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Electromechanical actuators have been gaining increased acceptance as safety-critical actuation devices in the next

generation of aircraft and spacecraft. The aerospace manufacturers are not ready, however, to completely embrace

electromechanical actuators for all applications due to apprehension with regard to some of the more critical fault

modes. This work aims to help address these concerns by developing and testing a prognostic health-management

system that diagnoses electromechanical actuator faults and employs prognostic algorithms to track fault progression

and predict the actuator’s remaining useful life. The diagnostic algorithm is implemented using a combined model-

based and data-driven reasoner. The prognostic algorithm, implemented using Gaussian process regression,

estimates the remaining life of the faulted component. The paper also covers the selection of fault modes for coverage

and methods developed for fault injection. Validation experiments were conducted in both laboratory and flight

conditions using a flyable electromechanical actuator test stand. The stand allows test actuators to be subjected to

realistic environmental and operating conditions while providing the capability to safely inject and monitor

propagation of various fault modes. The paper covers both diagnostic and prognostic run-to-failure experiments,

conducted in laboratory and flight conditions for several types of faults. The experiments demonstrated robust fault

diagnosis on the selected set of component and sensor faults and high-accuracy predictions of failure time in

prognostic scenarios.

I. Introduction

I NRECENTyears, the designers of new aerospace vehicles have been moving away from the more traditional hydraulic actuators and toward
fly-by-wire technologies. Several types of actuationmechanisms are being used in such fly-by-wire designs, with electromechanical actuators

(EMA) being one of them. As actuators are typically among the most safety-critical components of an aerospace system, an undetected or
unmanaged actuator failure can lead to serious consequences [1]. Although actuators have been studied extensively from a functional point of
view, studies from a health-management point of view have been rather limited, largely due to the unavailability of fault data (either from fielded
applications or laboratory experimentswith seeded faults). In setting up actuator fault-injection experiments, however, a researcher is facedwith a
number of challenges:

1) The first challenge is realism. To gain confidence in electromechanical actuator health-management algorithms, phenomena inherent to the
flight environment (such as vibration, acoustic noise, electromagnetic interference, and acceleration loads) need to be reproduced in the test setup.
Fault seeding techniques need to be chosen with realism in mind as well, especially for faults that would normally occur as a function of long-
lasting operational conditions (fatigue-induced faults, for example).
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2) The second challenge is cost. As is often the casewith experimental data collection, there is the need to strike a balance between realism and
cost. Quality actuators, especially those developed for use in flight applications, can cost tens of thousands of dollars each. Yet, the number of test
articles needs to be large enough to discover salient data features and ensure statistical significance of the conclusions. Creating a realistic
environment via a flight-test program or an appropriate laboratory setup could become expensive as well. Cost constraints may also impose limits
on the realism of fault injection.

3) The third challenge is time. Development of a detectable fault and its transition to failure can take years for most EMA faults modes under
common operating conditions. Such a length of time is rarely available for any development program. Thus, accelerated agingmethods need to be
developed and their correlation to naturally occurring faults needs to be established.

4) The fourth challenge is instrumentation. When instrumenting test articles, limitations on sensor suits and data acquisition (DAQ) systems
imposed on fieldable solutions have to be considered. For example, although having high-precision piston position sensors on an actuator would
help with detecting and characterizing fault models such as backlash, it would not be practical for most fielded applications.

In this paper, we describe our efforts in addressing the aforementioned challenges. To increase the realism of fault-injection experiments (while
keeping experimental costs low), a hardware testbed was constructed for use in both laboratory and in-flight experiments. The most common and
important EMA fault modes were examined and fault-injection methods for several of them (of both abrupt and continuous degradation types)
were developed. The fault-injection methods used allowed execution of repeatable experiments with variable motion profiles, load profiles, and
fault magnitude values. A prototype diagnostic system, combining techniques from both data-driven and model-based areas, was developed to
monitor for and diagnose several fault types common to EMA.A prototype prognostic system for remaining useful life estimation was developed
as well, based on the principles of Gaussian Process Regression. The prognostic systemwas demonstrated on a cascading fault scenario, where a
fault in one component (jam in the ball-screw mechanism) leads to a fault in another component (heat build up and eventual windings insulation
failure in the electric motor). The paper is organized as follows. Section II, outlining prior and concurrent efforts, is based on a literature review
conducted in the early stages of the project. Section III gives a high-level overview of the research approach. Sections IVandV present the details
of the diagnostic and prognostic systems, respectively. The testbed used in the experiments is described in Sec. VI. Laboratory diagnostic
experiments are covered in Sec. VII, while prognostic experiments are the subject of Sec. VIII. A description of the flight experiments conducted
to date follows in Sec. IX. The paper concludes with a summary of the work accomplished and suggestions for future research directions.

II. Related Work

This section reviews related efforts in EMA health management. The section is organized in three parts, with the first one covering EMA
performance assessment methods, the second focusing more on fault-injection experiments, and the third illustrating diagnostic/prognostic
algorithm development work. The partition is not strict, as some of the efforts performed work within more than one area. In those cases, the
primary objective is emphasized.

A. EMA Performance Assessment

An EMA performance testing program was conducted at NASA Dryden Research Center in 2000 [2]. The Electrically Powered Actuation
Design (EPAD) programwas a joint effort between the Air Force, Navy, and NASA and had the goal of testing EMAs in-flight, driving a primary
control surface of a high-performance aircraft (F-18 jet). The test program was conducted over the full flight envelope of the aircraft and EMA
performancewas compared to the standard hydraulic actuator in the oppositewing. The program demonstrated that EMAperformance, according
to the key metrics, was close to that of the hydraulic actuator it replaced.

B. Fault-Injection Experiments

A team at LockheedMartin developed accelerated aging methods for EMA and conducted run-to-failure experiments to identify precursors to
failure [3]. In these experiments, the actuator lubricant was seededwith an abrasive contaminant in order to induce accelerated wear. The goal was
to achieve test article failure in 24 h or less, providing acceptable test times while ensuring that the precursor signatures are representative of
normal wearout (the term “precursors” in this study refers to the set of features that are particularly informative in predicting onset of a failure).
Failure precursorswere identified, although no one failure precursorwas consistently reliable in all of the experiments. Other challengeswere also
identified (such as wearout of nonseeded components affecting test results or cascading effects of support-bearing wear on the electric motor).

Spall, ball-screw return-channel jam, and backlash injection experiments [4] were conducted atMoog Corporation (with some of the data used
in the initial phase of thework described in this paper). An EMA test standwas constructed that usedMoog 883-023 actuators as test articles. Data
were also collected on nominal test articles, both on new test articles and those that underwent repeated disassembly and reassembly in order to
confirm repeatability of results after actuator refurbishing.

