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Abstract— Electronic systems may be subjected to
prolonged and intermittent periods of storage prior to
deployment or usage. Prior studies have shown that
leadfree  solder interconnects show  measurable
degradation in the mechanical propertics even after brief
exposures to high temperature. In this paper, a method
has been developed for determining equivalent storage
time to produce identical damage at a different
temperature. Electronics subjected to accelerated tests
often have a well-defined thermal profile for a specified
period of time. Quantification of the thermal profile in
ficld deployed electronics may be often difficult because of
variance in the environment conditions and usage profile.
There is need for tools and techniques to quantify damage
in deployed systems in absence of macro-indicators of
damage without knowledge of prior stress history.
Approach for mapping damage in leadfree second-level
interconnects between different thermal conditions is new.
High reliability applications such as avionics and missile
systems may be often exposed to long periods of storage
prior to deployment. Effect of storage at different
temperature conditions can be mapped wusing the
presented approach. A framework has been developed to
investigate the system state and estimate the remaining
useful life of solder ball subjected to a variety of
isothermal aging conditions including 60°C, 75°C and
125°C for periods of time between l-weck and 4-week.
Data on damage precursors including rate of change in
normalized phase growth and normalized IMC thickness
has been collected and analyzed to derive physics based
damage mapping relationships for aging. Mathematical
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relationships have been derived for the damage mapping
to various thermal storage environments to facilitate
determining appropriate time-temperature combination to
reach a particular level of damage state. Activation energy
for the leading indicators of failure is also computed.
Specific damage proxies examined include the phase-
growth indicator and the intermetallic thickness. The
viability of the approach has been demonstrated for
leadfree test assemblies subjected to multiple thermal
aging at 60° C, 75°C and 125°C. Damage mapping
relationships are derived from data based on the two
separate leading indicators.

Index Terms—Materials Reliability, Integrated Circuit
Reliability, Soldering, Integrated Circuit lnterconnections.

1. INTRODUCTION

EADFREE electronics in automotive, military and

defense applications may be subjected to extreme high

and extreme low temperature in addition to temperature
cycling with intermittent prolonged period of storage.
Automotive electronics may be expected to last 10-years.
100,000 miles. Military and defense electronics may be
subjected to several deployments over the use-life of the
system. Previous researchers have shown the detrimental
effects of prolonged exposure to high temperature on the
mechanical properties of lead-free alloys. Effects include the
degradation in the yield strength and ultimate tensile strength
of the materials. [Chou 2002, Hasegawa 2001, Zhang 2009].
The effects are most pronounced in the widely used SnAgCu
based alloys including SAC105, SAC205. SAC305 and
SAC405 solders. Lower silver solders such as the SAC105,
ofien touted for their resistance to transient dynamic shock
and vibration, are the most susceptible to thermal aging
amongst the SAC solders. The effects have been verified in
the solder alloys at both lower strain rates in the neighborhood
of 10 sec”' to 10 sec’' typical of thermal cycling, and at 1-
10-100 sec! typical of shock and vibration, Degradation in the
neighborhood of 50% has been measured at low temperature
exposures.

The property evolution of the SnAgCu solder alloys poses
a challenge in the long life systems in presence of multiple
redeployments over the product life. Electronics  in
automotive systems may perform critical functions such as
collision avoidance, lane departure waming. adaptive cruise
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control, and antilock braking. Aerospace electronics systems
may be called on to perform a variety of function including
launch, autonomous navigation, in-flight maneuvering, path
correction and re-entry.  Long-life systems often may sce
multiple deployments during vsage.  The level-of-damage and
the remaining useful life often need to be quantified in safery
critical functions of long-life systems prior to subsequent re-
deployment.  Built-in self-test (BIST) is used to diagnose
errors and detect malfunction with little or no interaction with
external test equipment.  Previous studies have shown that
BIST can trigger false alarms resulting in pre-mature or
unnecessary repair or replacement [Allen 2003, Drees 2004,
Gao 2002, Rosenthal 1990]. Further, the BIST may provide
only limited insight into the underlving damage state and the
remaining uselul life. Fuses and canaries are designed to fail
prior to system failure duc to a specific failure mode. Fuse
Failure provides advance warning and Tag the damage state of
the system.  This advance warning is intended to provide a
suflicient maintenance window to allow repair or replacement
prior to catastrophic failure [Mishra 2002, Anderson 2004],
Quantification of damage state prior 1o fuse or canarv failure
is often difficult. Further. the correlation of tuse or canary to
the remaining useful life is often challenging.

