
  

Artificial Immune Systems for Diagnostic Classification 

Problems 

Jeremy Mange
1
, David Daniszewski

2
, and Andrew Dunn

2 

1
 Western Michigan University, Kalamazoo, MI, 49008 

jbmange@cs.wmich.edu   

 
2
 US Army RDECOM-TARDEC, Warren, MI, 48397 

david.g.daniszewski.civ@mail.mil 

andrew.g.dunn.civ@mail.mil 

   

 

 

ABSTRACT 

Artificial Immune Systems (AISs), a class of 

artificial intelligence algorithms, have been an 

area of growing research and development in 

recent years.  AISs, along with other well-

known algorithms such as neural nets or 

particle swarm optimization, are biologically 

inspired, with AISs in particular designed to 

exhibit many of the behaviors of biological 

immune systems.  In this paper, we explore 

the application of AISs to classification 

problems, particularly in the context of 

diagnostics, where the goal is generally to 

classify data into “nominal” or “error” classes.  

In particular, we present a formal definition of 

feature space as a multi-dimensional space 

constructed by a set of real-valued functions, 

define the process of feature selection, and 

explain and demonstrate its importance.  We 

provide an overview of an AIS-based program 

developed for the International Diagnostic 

Competition, with particular focus on feature 

selection and AIS detector generation.  

Finally, we present experimental results, 

conclusions, and areas for future research. 

1 BACKGROUND OF AIS 

Artificial Immune Systems (AISs) form a class of 

artificial intelligence algorithms designed to mimic 

certain behaviors of biological immune systems.  These 

algorithms exhibit many of the important features of 

the natural immune systems which inspire them, 

including adaptation, automated learning, and memory.  

Generally, AISs are used for variants of classification 

problems, in which data needs to be separated into one 

of two or more classes, often corresponding intuitively 

to “self” and “non-self” (Forrest et. al., 1994), terms 

used in the context of biological immune systems to 

differentiate between healthy cells and the potential 

dangerous cells that trigger an immune system 

response.  This basic immunological function has been 

applied in a wide number of contexts, including pattern 

recognition, anomaly detection, optimization, control 

problems, and many others.  A number of journal 

papers, articles, and books describe the general function 

of AISs in more detail (Hofmeyer and Forrest, 2000; 

De Castro and Timmis, 2002) . 

1.1 Feature Space 

A representation of the problem space within which 

AISs operate is often referred to as “feature space” or 

“shape space”.  More formally, given a real value x, a 

"feature" of that data point is any real-valued function 

:)(xf .  If upper and lower limits for the 

domain of the function can be safely estimated, the 

function is commonly scaled to produce 

 1,0:)(  xf .  The feature space, then, is a set 

of n features nfff ,...,, 21 , which collectively form 

an n-dimensional space in which to locate the data 

point.  Given this feature space, the value x can be 

represented as a data point by the vector 

)(),...,(),( 21 xfxfxf n . 

 The general function, then, of most AISs is to 

establish a series of “detectors”, with a specified 

volume within the feature space that does not include 

any of the “self”, or healthy data points.  Several 

methods for obtaining these detectors have been 

proposed and implemented; the method selected will be 

discussed in greater detail below.  During the operation 

of the system, if any new data point falls within the 

region specified by one of these detectors, it is 
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considered a “non-self” data point, and appropriate 

action is taken to address the potential fault. 

 To illustrate this idea visually, we will show a 

tightly packed training data set with a very simple 

division between the "self" nominal data 

(corresponding to the circles in the graph) and "non-

self" error data (corresponding to the Xs in the graph), 

in figure 1.  We plot the data using two arbitrary 

features, 1f  and 2f , which together will define the 

two-dimensional feature space for this example. 

 

 
Figure 1: Simple Data Set 

 

 In this example, any data point x where 

1)()( 21  xfxf  is part of the "self", and any other 

data point is part of the "non-self".  The goal, then, is to 

generate a series of detectors with a volume in the two-

dimensional feature space that covers as much of the 

non-self as possible.  For a two-dimensional feature 

space, these detectors are generally represented as 

circles (more discussion of detector shape in 

subsequent sections).  Any new test data point which 

falls within one of these detectors circles would be 

treated as a non-self data point, and an appropriate error 

response would occur in the system. 

 Figure 2 shows a plot of the same self data with a 

set of randomly generated detectors using the negative 

selection algorithm (discussed further in section 1.3).  