Astronics AES developed a test stand for nondestructive EMA testing [5]. Actuator overload, binding, jam, and broken linkage faults were
simulated by using an external “dead”weight to simulate drag or overload by bolting the actuator linkage to the support table to simulate jam and
by disconnecting the linkage to simulate broken linkage. No extra sensorswere added to the actuator, with all the fault-detection features extracted
from the current measurements in the power distribution system.Although the fault-injectionmethodswere relatively simple, interesting findings
were presented on fault detection with features derived from current signatures only.

C. Diagnostic and Prognostic Algorithm Development

Impact Technologies developed an EMA test stand, where a variety of faults were injected and datawere collected in a laboratory environment.
Faultmodeswere chosen based on an extensive failuremodes, effects, and criticality analysis (FMECA) study and includedmotorwinding shorts,
rotor shaft eccentricity, and encoder malfunctions [6]. A fault-detection system was developed and validated using the collected data.

A joint team from the Georgia Institute of Technology, the Northrop Grumman Corporation, and the U.S. Air Force Research Laboratory
pursued development of a prognostics and health management (PHM) system for EMAs using Kalman and particle filters [7]. Another activity
conducted under the program was the development of reconfigurable control algorithms [8]. The algorithms took advantage of online real-time
remaining useful life (RUL) estimates of a failing component and reconfigured the available control authority by trading off system performance
with control activity.

A linear quadratic optimal control was developed at TheBoeingCompany to extend the remaining life of themotor bearing and brushless direct
current motor windings in an EMA [9]. A model was developed to correlate motor operating temperature and the winding lifetime, and various
control strategies were compared using a simulation environment. In another collaborative effort between The Boeing Company, the U.S. Air
Force Research Laboratory, and Smiths Aerospace in 2006, an aircraft electrical power systems prognostics and health-management systemwas
developed to address faults in electric actuation, fuel pumps and valves, and arc fault protection [10]. Actuator jam faults due to gear, bearing, and
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ball-screw malfunction were studied. Further, winding shorts were simulated at four discrete levels by switching connections in single motor
phasewindings. Ball bearing degradationwas tracked as an increase in freeplay in the EMAmotion. The conclusion from the study, however, was
that the indicators found had limited sensitivity to be able to distinguish betweenvarious EMA fault modes andmore investigationwas required to
determine the appropriate sensor suite and signal processing methods.

Work conducted byRidgetopTechnologies focused primarily onmodeling, simulating, and developinghealth-managementmethods for power
electronics components of EMA systems [11]. The most likely fault modes in power components, such as metal oxide semiconductor field-effect
transistors (MOSFET) and insulated-gate bipolar transistors (IGBT), were selected and modeled. Ridgetop Technologies also created a series of
hardware testbeds that allowed fault injection by switching current flow from a healthy component to a degraded one.

III. Approach

The overall goal of this work was to create, to the extent possible, an example process of developing an EMA health-management system,
starting with fault modes analysis and ending with prognostic assessment of the actuator health. The step subsequent to prognostic health
assessment, involving decision-making based on system health information, is the subject of ongoing research, with some of the preliminary
results described in [12,13].

A. Failure Modes, Effects, and Criticality Analysis Studies

As the first step, representative failure modes, effects, and criticality analysis (FMECA) documents for several EMA types were obtained in
order to compile a prioritized list of fault modes. This list contains faults that are deemed to be themost likely and consequential. The faults on the
list were classified into four approximate categories: sensor, motor, mechanical/structural, and electrical/electronic. Examples of sensor faults
include bias, drift, scaling, and dropout. Motors are prone to developing winding shorts, rotor shaft eccentricities, and magnet delaminations.
Mechanical/structural faults examined include return-channel jam, spalling, and backlash. Electrical and electronic components can suffer
dielectric breakdowns, insulation deterioration, or intermittent contact, among other problems. For a more detailed discussion on the subject,
please refer to [14].

B. Modeling

Given the prioritized list of EMA faults, the modeling effort was initiated. A physics-based modeling approach was chosen to provide an
accurate representation of fault progression. The physics-based approach was complemented by data-driven machine learning techniques, where
appropriate. The modeling efforts ranged from creation of high-level models of EMA operation [14,15] to the more detailed studies of bearing
ballsmotion inside ball-screw raceways and return channels, aswell as the effects of lubricants on the dynamics of thatmotion.Although not all of
these models ended up being selected for use with our health-management algorithms, all of them provided crucial insights into the specifics of
EMA operation under various conditions.

C. Diagnostic and Prognostic System Development

Development of health-management (diagnostic and prognostic) algorithms followed. First, a neural network-based diagnostic system was
developed, described in detail in [16]. The system was capable of diagnosing such fault modes as ball-screw return-channel jams, spalls, and
sensor faults of varying magnitudes. For the next version of the diagnostic system, a hybrid (combined model-based/data-driven) approach was
adopted [17]. This was complemented with a prognostic system, which covers a subset of faults using Gaussian process regression (GPR)
approach (described in Sec. V).

D. Experimental Validation

To verify performance of the algorithms in a relevant environment, several EMA testbeds were used. One of them, previously mentioned in
Sec. II, was constructed by Moog Corporation. Data collected on this test stand were used in verifying the performance of the neural network
diagnostic classifier. Although laboratory test stands make it possible to simulate some of the desired flight conditions on the ground, testing
equipment and algorithms in the presence of vibrations, noise, acceleration loads, electromagnetic interference (EMI), and temperature changes
inherent to flight is invaluable. These considerations led to the development of the flyable electromechanical actuator (FLEA) testbed,which is the
testbed used in this work.

The FLEAwas designed as a self-contained lightweight test fixture containing three actuators: one nominal, one injected with faults, and the
third providing dynamic load (Fig. 1). The load is switched in flight from the healthy to the faulty test actuator, thus allowing collection of both
baseline and offnominal sensor data under the same conditions. The testbed flies on a host aircraft, mimicking one of its control surface actuators.
Position and load information for the active test actuator is derived from the corresponding real-time values of the target actuator on the host
aircraft. Data collected on the stand are routed to the prognostic health-management system that monitors actuators for faults and, if a fault is
detected, predicts the effects on actuator performance and its remaining useful life. Although the main purpose of the FLEA is to perform data

Fig. 1 FLEA actuator coupling system.
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collection in real-time flight conditions, experiments using the testbed can (and have been) performed in laboratory conditions. Laboratory
experiments are useful for verifying and validating performance using well-defined scenarios. Flight and laboratory experiments involving the
FLEA are described in detail in Secs. VII–IX. Careful consideration was given to the design of the experiments, especially to developing fault-
injection techniques that are as realistic as possible, both in terms of theirmagnitude and, for gradually growing faults, in terms of time progression
from fault to failure. These techniques are covered in Sec. VI.