Leadiree solder property evolution has been shown Lo increase
in magnitude with both increase in ambient temperature and
increase in time of exposure. Given the mission critical nature
of the role of electronics in such applications. there is need for
tools and techniques which can be used for capturing the
evolving failure threshold, and damage acerued alter multiple

exposures o arbitrary tlemperatures Tor unloreseen lengths of

time. Capability to equivalence damage over various storage
temperature and times is bevond the state of art. Previously,
leading indicators ol damage have been used w quantify the
acerued thermo-mechanical damage under steady-state and
cyclic temperature exposure in leadfree solders. [Lall 201 1%,
2012*"]. In this paper. a method has been developed for
caleulation of equivalent damage in leadfree second level
interconnects.  Leadfree electronics packages have been
subjected to isothermal exposure at 607C, 75°C and 125°C for
various lengths of time. A method has been developed to
interrogate the damage state due to prolonged thermal storage
in electronie systems with leadfree second level interconnects,
Levenberg-Marquardt Algorithm has been used in conjunetion
with microstructural leading indicators of failure. A test case
has been presented to validate the ability of the proposed
technique to map damage between  different  thermal
conditions.  The ability to map damage has been used to
accrue damage under varied thermal conditions encountered
in field deployment to ascertain the level of damage and the
remaining useful life of the system. The test case has been
demonstrated on a CABGA256 test assembly which has been
subjected 10 168 hours of thermil aging at 1257°C followed by
250 eyeles of =40 to 125°C and 250 cyeles of 0 1o 100°C
thermal excursions.

I, TestT Vi

In this study. Chip-Array Ball Grid Arrays (CABGA) have
been used for the test. Specifically. CABGA36 and CABGA
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256 packages soldered 1o glass-cpoxy laminate  board
assemblies were used. The CABGA36 package is 6mm x
Gmm in size, with 36 VO, at 0.8 mm Pitch, The CABGA236
pickage is omm x 16mm in size. with 256 /O a1 0.8mm
Pitch,  Package interconnects were made ol Sn3A80.5Cu
solder in both cases.  The ball diameter of the solder
interconnects is 0,46 mm for the CABGA36 and 0.5 mm for
the CABGA236,

Table 1: Package Aftributes

Attributes CABGA 36 CABGAZS6
Solder Sn3Ae0.5Cu Sn3Ae0.5Cu
Package Size (mm) 60O 16x16
Package Tvpe CABGA CABGA
1O Count 36 256

/0 Pitch (mm) 0.8 0.8

Ball Digmeter (mm) 0,46 0.5
Mold thickness (mm) 1.5 1.5
Board FFinish ImAg ImAg
PCB Thickness 1.55 1.35
PCB Pad NSMD NSMD
Package Pad SMD SMD
Package Finish Electroless NiAuy|[ Electroless NiAu

s
<
&

THE

Figure 2: CABGA 2506 Package

The printed circuit board thickness was .55 mm in both
cases, Atributes of the test assembly package are shown in
Fable 1. Printed circuit board used in the test assembly was a
double-sided FRA-06 material. The printed circuit board pads
were non-solder mask defined (NSMD) with immersion silver
linish.  Figure | and Figure 2 shows the CABGA 36 and
CABGA 236 package respectively and its array configuration.
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All test vehicles were subjected to isothermal aging at 60°C.,
75°C and 125°C for various lengths ol time. The test board is
a JEDEC form-factor test board with comer holes. Each test
package has Tour daisy c¢hain patterns corresponding to the
four quadrants, Packages were assembled at in-house surface
mount facility of CAVE3.

HE APPROACH FOR INTERROGATION OF DAMAGE IN THERMAL
AGING ENVIRONMENTS

In operational environments electronic systems may be stored
after manufacture for a finite period prior to deplovment.
During the storage period. the systems may be exposed to a
finite time-period of thermal aging at extreme low or extreme
high temperatnres in addition o thermal cyeling.  Onee
deployed. the systems may be exposed 1o further thermal
aging along with intermittent thermo-mechanical cycling due
o power on-off cyvcles or ambient temperature excursions,
Extended exposure to clevated temperature aging may reduce
thermo-mechanical reliability in cyclic environments. In this
paper. a damage mapping method has been presented based on
the underlying failure physics to relate the damage accrued
under steady-state thermal aging with a particular combination
of temperature and storage time. The approach has been
developed in three steps.

Ao Micro-structural Evolution of Damage

In this step, board assemblies have been subjected to single
stresses o thermal aging. Samples have been withdrawn
periadically  and cross-sectioned. Damage proxies studied
include the phase-growth parameter, rate of change of phase
srowth parameter per cyele and the intermetallic thicknhess.
The phase-growth parameter is represented by svmbol "8 and
defined in Equation (1). Previously. it has been shown that
the rate of change in phase growth parameter [diInSyd(InN)|
is valid damage proxy for prognostication of thermo-

mechanical damage in solder interconnects and assessment of

residual Tife [Lall 20017, 201278 — where *N° is the number
of eyeles. The damage proxy [diInSydtInNi| is related to the
micro structural  evolution of damage by the following
equation;

L (1)
' 1 i I ke
S=g' -g, =at’exp| —

Kl

where. g is the average grain size at time of prognostication,
w is the average grain size of solder after reflow. 1 is the
period of aging. S is the phase growth parameter, parameters a
and b are the coefficient and exponent respectively. It is
anticipated that. longer period of aging at higher temperature
will result in higher acerued thermo-mechanical damage in a
shorfer time and result in a higher slope of the phase growth
parameter versus time of aging curve, Test samples have been
withdrawn and cross-sectioned at periodic intervals,  Images
ol polished samples were taken under Optical Microscope at
730x-1000x magnilication. . Growth rate of tin and Az;Sn
phases was observed. Phase size is measured using image

analysis software NI-MAQ. The quantitative measure of

Ag:Sn phase size was determined from a 480um x 360um
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rectangular region selected from the optical images. Figure 3
shows the mapping of image.

480 jim

(a) (b) (¢)
Figure 3: (a) Optical Micrograph of the solder joint after
cross-sectioning (b) segmentation of the central rectangulor
region of size 360pm x 480pm (¢) Gray scale mapping of
image into black-and-while regions using image analysis
soltware,

CGrowth of [nter-Metallic thickness during thermal aging has
been studied as another leading indicator of failure in bulk
solder. From past studies it has been established that growth
of intermetallic thickness is used as a damage precursor for
computation of remaining useful life [Lall 20117, 2012%7),
The interfacial intermetallic layers are formed between solder
and copper, and some precipitates appear near the interface of
the IMCs/solder as shown in Figure 4. These intermetallic
layers have been identified to consist of CusSn and CusSns
phases [Lall 2005], Trend analysis ol intermetallic thickness
prowth using image processing software, indicates that IMC
thickness changes with the square root of aging time.

; (2)

e
Kyl

where y(t) is IMC growth thickness during aging, y. is the
initial intermetallic compounds. Kk is  the
coefficient standing for the square root of the diffusivity at
aging temperature. t s aging time. £, is the activation eneray,
Ku is Boltzmann's Constant (8.617 x 107 ev/iK) and Ty is
aging tempernture in Kelvin . The exponent value. n = Y has
been used in the above equation. which reveals a diffusion-
controlled mechanism during aging.

y(1) =y, +Kkt"exp

thickness ol

Figure 4: Optical Image of IMC growth

I Dameage Mapping Relationships for Pleise Cronetly

The relation between phase growth and aging time has been
normalized with respect to the mitial phase size. as follows.,
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Where S, is the normalized phase growth parameter, “a;” is the
coefficient for phase growth, *b" is the phase-growth
exponent, Ey is the activation energy, Ky is the Boltzmann
Constant, T is the temperature in Kelvin,  The normalized
phase growth expression has been rearranged as follows:

SII - i“llll "l]
InS, =Ina, + b, Int (5)
Where, (6)
-E,
a, =a;exp| —=
}\ul /

Taking a natural logarithm of Equation (6). the relationship
has been reduced to that of a straight line, where a'| is the
temperature  dependent phase-growth  coelficient.  From
Equation (6) we can write;
"k (7
E.4 1

In(a, )= lala;)-| —2-
n(a,)=In(a,) KT

By using equation (3) and (7) the relationship between aging
temperature (T) and aging time (1) for a particular level of
damage state in terms of phase growth has been computed.
The activation energy of the exponent term has been
computed by fitting the phase growth data 10 the following
form of the equation:

-—E“ ] =
KT,

Taking a natural logarithm of Lquation (6). the relationship

b, = b, exp

has been reduced 1o that of a straight line. where b, is the

temperature  dependent  phase-growth  coefficient.  From
Equation (6) we can write;

[ B (9
In(b,)=In(b,)-| —2

Kyl
Where be is the temperatire  dependent  phase-growth

exponent, Ey is the activation echergy, Ky is the Boltzmann
Constant, T is the temperature in Kelvin,

" Damage Mapping Relationships for IMC Growth
The intermetallic thickness based proxy has been related o
aging temperature and  aging  time using the  following
nonnalized IMC thickness equation,
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Where. (13)

k, = kli‘-‘l{ . ILJ\.

H
TaKing a natural logarithm of Equation (13). the relationship
has been reduced 1o that of a straight line, where K, is the

temperature  dependent coefficient.  From

Equation (13) we can write;

IMC-growth

EL) ()
K 1.TJ

By using equation (10) and (14) a relation between aging
temperature (T) and aging time (1) tor a particular level of
damage state in terms of IMC thickness has heen derived.
Converzence between the damage mapping relationships has
been studied to validate the damage equivalency.

In(k,)=In(k,)-

V.
A set of packages was subjected to aging at 60°C, 75°C and
[125°C and were withdrawn alter a periodic time-interval of -
week or 168-hours. Each of the samples was cross-sectioned,
polished and imaged using an optical microscope. The same
joint was examined in each cross-section. Phase growth and
intermetallic growth was studied using images taken by
Optical microscope at each time interval.

LEADING INDICATORS FOR THERMAL AGING

1. Phase-Growth Damage Proxy

[he image analysis software has been used to measure the
average phase size, Equation (3) represents the evolution of
phase growth in thermal aging based on experimental data.
The test data has been used o derive the parameters for
normalized phase growth of Eguation (3).  Micrographs of
phase structure are shown in Figure 5 for CABGAZ6 at 607°C,
and in Figure 6 for CABGAS6 at 607C,

168 hr

X 1,000 Ve

Figure 5@ Optical Microscopic images of Phase Growth in
CABGASZG6 at different time intervals a1 60°C
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168 hr | 3

504 hr 672 hr

{0
Figure 6: Optical Microscopic images ol Phase Growth in
CABGA236 at different time intervals at 60°C

1000

-1+ LT
Figure 7: Optical Microscopic images of Phase Growth in
CABGASG at different time intervals at 75°C

168 hr 336 hr

L1
Figure 8: Optical Microscopic images of Phase Growth in
CABGA256 atdifferent time intervals at 75°C
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Micrographs of phase structure are shown in Figure 7 for
CABGA3G6 at 757°C. and Figure 8 for CABGA256 at 75°C.
Figure 9 shows the micrographs for CABGA36 ot 125°C and
Figure 10 shows the micrographs for CABGA 236 packages
at 125°C. Al the micrographs have been captured at a time-
interval of 168 hours.
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Figure % Optical Microscopic images of Phase Growth in
CABGA36 at different time intervals at 1259C
504 hr
X100 [T
Figure 10: Optical Microscopic images of Phase Growth in
CABGAZ256 at different time intervals at 125°C.
s
=z 1
']
g ° soC |
= 0 ® 75C B
bR o 125C e
& -0
£< A /
E S5
24 -
O 2
2 £ Dy
27 — ==
f E '3 / _,/_-—
=B ®
S A
E
8 5 -
- 50 52 54 56 5B 60 62 64 66
In{time), In(hours)
Figure |1: Normalized Phase Growth (S,) versus Aging Time
() for CABGA 36
The phase-coarsening in the microstructure is clearly visible
by comparison of 672 hour microstructure with  0-hour
microstructure.  Figure 11 and Figure 12 show the plots of
normalized phase growth at different isothermal aging
temperature and at various time intervals for CABGA 36 and
CABGA 256 respectively.
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Figure 12: Normalized Phase Growth (S,,) versus Aging Time ) o, ‘ _”T (kelvin™) ,
(1) for CABGA 256 Figure 14: In(a’) versus Aging temperature for CABGA256
Table 2: Normalized Phase Growth Coefficients and Table 4: Activation Energy for Phase Growth C?eﬂ'lcient
Exponents for the CABGA 36 Package In(a) Eq (cV)
Temperature | Equation (3) CABGA 36 10.268 0.63
4 CABGA 256 10.903 0.61
1]
In(S,)=1In|| &2 | ~1]=Ina, +b, (Int)
20 0.5 -
v =218.36x - 0.2582
bo In(ao) 0.4 -
60°C 1.488 'l ