered outliers to give the readersa qualitative feel for how the algorithm works on real data.Finally, we onlude this paper by disussing limitations anddiretions for future work.
2. DISTANCE-BASED OUTLIERSA popular method of identifying outliers is by examining thedistane to an example's nearest neighbors [2, 16, 17, 19℄. Inthis approah, one looks at the loal neighborhood of pointsfor an example typially de�ned by the k nearest examples(also known as neighbors). If the neighboring points are rel-atively lose, then the example is onsidered normal; if theneighboring points are far away, then the example is onsid-ered unusual. The advantages of distane-based outliers arethat no expliit distribution needs to be de�ned to deter-mine unusualness, and that it an be applied to any featurespae for whih we an de�ne a distane measure.Given a distane measure on a feature spae, there are manydi�erent de�nitions of distane-based outliers. Three popu-lar de�nitions are1. Outliers are the examples for whih there are fewerthan p other examples within distane d [16, 17℄.2. Outliers are the top n examples whose distane to thekth nearest neighbor is greatest [19℄.3. Outliers are the top n examples whose average distaneto the k nearest neighbors is greatest [2, 10℄.There are several minor di�erenes between these de�ni-tions. The �rst de�nition does not provide a ranking andrequires speifying a distane parameter d. Ramaswamy etal. [19℄ argue that this parameter ould be diÆult to deter-mine and may involve trial and error to guess an appropri-ate value. The seond de�nition only onsiders the distaneto the kth neighbor and ignores information about loserpoints. Finally, the last de�nition aounts for the distaneto eah neighbor but is slower to alulate than de�nition 1or 2. However, all of these de�nitions are based on a near-est neighbor density estimate [11℄ to determine the pointsin low probability regions whih are onsidered outliers.Researhers have tried a variety of approahes to �nd theseoutliers eÆiently. The simplest are those using nested loops[16, 17, 19℄. In the basi version one ompares eah example

with every other example to determine its k nearest neigh-bors. Given the neighbors for eah example in the data set,simply selet the top n andidates aording to the outlierde�nition. This approah has quadrati omplexity as wemust make all pairwise distane omputations between ex-amples.Another method for �nding outliers is to use a spatial in-dexing struture suh as a KD-tree [4℄, R-tree [12℄, or X-tree[5℄ to �nd the nearest neighbors of eah andidate point [16,17, 19℄. One queries the index struture for the losest kpoints to eah example, and as before one simply seletsthe top andidates aording to the outlier de�nition. Forlow-dimensional data sets this approah an work extremelywell and potentially sales as N logN if the index tree an�nd an example's nearest neighbors in logN time. How-ever, index strutures break down as the dimensionality in-reases. For example, Breunig et al. [8℄ used a variant ofthe X-tree to do nearest neighbor searh and found that theindex only worked well for low dimensions, less than 5, andperformane dramatially worsened for just 10 or 20 dimen-sions. In fat, for high-dimensional data they reommendedsequential sanning over the index tree.A few researhers have proposed partitioning the spae intoregions and thus allowing faster determination of the near-est neighbors. For eah region, one stores summary statistissuh as the minimum bounding retangle. During nearestneighbor searh, one ompares the example to the boundingretangle to determine if it is possible for a nearest neighborto ome from that region. If it is not possible, all pointsin the region are eliminated as possible neighbors. Knorrand Ng [16℄ partition the spae into ells that are hyper-retangles. This yields a omplexity linear in N but expo-nential in the number of dimensions. They found that thisell based approah outperformed a nested loop algorithm,whih is quadrati in N , only for four or fewer dimensions.Others use a linear time lustering algorithm to partitionthe data set [19, 10℄. With this approah, Ramaswamy et al.demonstrated muh better performane ompared with thenested loop and indexing approahes on a low-dimensionalsyntheti data set. However, their experiments did not testhow it would sale on larger and higher-dimensional data.Finally, a few researhers have advoated projetions to �ndoutliers. Aggrawal and Yu [1℄ suggest that beause of theurse of dimensionality one should fous on �nding out-liers in low-dimensional projetions. Angiulli and Pizzuti[2℄ projet the data in the full feature spae multiple timesonto the interval [0,1℄ with Hilbert spae �lling urves. Eahsuessive projetion improves the estimate of an example'soutlier sore in the full-dimensional spae. Their initial sal-ing results are promising, and appear to be lose to linear,however they have reported results on only two synthetidomains.In this paper, we show that the simplest type of algorithmbased on nested loops in onjuntion with randomizationand a pruning rule gives state-of-the-art performane. Ta-ble 1 shows our variation of the nested loop algorithm inmore detail. The funtion distane omputes the distanebetween any two examples using, for example, Eulideandistane for ontinuous features and Hamming distane for