In addition to demonstrating diagnostic and prognostic capabilities, an important aspect of the flight experimentswas to collect suitable data for
further development of PHM algorithms between the flights. These data are required to have certain properties to make them suitable for the
purpose. For instance, prognostic algorithms require availability of run-to-failure data. It can be challenging to obtain continuous run-to-failure
data during a limited number of relatively short-duration flights, as some of the faults types take longer than that to grow and reach failure levels.
Furthermore, slow fault growth characteristics lead to a very large amount of data (multiple sensor readings combined with high sampling
frequencies) with a relatively small incremental information gain from the prognostics point of view. To alleviate this problem, several approaches
have been tested. With the one currently used on the testbed, snapshots of high-sampling-rate data are taken during a flight at predetermined
intervals. This way, under the assumption of slow fault growth, the loss of important trend information is contained to acceptable levels. It must be
noted that this approach is not used for the diagnostic system, which requires continuous data at a lower sampling rate (and, possibly, a smaller
overall set of measurements). Once a fault is detected and confirmed, a trigger is used to activate the prognostic algorithm and a higher-sampling-
frequency data collection for relevant channels is initiated.

IV. Diagnostic System

Diagnostic approaches can be broadly divided into two types: model-based [18] and data-driven [19]. Model-based schemes rely on a system
model built from a priori knowledge about the system, whereas data-driven schemes do not require such models but instead require large sets of
exemplar failure data, which are often not available. Some of the sensors available in the EMA, such as current and voltage sensor outputs, can be
modeled using physics-based differential equations and can be used formodel-based diagnosis of faults in EMA.Themodeling of accelerometers,
however, is outside the scope of this work, and hence a data-driven feature-based diagnosis approach is better suited to leverage accelerometer
information for faults disambiguation. Our approach to EMA diagnostics synergistically combines model-based and data-driven diagnosis
techniques in order to improve upon either approach implemented individually. First, we discuss the model-based and feature-driven methods
implemented, and then we describe how these methods are combined into the diagnosis engine for the FLEA.

A. Model-Based Fault Detection

We use the TRANSCEND diagnosis approach [20] for the model-based diagnoser (Fig. 2). In TRANSCEND, the observer module takes into
account the control inputs sent to the system and the measurement readings obtained by the sensors in order to track the system dynamics and
estimate the unobservable system states. The observer can, for example, be implemented as a particle filter [20], which generates estimates using a
system of first-order differential state-space equations.

For fault detection, TRANSCENDuses a statisticalZ-test [21] on each sensor output to determinewhether the deviation of a sensor output from
its nominal expected value is statistically significant, taking into account sensor noise and other uncertainties. Once a significant deviation is
detected in any onemeasurement, the symbol generationmodule is initiated, and everymeasurement residual (r�t� � y�t� − ŷ�t�, where y�t� is an
observedmeasurement and ŷ�t� is the measurement estimate calculated based on the state estimates obtained from the observer) is converted into
qualitative�,−, and0 symbols, based onwhether or not the observedmeasurement is above, below, or at its expected nominal value, respectively.

The detection of a fault triggers the qualitative fault isolation module to determine the fault hypotheses, i.e., all possible system parameters and
their direction of change that could explain the observedmeasurement deviation from nominal. Initially, based on the first observedmeasurement
deviation, a set of fault candidates is generated [20]. Then, for each fault candidate, we systematically determine a fault signature for each
measurement [20]. A fault signature is an ordered set of two 0,�, or− symbols (one for magnitude and the other for slope), which represent how
each measurement residual would deviate if that fault was the only fault in the system (in this work, we restrict our discussion to single faults).
After the fault signatures are generated, qualitative diagnosis involves comparing an observed deviationwith the expected fault signatures of each
fault for that measurement and removing any fault hypothesis that does not explain the observed deviation. If the qualitative deviations in
measurements alone cannot help discriminate some faults, we term these faults as aggregate faults and consider them to belong to an ambiguity
group. It is desired to reduce the fault hypotheses set to a singleton set. However, this is not always possible in a real engineering system. For
example, in the FLEA, spall and jam faults have similar effects on all non-accelerometer sensors. The qualitative model-based approach alone is
therefore not sufficient, and a data-driven approach is employed to further disambiguate faults and obtain better diagnosis results.

B. Data-Driven Fault Isolation

The qualitative diagnoser described previously uses low-sampling-frequency data to make comparisons between the actual system output and
the model output. This allows a fast and computationally inexpensive first-stage screening in real time. However, once a fault ambiguity set
appears, a more detailed analysis is required that uses higher-resolution higher-sampling-frequency data, such as accelerometer signals. Figure 3
shows the architecture of a generic feature-driven diagnosis approach,whichworks by reasoning over a set of features or condition indicators from
sensor data and can distinguish (although perhaps not individually) between fault classes of interest.

Fig. 3 Feature-driven diagnosis architecture.

Fig. 2 TRANSCEND diagnosis architecture.
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In most cases, a suitable set of features must be identified and computed from the training data during the training phase. Then, at runtime, the
same features need to be computed from the incoming condition monitoring data and supplied to the classifier, which then detects faults and
returns the most probable root causes. This data-driven mode can be relatively computationally expensive, depending on the feature extraction
methods and the size of the system. However, this complexity can be reduced if the scope of fault identification is narrowed to only ambiguous
situations. To accomplish this, a hybrid approach is adopted by combining qualitative and data-driven diagnostics.

C. Hybrid Diagnosis Approach

Themodel-based approachworkswell when one is able to derive analytical models for all the faults under consideration, aswell as their effects.
However, it may not be possible to do so for all the faults (due to resource constraints, for example). The feature-driven approach, on the other
hand, usually requires a large amount of training data under varying experimental conditions. Additionally, when the classifier has to consider all
faults and experimental conditions, the size and complexity of the classifier may become intractable. We present a hybrid method that combines
these two approaches, as illustrated in Fig. 4. This approach consists of an offline stage and an online stage.

1. Offline Stage

In the offline stage, a bond graph (BG) model of the system is derived [20] and a qualitative diagnosability analysis is performed on it. The BG
model can be used to generate qualitative signatures for all the faults represented by changes in the BG parameters. By comparing the qualitative
signatures, we can identify the ambiguity groups (groups of faults that have similar fault signatures). These groups represent faults that need to be
distinguished using the feature-driven approach.

For each ambiguity group, a set of features is extracted (using domain knowledge or by experimentation) that is identified to contain diagnostic
information to disambiguate the maximum number of faults in that group. This results in a fault-feature table that indicates how specific features
are influenced by faults. Table 1 shows an example of a fault-feature table. Each row of this table corresponds to a fault, and each column
corresponds to a feature. The cell entry corresponding to Faultn and Featurek contains a qualitative signature that represents how the fault affects
the feature. The qualitative signature belongs to a vocabulary of signatures for that particular feature. For example,Feature1 can have a vocabulary
of high, nominal, zero, and highlow, whereas Feature2 can have a vocabulary of “1” and “0,” denotingwhether a particular fault affects this feature
or not, respectively.