Note that this does not include any of the common 

techniques for filtering out detectors completely 

contained within others, or optimizing detector 

generation and efficiency.  

 

 
Figure 2: Simple Data Set with Random Detectors 

 

 This illustrates a simplified version of the basic 

process involved with detector generation for an AIS.  

The detectors shown cover some portion of the non-self 

feature space and will "react" with any test data point 

which lies in that portion.  Since each test data point 

must be checked for its distance from the center of each 

detector (often referred to as the data point's "affinity" 

to the detector), the processing time increases at least 

linearly with the number of detectors.  Depending on 

the application, the number of needed detectors can be 

estimated based on the desired trade-off between 

processing speed and detection accuracy. 

1.2 Feature Selection 

Since a feature can be any real-valued function, for any 

given problem, there are infinitely many combinations 

of features available to be chosen to comprise the 

feature space for an AIS.  The question of how to 

appropriately select features for a problem is one that 

seems to have received relatively little attention in 

literature, and one that is of particular interest to the 

authors.  Feature selection can greatly affect not only 

the performance, but also the results of an AIS, which 

we shall illustrate using a simplified example. 

 Suppose we are given a problem for which we 

design an AIS, and we consider three arbitrary features 

for representing the feature space,  1,0:1 f , 

 1,0:2 f ,  1,0:3 f .  Furthermore, 

suppose the actual data for our classification problem is 

such that each value x is part of the “self” if and only 

if 2.0)()( 2

2

1  xfxf .  A plot of the data using 

the first two features, then, might look like figure 3: 
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Figure 3: Features 1 and 2 

 

Note that because 1f  and 2f  are precisely the two 

features which are used to define the separation of the 

data into two classes, there is a very clean difference 

between the spaces representing each on the plot.  Even 

with ideal feature selection, it is unlikely that the 

separation in a real-world data set would be as clear. 

However, since by using the standard 

representation for AIS detectors, each detector is a 

circle in two-dimensional space (or a sphere or hyper-

sphere in higher-dimensional space), it is easy to see 

visually that it will take many detectors to accurately 

cover the non-self portions of the data, even in two-

dimensional space.  So then, if we chose to represent 

the feature space as two-dimensional, consisting of 1f  

and 2f , it would be possible to form a detector set to 

accurately classify the data, but it might take many 

detectors. 

 If instead we chose to represent the feature space 

using 1f and 3f , the situation is much worse.  Figure 4 

shows a plot of the same data in two-dimensional space 

using those two features: 

 
Figure 4: Features 1 and 3 

 

Since the actual classification of the data does not 

require 3f , its inclusion together with the exclusion of 

the important feature 2f  makes the generation of 

accurate detectors impossible. 

 On the other hand, if we define a new feature 

)()()( 2

2

14 xfxfxf   (appropriately scaled), we 

could accurately classify all the data using only a one-

dimensional feature space and a single detector.  It is 

difficult to visually demonstrate a one-dimensional 

space, but even if we include 1f  and plot it against the 

newly defined feature 4f , the simplicity of detection is 

plain, as shown in figure 5: 

 

 
Figure 5: Features 1 and 4 

 

 Obviously, this is an ideal situation in which we 

know ahead of time how the data is classified, but it 

illustrates the point that good feature selection not only 

can make the difference between a difficult task and an 

easy one, but can in fact make the difference between 

an impossible task and a possible one. 

1.3 Negative Selection Algorithm 

Several methods of obtaining a detector set have been 

proposed and implemented.  The one most commonly 

used for problems similar to data classification for 

diagnostics is the Negative Selection algorithm.  In its 

most general form, the Negative Selection algorithm 

estimates the number of detectors needed to cover the 

“non-self” portions of the feature space, then randomly 

generates detectors, discarding those that include any 

“self” data points, until that number is reached. 

 Although a detector can be any shape with volume 

within the feature space, for the sake of compact 

representation they are generally represented as a 
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hyper-sphere, thus necessitating the storage of only a 

center and a radius.  Using this representation, several 

refinements to the basic Negative Selection algorithm 

have been proposed, including moving the center for 

detectors which include any “self” data points, or 

increasing or decreasing the radius of a detector under 

certain conditions (D’haeseleer et. al., 1996).  The 

method we chose is outlined in the “Our 

Implementation” section. 

2 AIS FOR DIAGNOSTICS 

The basic problem for diagnostics is one of 

classification -- separating nominal data from error data 

in order to determine when an error occurs.  For this 

reason, AISs have a natural application to diagnostic 

systems, and indeed some research has already been 

done along these lines (for example, Dasgupta et. al., 

2004). 

 A typical approach to a diagnostic task using an AIS 

would be to first gather training data, either including 

both nominal and failure data, or simply nominal data.  

Then, using this training data, a set of detectors would 

be generated.  Finally, the system would be run using 

new test data, with the detector set alerting the system 

of the possibility of a fault if any test data point fell 

within the volume of the feature space that they 

occupy. 

2.1 DX Competition 

The International Diagnostic Competition (Feldman et. 

al., 2010) is an annual competition designed to provide 

a method for testing, evaluating, and comparing 

approaches to automated diagnostics.  As such, it 

provided an ideal platform for implementing and 

testing an AIS for the purposes of diagnostics, using 

real-world electrical system data collected at the NASA 

Ames Research Center.  The authors of this paper 

implemented such a system and submitted it for the 

Third International Diagnostic Competition (DXC 

2011) under the ADAPT-Lite track under the name 

"AntigenDX". 

3 OUR IMPLEMENTATION 

For the competition, we implemented a basic AIS using 

a Negative Selection algorithm to generate detectors.  

The competition organizers provided training data in 

the form of a sequence of “scenarios”, some of which 

were nominal operations of the modeled electrical 

system, and some of which included known failures.  

Since in many applications (including the ground 

vehicle context by which the authors are primarily 

motivated) obtaining failure data is not feasible, we 

chose to use only the nominal training data for the 

generation of the detectors, and then used the failure 

data for testing. 

 The scenario files for the competition include time 

series data for a number of sensors within the electrical 

system.  We used a separate feature space for each 

sensor in order to detect errors separately on a per-

sensor basis, and then aggregated any detected faults to 

provide an overall diagnosis. 

3.1 Feature Selection 

As stated previously, of major interest to the authors is 

feature selection within AISs.  One of our primary 

goals with this system, therefore, was to select a small 

number of features which would nevertheless provide a 

sufficiently specific feature space to allow for accurate 

classification. 

 For every sensor, we were able to obtain extremely 

accurate (>95% accuracy) results using only two 

features, that is, a two-dimensional feature space.  For 

all of the sensors except one, those features were: 

 

                            
2

1 )()( xmxf                          (1) 

where m is the mean of the sensor data for the first 20 

seconds of the scenario 

 

                                   cxf )(2                              (2) 

where c is the number of consecutive data points with 

the value x 

 

For one sensor (sensor “ST516”, see Feldman et. 

al., 2010), 2f above was used in conjunction with the 

most basic feature, xxf )(3 .  This was because that 

particular sensor had a fairly wide variation for its 

values of )(1 xf  defined above, but only a small set of 

actual data values in nominal operation.  Again, this 

illustrates that within an overarching system, different 

features can be selected for separate data sets (sensors, 

in this case) based on the efficacy of each feature in 

partitioning the data set into separable spaces based on 

the classification classes. 

 All of these features were obtained using extensive 

testing, mostly through visual inspection.  After 

examining the data through a variety of tools, various 

functions were proposed, and then their feasibility as 

features was tested using the test data provided.  The 

“Extensions and Further Work” section contains more 

information. 

3.2 Detector Generation 

After defining the two-dimensional feature space for 

each sensor, we generated detectors using the Negative 
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Selection algorithm outlined above.  Our basic 

approach was as follows: 

● randomly generate detector center and radius 

● if detector includes any test data point, discard 

● if not, increase radius until it touches a test 

data point 

○ decrease radius by a factor α (to 

provide a “cushion” around test data) 

 

 This is described using the standard hyper-sphere 

detector shape for detectors.  In actuality, we 

implemented the system using rectangular detectors.  

However, this does not differ conceptually, but only in 

implementation details.  The “Extensions and Further 

Work” section provides further notes on different 

shapes for detectors within the feature space. 

3.3 Integration with DXC Framework 

After implementing the AIS components of the 

diagnostic system, the major remaining challenge was 

aggregating error detection by individual sensors into 

an accurate diagnosis of faults within the electrical 

system as a whole.  This was done through a rule-based 

system derived from the provided documentation on the 

electrical system components and interconnections.   

 When the AIS  subsystem first detects any error 

data point, a countdown is begun for a window of time 

before a diagnosis is attempted.  This is to help ensure 

that if multiple components have errors, sufficient time 

elapses to allow the AIS subsystem to detect as many 

as possible. 

 As an intermediate step, the fault type for each 

faulty sensor is estimated ("abrupt", "intermittent", or 

"drift" faults, as per Feldman et. al., 2010), using 

elementary statistics from the time series data before 

and after the time of the fault detection.  At that point, 

the set of components with detected errors is submitted 

to the rule-based diagnosis subsystem.  This subsystem 

consists of a series of approximately 25 if-else rules 

which, based on the electrical system description, work 

from the power source of the system outwards to 

attempt fault diagnosis.  Finally, based on the electrical 

properties of the components in question and the type 

of fault diagnosed, the significant parameters of the 

fault are estimated. 

 All of these components were integrated with the 

Java framework for the competition, in order to receive 

time series data and report diagnoses for test data. 

3.4 Testing / Results 

As mentioned previously, the AIS detectors were 

generated using only the nominal data from the training 

data sets.  Once the feature space was defined and the 

detectors in place, we tested the system against all of 

the training data, both nominal and error.  Our final 

system achieved a classification accuracy of 99.67% on 

the provided training data, in terms of the AIS 

classification of data into the "nominal" or "error" 

classes; that is 9967.)/( snc , where c is the total 

number of correctly classified sensors, s is the number 

of scenarios, and n is the number of sensors in each 

scenario.  Given that we were able to use only two-

dimensional feature space for each feature, we were 

very pleased with these results, and believe that they 

provide validation for the use of AISs for diagnostic 

problems of this type and justification for further 

research and development. 

 The ADAPT-Lite system is a fairly steady-state 

system, and many of the errors in the testing data were 

fairly easy to detect compared to many real-world 

problems, particularly in the area of ground vehicle 

diagnostics.  Therefore, while we believe this 

application provides a baseline validation for use of 

AISs in diagnostic problems, further extensions would 

be necessary to apply these techniques to other 

problems.  Some research has already been performed 

in this area, and a number of extensions have been 

proposed which apply directly to the problems under 

consideration.   

 For longer-running or more dynamic systems, 

instead of simply producing detectors based on training 

data, detectors can be continuously produced 

throughout the life of the system.  These detectors can 

have memory mechanisms and mature and degenerate 

over time in order to deal with changing characteristics 

of both the "host" system and the "pathogen" 

anomalous data it might encounter (see Hofmeyr and 

Forrest, 1999). 

 The official results of the Third International 

Diagnostic Competition, which beyond diagnosis 

accuracy will contain several additional metrics 

including detection speed and resource usage,  are not 

yet available as of the writing of this paper.  However, 

based on the success of the approach in the 

classification of all training data, using detectors 

generated only from the nominal scenario subset of that 

data, we emphasize that the AIS approach already 

shows promise for similar classification problems. 

4 EXTENSIONS AND FURTHER WORK 

An immediately apparent area for further research is 

automating the process of feature selection.  This paper 

has demonstrated the importance of feature selection 

within AISs and highlighted the power that appropriate 

feature selection can produce.  We believe that certain 

machine learning techniques such as genetic 

approaches may have promise when applied at a meta-

level to feature selection within AISs, and have begun 

some work to investigate this possibility further. 
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 A potential limitation of most current approaches 

to AISs is the use of a hypersphere shape for all 

detectors within the system.  Although this provides for 

a compact representation of the detector, it sacrifices 

some generality and limits the actual shape of the space 

that can be covered with a given number of detectors.  

We have begun some work investigating the possibility 

of linearly transforming a hyperspherical detector in 

order to facilitate far more general shapes.  More 

general shapes would, in theory, allow for more 

arbitrary coverage of the “non-self” portions of the 

feature space for an AIS, but would also add a level of 

complexity to the process of generating useful 

detectors.  We hope to further explore these trade-offs. 

5 CONCLUSION 

Artificial Immune Systems can be useful artificial 

intelligence tools, particularly for classification 

problems, including diagnostics.  As part of the 

International Diagnostic Competition, we have 

developed an AIS which should further demonstrate the 

validity of the approach within the context of 

diagnostics.  Since ground vehicle applications are of 

particular interest to the authors, we hope that this 

research will help to promote the development of AIS-

based diagnostic algorithms and equipment for use with 

ground vehicle and other electrical and mechanical 

systems. 
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