Table 1: A simple algorithm for �nding distane-based outliers. Lowerase variables represent salar valuesand upperase variables represents sets.Proedure: Find OutliersInput: k, the number of nearest neighbors; n, the number of outliers to return; D, a set of examples inrandom order.Output: O, a set of outliers.Let maxdist(x, Y ) return the maximum distane between x and an example in Y .Let Closest(x, Y , k) return the k losest examples in Y to x.begin1.   0 // set the uto� for pruning to 02. O  ; // initialize to the empty set3. while B  get-next-blok(D) f // load a blok of examples from D4. Neighbors(b)  ; for all b in B5. for eah d in D f6. for eah b in B, b 6= d f7. if jNeighbors(b)j < k or distane(b,d) < maxdist(b,Neighbors(b)) f8. Neighbors(b)  Closest(b,Neighbors(b) [ d, k)9. if sore(Neighbors(b),b) <  f10. remove b from B11. g g g g12. O  Top(B [ O,n) // keep only the top n outliers13.   min(sore(o)) for all o in O // the uto� is the sore of the weakest outlier14. g15. return Oenddisrete features. The sore funtion an be any monoton-ially dereasing funtion of the nearest neighbor distanessuh as the distane to the kth nearest neighbor, or the av-erage distane to the k neighbors.The main idea in our nested loop algorithm is that for eahexample in D we keep trak of the losest neighbors foundso far. When an example's losest neighbors ahieve a sorelower than the uto� we remove the example beause it anno longer be an outlier. As we proess more examples, the al-gorithm �nds more extreme outliers and the uto� inreasesalong with pruning eÆieny.Note that we assume that the examples in the data set are inrandom order. The examples an be put into random orderin linear time and onstant main memory with a disk-basedalgorithm. One repeatedly shu�es the data set into randompiles and then onatenates them in random order.In the worst ase, the performane of the algorithm is verypoor. Beause of the nested loops, it ould require O(N2)distane omputations and O(N=bloksize � N) data a-esses.
3. EXPERIMENTS ON SCALING PERFOR-

MANCEIn this setion, we examine the empirial performane ofthe simple algorithm on several large real data sets. Theprimary question we are interested in answering is \Howdoes the running time sale with the number of data pointsfor large data sets?" In addition, we are also interestedin understanding how the running time sales with k, thenumber of nearest neighbors.

To test our algorithm we seleted the �ve real and one syn-theti data sets summarized in Table 2. These data setsspan a range of problems and have very di�erent types offeatures. We desribe eah in more detail.� Corel Histogram. Eah example in this data set en-odes the olor histogram of an image in a olletion ofphotographs. The histogram has 32 bins orrespond-ing to eight levels of hue and four levels of saturation.� Covertype. This data set represents the type of forestoverings for 30 � 30 meter ells in the Roky Moun-tain region. For eah ell, the data ontains the overtype, whih is the dominant tree speies, and addi-tional attributes suh as elevation, slope, and soil type.� KDDCUP 1999. The KDDCUP data ontains a set ofreords that represent onnetions to a military om-puter network where there have been multiple intru-sions by unauthorized users. The raw binary TCP datafrom the network has been proessed into features suhas the onnetion duration, protool type, number offailed logins, and so forth.� Census. This data set ontains the responses fromthe 1990 deennial Census in the United States. Thedata has information on both households and individ-uals. We divided the responses into two tables, onethat stores household reords and another that storesperson reords, and treated eah table as its own dataset. Both the Household and Person data sets havea variety of geographi, eonomi, and demographivariables. Our data omes from the 5% State publiuse mirodata samples and we used the short variable



list [20℄. In total, the 5% State sample ontains about5.5 million household and 12.5 million person reords.For our experiments we used a maximum of 5 millionreords for eah data set.� Normal 30D. This is a syntheti data set generatedfrom a 30-dimensional normal distribution entered onthe origin with a ovariane matrix equal to the iden-tity matrix.We obtained the data sets Corel Histogram, Covertype, andKDDCup 1999 from the UCI KDD Arhive [14℄ and theensus data from the IPUMS repository [20℄.Table 2: Desription of Data SetsData Set Features Continuous ExamplesCorel Histogram 32 32 68,040Covertype 55 10 581,012KDDCup 1999 42 34 4,898,430Household 1990 23 9 5,000,000Person 1990 55 20 5,000,000Normal 30D 30 30 1,000,000We proessed the data by normalizing all ontinuous vari-ables to the range [0,1℄ and onverting all ategorial vari-ables to an integer representation. We then randomized theorder of examples in the data sets. Randomizing a �le anbe done in O(N) time and onstant main memory with adisk-based shu�ing algorithm as follows: Sequentially pro-ess eah example in the data set by randomly plaing itinto one of n di�erent piles. Reombine the piles in randomorder and repeat this proess a �xed number of times.We ran our experiments on a lightly loaded Pentium 4 om-puter with a 1.5 GHz proessor and 1GB RAM runningLinux. We report the wall lok time, the time a user wouldhave to wait for the output, in order to measure both CPUand I/O time. The reported times do not inlude the timeneeded for the initial randomization of the data set and rep-resent one trial. Preliminary experiments indiated that al-ternate randomizations did not have a major e�et on therunning time. To measure saling, we generated smallerdata sets by taking the �rst n samples of the randomizedset. Unless otherwise noted, we ran experiments to returnthe top 30 anomalies with k = 5, a blok size (jBj) of 1000examples, and we used the average distane to the nearestk neighbors as the sore funtion.Our implementation of the algorithm was written in C++and ompiled with g version 2.96 with the -O3 optimiza-tion ag. We aessed examples in the data set sequentiallyusing standard iostream funtions and we did not writeany speial routines to perform ahing. The total memoryfootprint of the exeuting program was typially less than 3MB.Figure 1 shows the total time taken to mine outliers on thesix data sets as the number of examples varied. Note thatboth the x and y axes are in a logarithmi sale. Eah graphshows three lines. The bottom line represents the theoreti-al time neessary to mine the data set given a linear algo-rithm based on the running time for N = 1000. The middle

line shows the atual running times of our system. Finally,the top line shows the theoretial time needed assuming aquadrati algorithm based on saling the running time forN = 1000.These results show that our simple algorithm gives extremelygood saling performane that is near linear time. The sal-ing properties hold for data sets with both ontinuous anddisrete features and the properties hold over several or-ders of magnitude of inreasing data set size. The plot-ted points follow nearly straight lines on the log-log graphswhih means that the relationship between the y and x axisvariables is of the form y = axb or log y = log a + b log x,where a and b are onstants. Thus, the algorithm saleswith a polynomial omplexity with an exponent equal tothe slope of the line. Table 3 presents for eah data set theslope of a regression line �t to the points in Figure 1. Thealgorithm obtained a polynomial saling omplexity withexponent varying from 1.13 to 1.32.Table 3: Slope b of the regression �t relating log t =log a + b logN (or t = aNb) where t is the total time(CPU + I/O), N is the number of data points, anda is a onstant fator.Data Set slopeCorel Histogram 1.13Covertype 1.25KDDCup 1999 1.13Household 1990 1.32Person 1990 1.16Normal 30D 1.15We also examined how the total running time sales withk, the number of neighbors and the results for Normal 30Dand Person (with N = 1; 000; 000) are shown in Figure 2. Inthese graphs, both the x and y axes are in a linear sale andthe measured times fall approximately on a straight line.This suggests that the running time sales linearly with k.
4. ANALYSIS OF SCALING TIMEIn this setion, we explain with an average ase analysiswhy randomization in onjuntion with pruning performswell, espeially when muh of the past literature reportedthat nested loop designs were extremely slow beause of theO(N2) distane omputations. In partiular, both Knorrand Ng [16℄ and Ramaswamy et al. [19℄ implemented ver-sions of the nested loop algorithm and reported quadratiperformane. However, Knorr and Ng did not use pruningor randomization in their algorithm, and Ramaswamy et al.only inorporated pruning.Consider the number of distane omputations needed toproess an example x. For now we assume that we are usingoutlier de�nition 2, rather than de�nition 3 whih we usedin our experiments, for ease of analysis. With this de�nitionan outlier is determined by the distane to its kth nearestneighbor. In order to proess x we ompare it with examplesin the data set until we have either (1) found k neighborswithin the uto� distane d, in whih ase we eliminate it asit annot be an outlier, or (2) we have ompared it with allN examples in the data set and failed to �nd k neighborswithin distane d, in whih ase it is lassi�ed as an outlier.



10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

Corel Histogram

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Covertype

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
7

10
−2

10
0

10
2

10
4

10
6

10
8

KDDCup 1999

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
7

10
−2

10
0

10
2

10
4

10
6

10
8

Household

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

10
8

Person

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Normal 30D

Size

T
ot

al
 T

im
e

Figure 1: Total time (CPU and I/O) taken to mine outliers as N , the number of points, inreases. The topand bottom lines represent the theoretial time taken by a quadrati and linear algorithm based on salingthe observed time at N = 1000.
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Figure 2: Total time (CPU and I/O) taken to mine outliers as k inreases for the data sets Normal 30D andPerson (with N = 1; 000; 000).We an think of this problem as a set of independent Bernoullitrials where we keep drawing instanes until we have foundk suesses (k examples within distane d) or we have ex-hausted the data set. Let �(x) be the probability that arandomly drawn example lies within distane d of point x,let Y be a random variable representing the number of trialsuntil we have k suesses, and let P (Y = y) be the probabil-ity of obtaining the kth suess on trial y. The probabilityP (Y = y) follows a negative binomial distribution:P (Y = y) =  y � 1k � 1!�(x)k(1� �(x))y�k (1)The number of expeted samples we need to draw to proessone example x is:E[Y ℄ = NXy=kP (Y = y) y +0�1� NXy=kP (Y = y)1AN (2)The �rst term is the expetation of onluding a negativebinomial series within N trials. That is, as we are proess-ing an example, we keep drawing more examples until wehave seen k that are within distane d, at whih point weeliminate it beause it annot be an outlier. The seondterm is the expeted ost of failing to onlude the negativebinomial series within N trials, in whih ase we have ex-amined all N data points beause the example is an outlier(less than k suesses in N trials).The expetation of a negative binomial series with an in�nitenumber of trials is,1Xy=k y � 1k � 1!�(x)k(1� �(x))y�k y = k�(x) (3)This is greater than the �rst term in Equation 2. CombiningEquations 2 and 3 yields,E[Y ℄ � k�(x) +0�1� NXy=kP (Y = y)1AN (4)

Surprisingly, the �rst term whih represents the number ofdistane omputations to eliminate non-outliers does not de-pend on N . The seond term, whih represents the expetedost of outliers (i.e, we must ompare with everything in thedatabase and then onlude that nothing is lose) does de-pend on N, yielding an overall quadrati dependeny to pro-ess N examples in total. However, note that we typiallyset the program parameters to return a small and possibly�xed number of outliers. Thus the �rst term dominates andwe obtain near linear performane.One assumption of this analysis is that the uto� distane is�xed. In pratie, the uto� distane varies during programexeution, and the �nal uto� required to return the top noutliers hanges with N . However, the relationship betweenuto� value and perentage of the data set proessed oftenstays the same for di�erent values of N . For example, Fig-ure 3 shows the plot of uto� value against the perentageof the data set proessed for di�erent values of N .In general, we expet that if the �nal uto� distane in-reases with larger N , then saling will be better as �(x) islarger and any randomly seleted example is more likely tobe a suess (neighbor). Conversely, if the uto� distanedereases, the saling will be worse. In Figure 4 we plottedthe relationship between b, the empirial saling fator, and50K=5K , the ratio of the �nal uto�s for N = 50000 andN = 5000 for the six data sets used in the previous se-tion. We also plotted results for two additional data sets,Uniform 3D and Mixed 3D, whih we believed would berespetively extremely diÆult and easy. Uniform 3D is athree-dimensional data set generated from a uniform distri-bution between [-0.5,0.5℄ on eah dimension. Mixed 3D isa mixture of the uniform data set (99%) ombined with aGaussian (1%) entered on the origin with ovariane matrixequal to the identity matrix.The results indiate that for many data sets the uto� ra-tio is near or greater than 1. The only data set with anextremely low uto� ratio was Uniform3D. The graph also
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that data sets with a true uniform distribution are probablyrare in real domains.
5. OUTLIERS IN CENSUS DATAAlthough the use of distane-based outliers is well estab-lished, in this setion, we show results from the ensus datato give the readers a qualitative idea of the types of outliersfound when large data sets are mined. We also omparethe disovered outliers with examples agged as unusual byGritBot, a ommerial program from RuleQuest Researhthat was designed to �nd anomalies in data [21℄.As we have limited spae in this paper, we present onlyseleted results. The full list of outliers on the Householdand Person data sets for both our algorithm and GritBotare available online1 and we enourage the readers to viewthis list diretly.We emphasize that we are not laiming that one set of resultsis better than another, but rather we feel these results showthat distane-based outlier detetion �nds unusual examplesof a qualitatively di�erent nature than GritBot.
5.1 Distance-Based OutliersWe report seleted results from running our outlier detetionalgorithm on the full set of 5 million examples to return thetop 30 outliers with k = 5.The top outlier in the household database is a single fam-ily living in San Diego with 5 married ouples, 5 mothers,and 6 fathers. In the ensus data, a family is de�ned as agroup of persons related by blood, adoption, or marriage.To be onsidered a mother or father, the person's hild orhildren must be present in the household. The house hada reported value of $85K and was mortgaged. The total re-ported inome of the household was approximately $86K forthe previous year.Another outlier is a single-family rural farm household inFlorene, South Carolina. The house is owned free and learby a married ouple with no hildren. This example is un-usual beause the value of the house is greater than $400K(not inluding the land), and they reported a household in-ome of over $550K.In the person data set one of the most extreme outliers wasa 90+ year old Blak Male with Italian anestry who doesnot speak English, was enrolled in shool2, has a Dotoratedegree, is employed as a baker, reported $110K inome ofwhih $40K was from wages, $20K from business, $10K fromfarming, $15K from welfare, and $20K from investments, hasa disability whih limits but does not prevent work, was aveteran of the U.S. armed fores, takes publi transporta-tion (ferry boat) to work, and immigrated to the U.S. 11-15years ago but moved into his urrent dwelling 21-30 yearsago. Clearly, there are inonsistenies in this reord and webelieve that this reord represents an improperly ompletedform.1http://www.isle.org/�sbay/papers/kdd03/2Taking a ourse that a high shool or ollege would aeptfor redit would ount under Census de�nitions.



10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Uniform 3D

Size

T
ot

al
 T

im
e

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Mixed 3D

Size

T
ot

al
 T

im
e

Figure 5: Total time (CPU and I/O) taken to mine outliers on the data sets Uniform 3D (b = 1:76) and Mixed3D (b = 1:11).A seond outlier was a 46 year old, White, widowed femaleliving with 9 family members, two of whih are her own hil-dren. She has a disability that limits but does not preventher work as a bookkeeper or aounting lerk in the theaterand motion piture industry. She takes publi transporta-tion to work (bus or trolley) and it takes her longer than 99minutes to go from home to work.A third outlier was a 19 year old, White, female with Asiananestry and Mexian Hispani origin with a disability thatlimits but does not prevent work. She earned $123K inbusiness inome, and $38K in retirement inome (whih mayinlude payments for disabilities), and is also enrolled inshool.
5.2 GritBotGritBot �nds reords that have a surprising value on oneattribute given the values of other attributes. For example,an outlier GritBot found on the Person data set wasase 481942:raed = White (31831 ases, 98.94% `Blak')anest1d = Afrian Amerianlanguagd = EnglishThis means that 98.94% of people who have Afrian Amer-ian anestry and who speak English, listed their rae asBlak. Case 481942 is unusual beause the rae listed wasWhite.We were not able to run GritBot on the household and per-son data sets with �ve million examples beause of memorylimitations. GritBot's requirements exeeded the availablemain memory as it loaded the entire data set and then allo-ated additional memory during program exeution. How-ever, we were able to run GritBot on smaller data sets, andspei�ally, we ran GritBot using the default settings onapproximately one million household reords and one half

million person reords.Sine GritBot and our algorithm ompute two di�erent setsof outliers, preise omparisons of their running times arenot very meaningful. However, to give the reader a roughidea of their performane, GritBot took approximately 70minutes to proess one million household reords and 170minutes to proess one half million person reords on a 600MHz MIPS R14000 with 4 GB of memory. In omparison,our algorithm took 87 and 18 minutes respetively to proesssimilar amounts of data on a 1.5 GHz Pentium 4 with 1 GBof memory.3In ontrast to the results from distane-based outliers, Grit-Bot found qualitatively di�erent outliers. For example, onthe household data GritBot found a total of 266 anomalies.These anomalies ould be divided into roughly three groups:� 228 reords for whih the household was listed as \Ru-ral" although another �eld indiated that the house-hold was urban (e.g., metro = In metro area { Centrality or itypop > 100000)� 28 reords for whih the household was listed as \Ur-ban" although another �eld indiated that the house-hold was rural.� 10 reords with a total family inome (ftotin) greaterthan the household inome (hhinome). By de�nitionthe household inome should be greater than or equalto the family inome.On the person data set, GritBot found a total of 1407 anoma-lies. Unlike the household data, we ould not plae the ex-amples into neat ategories, but as before GritBot foundreords with unusual ombinations of attributes whih in-luded3The data sets were not exatly idential as they ontaineddi�erent samples of Census reords.



� people with unusual ombinations of anestry, His-pani origin, and rae. For example, GritBot foundreords for people who are White and Afrian-Amerian,Blak and Italian, Blak and Swedish, Blak and Ger-man, Blak and Polish, Hispani and Soth-Irish.� people who live in the same house where they lived 5years ago, but also laimed to live in a di�erent ountry�ve years ago.� people who don't work, but have a plae of work.� a person whose anestry is Mexian, but the languagespoken at home is Chinese.� a 16 year old person who last worked more than 10years ago.� a 75 year old female veteran.In general, GritBot tended to �nd examples in whih a smallnumber of attributes made the example unusual. This is notsurprising as by default GritBot is set to examine four orless onditions. However, GritBot often did not use all fouronditions and many outliers had only one or two terms.
6. LIMITATIONS AND FUTURE WORKThe main goal of our experimental study was to show thatour algorithm ould sale to very large data sets. We showedthat on large, real, high-dimensional data sets the algorithmhad near linear saling performane. However, the algorithmdepends on a number of assumptions, violations of whih anlead to poor performane.First, our algorithm assumes that the data is in randomorder. If the data is not in random order and is sorted thenthe performane an be poor. For example, the Census dataas retrieved from the IPUMS repository [20℄ ame with theexamples sorted by state. This an ause problems whenour algorithm onsiders a person from Wyoming. It will tryto eliminate it by �nding the k nearest neighbors who arealso likely to be fromWyoming. To �nd these neighbors, thealgorithm will �rst san all examples from states Alabama toWisonsin given the sequential manner in whih it aessesthe data.Seond, our algorithm depends on the independene of ex-amples. If examples are dependent in suh a way that theyhave similar values (and will likely be in the set of k near-est neighbors) this an ause performane to be poor as thealgorithm may have to san the entire data set to �nd thedependent examples.An extreme version of this problem an our when the dataset originates from a attened relational database For exam-ple, if there are two tables X and Y , with eah example inX pointing to several di�erent objets in Y , our atteneddatabase will have examples with form (X1; Y1), (X1; Y2),(X1; Y3), (X2; Y4), : : : and so forth. As it is likely that thelosest neighbors of (X1; Y1) will be the examples (X1; Y2)and (X1; Y3) our algorithm may have to san the entire dataset until it �nds them to obtain a low sore.

However, our algorithm may still perform aeptably ondata sets with less severe violations. For example, the exam-ples in the Person data set are not ompletely independentas they are tied together by a ommon household.4 How-ever, the performane on this data set (b = 1:16) was stillvery good.The third situation when our algorithm an perform poorlyours when the data does not ontain outliers. For exam-ple, our experiment with the examples drawn from a uniformdistribution had very poor saling. However, we believe datasets of this type are likely to be rare as most physial quan-tities one an measure have distributions with tails.We are interested in extending our work in this paper inseveral ways. First, we are interested in speeding up thealgorithm even further. In Setion 4 we showed that thesaling performane depended on how the uto� hangesas we proess inreasingly larger data sets. The algorithmstarts with a uto� threshold of zero whih inreases as bet-ter outliers are found. One modi�ation is to start the al-gorithm with a pre-de�ned uto� threshold below whih wewould onsider any example to be uninteresting. In prelim-inary experiments, a good initial guess ould ut time toa third. There may also be automati ways to get a gooduto� early. For example, we ould �rst proess the exam-ples with a small data set to get an idea of the examplesthat are most unusual. We then plae these examples at thebeginning of the data �le.Another pressing limitation is that our work has only ad-dressed �nding outliers in the data sets that an be repre-sented with a vetor spae or equivalently a single table in adatabase. Many real data soures will be in the form of re-lational databases with multiple tables that relate di�erenttypes of information to eah other.To address relational data, the simplest solution is to at-ten the database with join operators to form a single table.While this is a onvenient solution it loses muh of the infor-mation available. For instane, a attened database annoteasily represent households that have a variable number ofindividuals. We also found that attening a database ouldreate dependenies between examples and, as we explainedabove, this an redue the e�etiveness of randomizationand pruning.We are urrently investigating how we an extend our al-gorithm to handle relational data natively. There are tworesearh questions that arise. First, how does one de�ne adistane metri to ompare objets whih may have a vari-able number of linked objets? There has been some workon de�ning metris for relational data [6, 9, 15℄. The entralidea is to apply a reursive distane measure. That is, toompare two objets one starts by omparing their featuresdiretly, and then moves on to ompare linked objets andso on. Seond, how does one eÆiently retrieve an objetand its related objets to ompare them in the ontext ofsearhing for outliers? Retrieving related objets may in-4The Census mirodata is based on luster samples, i.e., thesamples are made of households or dwellings from whihthere may be multiple individuals. Individuals from thesame household are not independent.



volve extrating reords in a non-sequential order and thisan greatly slow database aess.Finally, there are many pratial issues with algorithms formining distane-based outliers that we did not investigatesuh as determining how to set algorithm parameters suhas k, the blok size, the distane measure, and the sorefuntion. Eah of these parameters an have a large e�et onthe disovered outliers (or running time for the blok size).In supervised lassi�ation tasks one an set these param-eters to maximize preditive performane by using a holdout set or ross-validation to estimate out of sample perfor-mane. However, outlier detetion is unsupervised and nosuh training signal exists.
7. CONCLUSIONSIn our work applying outlier detetion algorithms to large,real databases a major limitation has been saling the al-gorithms to handle the volume of data. In this paper, weaddressed the saling problem with an algorithm based onrandomization and pruning whih �nds outliers on manyreal data sets in near linear time. This eÆient saling al-lowed us to mine data sets with millions of examples andmany features.
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