2. Online Stage

The online stage is carried out in two phases. In the first phase, the TRANSCEND approach is used to observe the system, detect, and
qualitatively isolate fault ambiguity groups. In the second phase, an isolated ambiguity group triggers the selection of rows from the fault-feature
table. These rows correspond to the faults in the ambiguity group. The goal of this phase is to determine the fewest sets of features to compute in
order to fully resolve the fault ambiguity. This problem can be proven to be nondeterministic polynomial-time hard (NP-hard); hence, no
polynomial-time solution is known. Using themost discriminative features first is an example of a fast, greedy search strategy that, however, does
not guarantee optimality. To obtain an optimal solution, we use a heuristic-driven best-first search, which is detailed in the next paragraph. This
approach can be easily replaced with any other optimal/exponential-time or suboptimal/polynomial-time method.

The selected fault-feature subtable can then be converted to a diagnoser tree using the measurement selection procedure detailed in [22]. The
nodes of this diagnosis tree are groups of faults, and the edges represent specific values for features. The root of the tree is the initial ambiguity
group. At each level, some of the tree features are selected that partition the ambiguity group in the most balanced fashion. Figure 5 shows an
example diagnosis tree. This can be formally specified as partitioning with the least difference between the largest and smallest partitions. Once
the best feature has been identified, the ambiguity group is partitioned into subgroups corresponding to the possible values for the selected feature
(one subgroup for each possible feature value). For each subgroup of a size greater than one, the next best feature (which creates themost balanced

Fig. 4 Hybrid diagnosis architecture.

Table 1 Fault-feature table

Fault Feature1 Feature2 : : : Featurek

Fault1 Vocabulary {Feature1} Vocabulary {Feature2} : : : Vocabulary {Featurek}
: : : : : : : : : : : : : : :

Faultn Vocabulary {Feature1} Vocabulary {Feature2} : : : Vocabulary {Featurek}
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partitions) is selected. This process continues until only subgroups of a size of one are left or there are no more features left to select. If there are
subgroups of a size greater than one, then this indicates indistinguishable faults. Algorithm 1 presents a method for identifying the ordered list of
features that will discriminate within the ambiguity fault set in the quickest and the most balanced manner.

Once the diagnoser tree has been identified, fault isolation is performed by walking down the tree from the root node. First, the feature
associated with the edges from the root node is computed. Depending on the value of the feature, the corresponding partition of the ambiguity
group becomes the current belief.Again,we compute the feature associatedwith that node to further reduce the size of the current ambiguity group
until we reach a leaf node of the tree.At this point, fault isolation is completed and the final ambiguity group (or aggregate faults) can be reported as
the diagnosis.

The construction of the diagnoser tree can be carried out offline for a set of identified ambiguity groups, in order to speed up computation at
runtime. However, if there is sufficient computational power, the lazy approach might be more suitable. In the lazy approach, the entire diagnoser
tree is not constructed. Rather, only the first best feature is identified. This feature is then computed, and the ambiguity group reduced. The
procedure is repeated (computing only the first best feature) for the current ambiguity group. The process concludes when a single fault has been
isolated or all features have been computed.

V. Prognostic System

The next step, after a fault is detected and isolated, is to track its rate of growth and estimate the remaining useful life. There are numerous ways
in which a prediction algorithm can be implemented; in this phase of the work, a GPR-based prediction algorithm was chosen [23]. This choice
was primarily guided by two factors:

1) GPR is a data-driven technique, and therefore does not require users to specify explicit fault growth models (which are often not available
during early research phases).

2) GPR can analytically process the uncertainty associated with the data.
GPR learns the trends based on evidence from data in a probabilistic framework and provides variance bounds for the predicted trajectory,

which can be interpreted as the subjective confidence in the predictions. Such estimates of uncertainties could play an important role for decision
making based on prognostic predictions. The choice of GPR for this effort originated from continuation of previous work, where GPR was
successfully employed as a prediction algorithm. Using an intelligent sampling scheme, the computational cost was brought down to within the
constraints of real-time prognostics [24], which made it an easy choice for this research effort. Performance of GPR has been compared with
competing data-driven methods in other publications, where GPR was shown to perform reasonably well in similar settings [25,26]. A brief
description of GPR is provided next.

AGaussian process (GP) is a collection of randomvariables, any finite number ofwhich has a jointGaussian distribution.A realGPf�x� is fully
specified by its mean function m�x� and covariance function k�x; x 0�, defined as

m�x� � E�f�x�� (1)

k�x; x 0� � E��f�x� −m�x���f�x 0� −m�x 0��� (2)

f�x� ∼ GP�m�x�; k�x; x 0�� (3)

where x and x 0 are input vectors, E is expectation, and GP is the Gaussian process function.

Fig. 5 Example diagnosis tree.

Algorithm 1 Selection of order of features

1: Inputs: Fault-feature table, FaultFeatTable; set of n ambiguous faults, FaultSet; set of features FeatureSet
2: Initialize: Fault partition, FaultPartition� fFaultSetg, such that it contains one partition with all ambiguous faults in it; ordered first-in first-out queue of
features, OrderedFeatureList� ∅
3: while jFeatureSetj � ∅ or jFaultPartitionj � n, do
4: BestPartition� FaultPartition
5: for each feature in FeatureSet, do
6: Identify new fault partition FaultPartitionNew such that BestPartition is partitioned into using feature and looking up FaultFeatTable
7: if FaultPartition is more balanced than BestPartition, then
8: BestPartition � FaultPartition
9: end if
10: Push feature into OrderedFeatureList
11: Remove feature from FeatureSet
12: end for
13: end while
14: return OrderedFeatureList, FaultSet
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The index setX ∈ R is the set of possible inputs, which need not necessarily be a timevector (although it is in our case). Given prior information
about the GP and a set of training points f�xi; fi�ji � 1; : : : ; ng, the posterior distribution over functions is derived by imposing a restriction on a
prior joint distribution to contain only those functions that agreewith the observeddata points. These functions can be assumed to be noisy, since in
real-world situations we only have access to noisy observations rather than exact function values. More precisely, yi � f�x� � ϵ, where ϵ is
independent, identically distributed, additive, Gaussian (normal) noise, with zero mean and σ2n variance [N�0; σ2n�]. Once we have a posterior
distribution, it can be used to assess predictive values for the test data points [23].

Domain knowledge available from the process is encoded by the covariance function k�X;X 0� that defines the relationship between data points
in a time series. Ideally, GPR can tap into prior knowledge about the form of covariance function, which may be inferred from the application
domain. Covariance functions consist of various hyperparameters that define the temporal characteristics of fault growth. Setting the right values
of such hyperparameters is key in learning the desired functions. A covariance function must be specified a priori, but corresponding
hyperparameters can be learned from the training data using a gradient-based optimizer, such as maximizing the marginal likelihood of the
observed data with respect to hyperparameters [27].

Having briefly described the fundamentals of GPR, we now outline the methodology used in the FLEA prognostic experiments. The
experiments serve a dual role. First, they facilitate demonstration of an integrated diagnostic and prognostic system in real-time conditions.
Second, data collected in flight operating conditions are valuable in developing algorithms robust against environmental noise. However, these
two disparate goals impose some non-overlapping requirements on the data-collection methodology. It is expected that the prognostic system is
triggered once the diagnoser indicates the onset of a fault mode. Data collected henceforth are processed in real-time by computing relevant
features. These features are then fed to the GPR algorithm for a certain period of time, in order to estimate GPR model parameters. Generally,
longer training periods result in better chances of the algorithm learning the true fault growth characteristics. However, to strike a balance between
the length of the training period and the risk of missing out on a sufficient prediction horizon, a limit on the training period must be set. After
training is complete, the algorithm starts predicting trajectories of fault growth. End of Life (EOL) is subsequently determined by where these
trajectories intersect the predetermined failure level threshold. Estimated EOL values can then be specified in relative terms by computing the
RUL values, if needed.

As more data are collected, the GPR model and, subsequently, the predictions are updated as well. It must be noted that GPR may run into
scalability issues if a long data history is used, as its computational complexity isO�n3�, where n here is the total number of input observations.
This problem is addressed by sampling the training points from the accumulated observation data. A fixed upper boundwas used for the size of the
covariance matrix and, subsequently, the number of training data points k. These k data points are sampled uniformly from all the history data
available until the current time index. Using these points, the algorithm carries out amaximum-likelihood optimization [28] to determine the best-
fitting hyperparameters for the chosen covariance function. Since this process involves numerical methods, the outcome of the optimization often
depends on the initialization of the hyperparameters. This further contributes to the uncertainty in the predicted outcomes. In the implementation
presented here, this uncertainty is characterized and handled in twoways. First, at each prediction time instant tp, a large (q ≈ 50) number of sets of
k data points each is drawn from the observed data. Then, q different GP models are trained based on these q sample point sets. Each GP model
yields amean and variance function resulting in a family of distributions to represent the variability in the RUL. The uncertainty in the distribution
parameters (mean and variance) is integrated to calculate a single probability density function for the RUL through a predictive distribution
computation method, described in [29]. By averaging the results from the q distinct GPRs, it is expected that variability resulting from random
sampling is largely eliminated, whereas the computational costs are kept low. In other words, computational complexity is now reduced from
O�n3� toO�qk3�, whereq ≪ n, k≪ n as time passes by.A similar conceptwas explored in [24], where temporal samplingwas used to parallelize
the algorithm and reduce its computational complexity.

VI. Testbed

The key ideas in designing and building the FLEA test stand were for it to be lightweight, self-contained, and capable of supporting three
different actuators: one nominal, one injected with faults, and the third providing dynamic load (Fig. 1). The load is switched in flight from the
healthy to the faulty test actuator, thus providing the fault-injection capability for the test stand without having to alter an actuator in flight. The
stand is connected to the aircraft data bus, and themotion profiles for the test actuators (aswell as the load applied to them) are derived dynamically
from the corresponding values for one of the aircraft’s control actuators. Being a largely self-contained unit, the FLEA only requires interfaces to
the aircraft data bus and power. An engineering model of the FLEA is shown in Fig. 6.

A. Mechanical

The test stand frame is constructed from T-slotted extruded aluminum segments connected with brackets and fasteners. The 1-cm-thick center
plate is attached to the frame and used for mounting the actuators and other components of the stand. The rigidity of the central plate was an
important design consideration; therefore, an analysis was performed that ascertained only negligible bending under the expected loads. Before a
flight, the sides of the chassis (except for the top) are coveredwith 3-mm-thick aluminumplates. These plates serve a dual purpose: as an additional
safety measure and to provide EMI protection.

Fig. 6 FLEA engineering model.
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The onboard computer, running the operating system, data acquisition, control, and health-management software, is based on an off-the-shelf
Pentium 4 3.2 GHzmotherboard. Storage is provided by two solid-state drives: one for the operating and control software, and another dedicated
to data storage. The actuators used in the FLEA at present are UltraMotion Bug actuators (see Fig. 7). They are controlled via a Galil 4030
multiaxis controller. Coupling of test actuators to the load actuator is accomplished via an electromagnetic system (presented earlier in Fig. 1).
Only one test actuator at a time is normally coupled to the load actuator.

B. Fault Injection

Faults are injected into the test articles in the following manner:
1) A jam fault is injected via a mechanismmounted on the return channel of the ball screw that allows us to stop circulation of the bearing balls

through the circuit.
2) A spall fault is injected by introducing cuts of various geometries via a precise electrostatic discharge process. The initial size and subsequent

growth of these cuts are confirmed by using an optical inspection and measurement system.
3) Motor failure is introduced by redirecting current from the affected motor into a sink load.
4) Sensor faults (bias, drift, scaling, and complete failure) are software-injected into themeasurements collected by the data acquisition system.

C. Sensor Suite and Data Acquisition System

The data acquisition system consists of two National Instruments 6259 cards and the Galil motor controller, and it supports the FLEA sensor
suite (Table 2). Low-speed data are acquired at a 1 kHz sampling rate and the high-speed data are acquired at a 20 kHz sampling rate. The
accelerometers are connected through custom-fabricated conditioner boards that supply themwith excitationvoltage and remove the dc portion of
the return signal. The current sensors are built in the Galil motor controller. Additionally, real-time data for calculating position and load profiles
are acquired when the FLEA is flown aboard an aircraft. Aircraft-specific software interface modules implement the needed bus communication
protocols and equations for translating aerodynamic data into commands for the load actuator. The acquired data are displayed for visual
inspection, saved to data files for analysis, and sent to the reasoning software. The overall control architecture is illustrated in Fig. 8.

D. Reasoning Software

Two reasoning modules are deployed on the FLEA: 1) diagnostic, and 2) prognostic (the respective algorithms were described earlier in
Secs. IVandV). The diagnoser is responsible formonitoring the sensor data and determiningwhether any faults are present in the system.After the
diagnoser has determined that a fault has occurred in the system, the prognoser is responsible for determining how the fault will progress and how
long the system’s remaining useful life is. Bothmodules are created inMATLAB [30] and interfacewith theLabVIEW[31] code of the control and
data acquisition system through queues and other data synchronization structures.

VII. Laboratory Diagnostic Experiments

The FLEA testbed allowsmeasurement of the current drawn from eachmotor, themotor temperatures, the load torque applied, and the position
of each actuator. Given these measurements, the following two models for the actuators were built:
Model 1: Model 1 takes in the actuator position and load torque applied as inputs to estimate the motor current and the motor temperature. The
equations for Model 1 are as follows:

i � 1

Kt

�
J
dω

dt
� Bω� τL

�
(4)

dT

dt
� 1

CT
�Ri2 − KT�T − Ta�� (5)

Table 2 FLEA sensor suite

Sensor Quantity Type Location

Load cell 1 Omega LC703-150 Between the load actuator and the test actuator coupling mechanism
Accelerometer 2 Endevco 7253C On the nut of the ball screw
Thermocouple 4 T type On the ball-screw nut and motor housing
Rotary encoder 3 Ultramotion E5DIFF optical encoder with differential output On the actuator motors
Current sensor 3 Galil On the Galil motor controller

Fig. 7 UltraMotion Bug actuator.
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where i is the current drawn by the actuator motor; ω is the angular velocity of the motor; J is the motor moment of inertia; B is the damping
(viscous friction) coefficient; τL represents the opposing load torque; Kt is the torque constant; T is the motor temperature, Ta is the ambient
temperature;CT is the thermal inertia coefficient;R is themotor electrical resistance; andh is the heat transfer coefficient. In the experiments using
Model 1, we assume there are no faults in sensors ω and τL.
Model 2: Model 2 takes in as inputs the motor current, motor temperature, and load torque applied to estimate the actuator position and motor
temperature. The equations for Model 2 are as follows:

dω

dt
� K1�i� iload� � K2�i − iload� � K3i� K4τL (6)

dT

dt
� 1

CT
�Ri2 − KT�T − Ta�� (7)

where iload denotes the current drawn by the load actuator motor;K1,K2,K3, andK4 are constants; and all other parameters are the same as those
used in equations of the first model. In the experiments using Model 2, we assume there are no faults in sensors i and τL.

The diagnosis experiments usingModels 1 and 2 cover a large variety of faults, including sensor faults inmotor current, motor temperature, and
actuator position sensors. Optimization routines are used to estimate the model parameters so as to minimize the error between the actual
measurements and the measurement values predicted using the model equations. The estimated parameter values are then used in the model
equations to generate high-fidelity estimates of the measurements.

A. Diagnostic Experiments Using Model 1

The actuator models are instrumental in deriving qualitative fault signatures for the different faults for motor current and motor temperature
sensors, which are then used for fault isolation. Table 3 shows the different fault signatures for Model 1. Note that we have differentiated between
“positive” and “negative” versions of some of the faults, such as jam and dead current sensor faults. This is because the current can be negative or
positive, depending on the direction of movement of the actuator; therefore, a positive or negative deviation in the current measurements is
anticipated.

aircraft data bus

stored profiles

manual control

data plotting/storage

diagnoser

prognoser

FLEA

DAQ

Fig. 8 FLEA control architecture.

Table 3 Fault signature table for diagnostic experiments withModel 1

Fault Motor current Motor temperature

Motor temperature positive drift 00X 0�X
Motor temperature negative drift 00X 0−X
Motor temperature positive bias 00X �0X
Motor temperature negative bias 00X −0X
Motor temperature positive scaling 00X �0X
Motor temperature negative scaling 00X −0X
Motor temperature dead sensor 00X −�Z
Motor temperature positive drift 0�X 00X
Motor temperature negative drift 0−X 00X
Motor temperature positive bias �0X 00X
Motor temperature negative bias −0X 00X
Motor temperature positive scaling �0X 00X
Motor temperature negative scaling −0X 00X
Motor temperature dead sensor positive ��Z 00X
Motor temperature dead sensor negative −�Z 00X
Actuator jam positive �0X 0�X
Actuator jam negative −0X 0−X
Actuator spall 00X 00X
Motor failure −0Z 0−X

Table 4 Fault-feature table for diagnostic
experiments with Model 1

Fault Vibration energy

Actuator jam Low compared to nominal

Actuator spall High compared to nominal

Motor fault Zero

Current sensor fault Nominal

Temperature sensor fault Nominal
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Table 4 is an example of a fault-feature table for one of the accelerometer features: vibration energy. The feature indicates whether the vibration
energy is zero, nominal, low compared to nominal, or high compared to nominal. Based on this fault-feature matrix, and given the present set of
fault hypotheses, we generate a tree data structure that provides a subset of features and the sequence in which they should be used to refine the
fault hypotheses set to (ideally) a singleton set the fastest.

The hybrid diagnoser is invoked by the controlmodule to performonline diagnosis. The data acquisitionmodule acquires the data continuously
and sends the data to the diagnoser. An observer synthesized from the system equations uses these data to determine if a fault has been detected. A
qualitative fault isolation code attempts to isolate the faults resulting in an ambiguity group. The fault-detection notification, as well as the
ambiguity group (as it is being refined), is communicated back to the user interface module.

The diagnoser was run on a set of predefined scenarios with varying positions (sine, trapezoidal, triangular, and sine sweep) and loads (constant
load between −70 lb∕ − 31.75 kg and�70 lb∕31.75 kg) profiles. Some of these scenarios were nominal, while others incorporated hardware-
injected faults (jam, motor failure, and spall) and software-injected faults (sensor spoofing). The results are listed in Table 5. Recall that the final
outcome of our combined diagnosis approach can be a set of ambiguous faults. A diagnosis is considered to be correct as long as the ambiguous
fault set is minimal and the true injected fault is included in the set.

The hybrid diagnosis method is illustrated via a jam fault example as follows. The actuator is operated in a sinusoidal position profile with a
frequency of 0.5Hz, an amplitude of 4 cm, and a load of�40 lb∕18.14 kg. The scenario is 30 s long,with a jam fault being introduced at t � 17 s.
At t � 23.8 s, a positive deviation is observed in themotor current. Based on the fault signatures shown inTable 3, the possible fault candidates are
motor current positive drift, motor current positive bias, motor current positive scaling, motor current positive dead sensor, and actuator jam

fault. All other faults are dropped fromconsideration.However, no othermeasurement deviation is observedby the time the scenario is completed.
Hence, a feature-driven diagnosis approach is employed. The energy feature is computed and compared to nominal actuator readings, operated
with a similar sinusoidal position profile. The vibration energy feature, computed from the experimental run, is found to be low. From the fault-
feature table for the FLEA (Table 4), this helps to isolate (correctly) the actuator jam fault; hence, all other fault hypotheses are dropped from
consideration.

B. Diagnostic Experiments Using Model 2

The experiments withModel 2 focused primarily on faults in position and temperature sensors. Table 6 shows the various fault signatures. The
same features are used in this set of experiments as in the case ofModel 1 (see Table 4). Note that, for diagnosing “stuck” faults, a runningwindow
scheme is implemented that checks if the incoming sensor signals are the same for a predetermined number of time steps (Wstuck). If so, a stuck
fault is detected and isolated.

As an example, let us consider amotor temperature sensor drift fault with a slope of 0.3 F∕s (0.167 °C∕s), introduced at t � 21 s. The observed
signatures are actual values from sensors that are inherently noisy due to the properties of the sensor and the data acquisition system. The estimated
values arevalues calculated using amodel and hence do not include any noise.As shown in Fig. 9, the estimated value iswithin the noise bounds of
the observed signal until time t � 28.8 s, at which point an increase in the temperaturewas detected because the estimated signal is not consistent
with the observed signal, even when considering the noise. Comparing this increase in temperature with the signatures shown in Table 6, the
diagnoser indicates that the possible fault candidates are motor temperature positive bias, motor temperature positive drift, and motor

temperature positive stuck faults. At t � 41.59 s, the�0X symbol is captured, indicating that the increase in the temperature is a gradual one.As a
result, all candidates, other than the true fault (motor temperature positive drift), are dropped from consideration, and the correct diagnosis is
obtained. In this scenario, the features shown in Table 4 are not used.

The results of the diagnosis experiments usingModel 2 are summarized in Table 7. Recall that a diagnosis is considered to be correct if the true
injected fault is included in the diagnosis results.

Table 5 Results of diagnostic experiments with Model 1

Fault Scenarios Correct % accuracy

Nominal 134 133 99.25
Motor current bias 15 15 100.00
Motor current dead 15 15 100.00
Motor current drift 15 15 100.00
Actuator position sensor failure 21 13 61.90
Motor current scaling 15 15 100.00
Jam 15 10 66.67
Motor failure 15 15 100.00
Spall 15 15 100.00
Motor temperature bias 15 15 100.00
Motor temperature dead 15 15 100.00
Motor temperature drift 15 15 100.00
Motor temperature scaling 15 15 100.00
Total 320 306 95.63

Table 6 Fault signature table for diagnostic experiments with
Model 2

Fault Actuator position Motor temperature

Actuator position positive stuck ��X 00X
Actuator position negative stuck −�X 00X
Motor temperature positive bias 00X �0X
Motor temperature negative bias 00X −0X
Motor temperature positive drift 00X 0�X
Motor temperature negative drift 00X 0−X
Motor temperature positive stuck 00X ��X
Motor temperature negative stuck 00X −�X
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VIII. Laboratory Prognostic Experiments

As determined during the initial stages of this work, jam in the return channel of a ball-screw actuator is one of the faults that is of primary
concern in EMA applications. The fault scenario that was selected as motivation for this series of experiments was: a jam occurs in flight and the
actuator is still needed to land the aircraft safely; estimate the remaining useful life given that the future motion and load profiles for the faulty
EMA remain the same as for a healthy actuator.

To set up this experiment, a jam fault was injected into the return channel of an actuator using the technique described in Sec. VI. An operating
regionwas then picked from themanufacturer’s performance diagram (Fig. 10), where a healthy actuator can function continuously for prolonged
periods of time (i.e., rated for a 100% duty cycle). Motion and load profiles were designed to stay within this region. The selected motion profile
was a sine wave with an 8 cm (3.15 in.) peak-to-peak amplitude and 0.5 Hz frequency. Load was constant throughout a scenario, at −22.68 kg
(−50 lb), 18.14 kg (�40 lb), or 22.68 kg (�50 lb). Motion was performed in 30 s intervals, with 15 s cooldown periods in between. Throughout
the experiments, the combined electrical current to load and test actuators was limited to 6A at 28V dc at all times. Increased friction from the jam
in the ball-screw nut resulted in additional current directed by the controller into the test actuator motor in order to attempt performing the same
motion profile under the same load as a nominal actuator. This above-nominal current resulted in gradual heat buildup inside motor housing,
despite the cooldown periods between motion intervals. Excessive heat eventually caused damage to winding insulation, followed by a short
circuit and, ultimately, failure of the motor.

Initial experiments demonstrated that motor failure would typically occur when the temperature, as measured on the surface of the motor
housing, reached approximately 85°C. Figure 11 illustrates fault progression for three different runs. The reader may observe that one of the
motors on the chart lasted measurably longer than the other two; although, judging by the symptoms, damage to its motor windings insulation
started to occur in approximately the same temperature region as for the other two test articles. The prognostic algorithm was executed on the
collected data, using themotor housing temperature measurement as the feature, and its EOL predictions were then compared to the actual failure
times. Predictions were updated as time progressed and more data became available. For illustration purposes, we show only three prediction
updates at approximately 50, 70, and 85% of the total time between onset of detectable damage and EOL (Fig. 12). The results are quantitatively
summarized in Table 8. The point of onset of detectable damage in an experiment such as this can be defined in a number of different ways. For the
analysis presented next, this point was chosen rather conservatively at 40°C, which is the average temperature of a nominal actuator executing the
same motion profiles under the same magnitude of loads. It was assumed that operating above this temperature begins the process of winding
insulation deterioration. Predictions were initiatedwhen the temperature crossed the 40°C level. The predictedmean fault progression trajectories
generated at each of the three prediction points are shown in Fig. 12 with dashed lines, and the 2σ uncertainty bounds for each are illustrated with
different levels of grayscale shading. As can be observed from the plots, the cone of uncertainty shrinks as the algorithm sees more data from the
faulty actuator.

In the first run-to-failure experiment, the opposing load is set to 18.14 kg (�40 lb) in the compressive direction, with a sine wave position
profile executed. The amplitude of the wave is 80 mm and the frequency is 0.25 Hz (the same position profile was used for the other two
experiments illustrated). The failure of the motor occurs at 24.6min (1476 s). Failure for themotor in the next experiment, with a higher, 22.68 kg
(�50 lb) (compressive) load, occurs faster, in only about 9.73 min (584 s). The last scenario illustrates why it was deemed important to exercise
the actuators not only in compressive direction but also in tensile. The general trajectory to failure appears to be somewhat different from the
compressive runs and the EOL is not reached as quickly as in the case of an equivalent compressive load. Still, the prognostic algorithm, using the
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Fig. 9 Estimated and observed temperatures for the motor temperature drift fault scenario with Model 2.

Table 7 Results of diagnostic experiments with
Model 2

Fault Scenarios Correct % accuracy

Position stuck 20 20 100.00
Temperature bias 60 45 75.00
Temperature drift 60 37 61.67
Temperature stuck 60 57 95.00
Total 200 159 79.50
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same covariance function and hyperparameter initialization strategy,was able to adapt and predict theEOLwith amanageable degree of error. The
plots in the right column of Fig. 12 graphically show the α − λ performance of the predicted RUL in the three cases, as it evolves with time. In an
ideal case, the predictions made at any given time tp should line up with the ground truth RUL line (shown as the dotted line in the middle of the
cone) and the spread should be minimal. It can be observed that, generally, in all three cases, not only the accuracy improves with time but the
prediction spread is also reduced. Table 8 further summarizes the prediction results numerically using the prognostic performance metrics
described in [32]. The prediction horizon (PH) metric represents the first point in time when the predicted RUL reaches within 10% of the actual
failure time. A longer PH can be seen as an early warning, potentially allowing a timely mitigation action. It may be noted that, although for the
−50 lb case the predictions enter the α cone on the 10th minute, the PH is computed based on the 12th-minute predictions, since predictions were
not consistently inside the cone before that. Outcomes of the α − λmetric, represented as 0 or 1 in Table 8, denote whether the error is contained
within the 10% error cone defined as the α bounds at various prediction time points (specified by λ). Thismetric visually summarizes performance
(prediction accuracy and uncertainty) for a quick overview. Further, accuracy is also computed quantitatively as percentage relative accuracy
(RA), where the error is normalized by the actual remaining life at any given time λ. This represents the notion that errors should reduce as end-of-
life time approaches. A detailed discussion of the prognostics metrics can be found in [32].

In Table 8, “NAN” entries for RA indicate that a prediction was not available with sufficient confidence. Also noteworthy is that, even though
the absolute errors in predictions generally reduce as time passes by, the relative accuracy may deteriorate close to the end of life. This shows that
theGPmodel constructed for this application is not able to adaptwell to the process dynamics toward the end.An explanation and repercussions of
such behavior are also presented in [32].

IX. Flight Experiments

There have been several FLEA experiments on aircraft to date. Flights on C-17 aircraft served to mature FLEA’s hardware and software,
whereas subsequent experiments on UH-60 helicopters provided a rich test environment for the initial validation of the diagnostic and prognostic
systems with several fault types. The UH-60 experiments were conducted over the course of eight flight hours, involving all of the usual flight
regimes (straight and level flight, accelerated flight, ascents, descents, hover, and banked turns). The flights were conducted in the San Francisco
Bay area airspace. Although further flight experiments are needed to draw statistically significant, quantitative conclusions (as was done in the
preceding sections for laboratory experiments), the experiments conducted so far demonstrate the viability of the overall concept.

The test aircraft that hosted the FLEA, shown in Fig. 13, is an EH-60L helicopter (the electronic countermeasures variant of theUH-60L). All of
the electronic countermeasures mission equipment has been removed, with the exception of the Honeywell H-423 inertial navigation unit and
associated control interfaces.

Fig. 10 Performance specifications for UltraMotion Bug actuators (courtesy of UltraMotion Corporation).
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Fig. 11 FLEA run-to-failure data for motor winding failure.
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Instrumentation racks and an airframe data system (ADS) have been installed in the cabin, and sensors have been mounted throughout the
control system to provide position information on the flight controls, stability augmentation system actuators, and the primary servos. TheADS is
capable of recording aircraft state data that can then be downlinked to a telemetry station. The FLEA is mounted to the floor of the aircraft cabin
and is controlled by a system operator via a laptop computer. The relevant telemetry data are supplied to the FLEA by ADS.

To set up the experiments, a target actuator was selected on the aircraft. In this case, it was the forward primary servo, which is the actuator
responsible for pitch control of themain rotor blades. The FLEAwas connected to the vehicle’s data bus, obtaining vehicle and flight environment
parameters in real time (e.g., positions of the servos, rotor blades pitch angles, airspeed, altitude, and air density). During the experiments, the test
stand executedmotion sequencesmatching those of the target actuator. Load profiles executed by the FLEA’s load actuator were derived using the
real-time flight dynamics data and simplified load models based on the experimental data and analysis described in [33–38]. In particular, the
equivalent retreating indicated tip speed (ERITS) [33] equations are used in conjunction with fixed forward pitch link peak-to-peak loads vs
ERITS data for different flight regimes (examples can be seen in Figs. 14a and 14b):

ERITS �
�
ΩR

��������
ρ

ρSL

r
− Vi

� ������������
W0

NZW

s
(8)

whereNz is the load factor along the body z axis,R is the rotor blade radius,Vi is the aircraft indicated airspeed,W is the aircraft currentweight,W0

is the aircraft nominal weight, Ω is the main rotor angular velocity, ρ is the current air density, and ρSL is the sea level standard air density.
Figure 15a shows a typical motion profile executed over a period of about 20 min. Figure 15b shows the desired (computed) load profile.

Fig. 12 RUL prediction and α − λ performance under three different load conditions.
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Prognostic experiments executed in flight were designed around the same fault type as the experiments described in Sec. VIII (mechanical jam
leading to motor overheating). Figure 16 shows an example motor temperature prediction curve obtained during a flight experiment, where
thermocouple measurements are on the left-hand side of the figure (exhibiting a certain amount of noise) and the prediction line of the GPR

a) Level-flight fixed forward pitch link load variation b) Pullup maneuver, fixed forward pitch link load 
variation

Fig. 14 Example ERITS [33] data for different flight regimes.

Fig. 13 FLEA mounted on the test aircraft.

Table 8 Prognostic predictions

tp, min α − λ RA, %

Load � �40 lb, direction � push,
EOL � 24.6 min, PH � 6.6 min

14 0 NAN
16 0 68.0
18 1 95.2
20 0 86.0
22 0 75.3
24 0 79.1

Load � �50 lb, direction � push,
EOL � 9.73 min, PH � 3.73 min

4 0 NAN
5 0 50.0
6 0 83.4
7 1 90.5
8 0 87.0
9 1 99.0

Load � −50 lb, direction � pull,
EOL � 17.8 min, PH � 5.8 min

9 0 92.1
20 1 75.7
11 0 NAN
12 1 97.0
13 1 96.9
14 1 96.0
15 1 96.2
16 0 88.1
17 0 83.0
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algorithm extending from tp � 1226 s (20 min, 26 s). Due to safety considerations, in these initial prognostics experiments, the FLEA actuators
were not run until complete motor failure but were stopped when the faulty actuator motor temperature reached 60°C.

It is worth noting that this example considers a scenariowhere the timescale of fault growth iswithin the duration of a single flight; therefore, the
implemented prognostics algorithm is a reasonable choice. If, however, the fault grows so slowly that theremay still be one ormore flights that can
take place safely before it crosses the failure threshold, a long-term prediction based on suitable (potentially different) health indicators may be
needed.

X. Conclusions

The work described herein is aimed at advancing prognostic health-management solutions for electromechanical actuators and thus increase
their reliability and viability to designers of next-generation aircraft and spacecraft. In pursuit of this goal, a team adopted a systematic approach,
starting with EMA FMECA study reviews, consultations with EMA manufacturers, and literature reviews on the related efforts. Based on the
acquired knowledge, nominal and off-nominal physics models and diagnostic and prognostic algorithms were developed. To aid with
development of the algorithms and validate them with realistic data, a testbed capable of supporting experiments in both laboratory and flight
conditions was developed. The testbed allows for the injection of various types of faults and is equipped with a comprehensive data acquisition
system. Test actuators with architectures similar to potential flight-certified units were used for testing and realistic fault-injection methods were
implemented. The fault modes for the experiments were selected from electrical, data acquisition, and mechanical subsystems. Several hundred
fault scenarios were created, using various position profiles, load profiles, and fault magnitude levels.

The diagnostic system was tested extensively on the scenarios, with the test results generally demonstrating high accuracy and low false-
positive and false-negative rates. The prognostic system,which tracks progression of the fault once it has been detected and predicts the remaining
useful life of the actuator, was demonstrated as well. A series of run-to-failure experiments were conducted to validate its performance, with
generally high accuracy of predicting the time of failure. Although a more rigorous validation procedure would require many more experiments
executed under the same conditions, the current results already demonstrate the potential of prognostic technology for predicting fault progression
in this type of devices. Future work could include investigation and comparison of other types of prognostic algorithms, addition of new fault
modes, and execution of more complex prognostic experiments in the flight environment.
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Fig. 16 Prognostic output example from a flight experiment.

Fig. 15 Test actuator motion and desired load profiles during UH-60 flight segment.
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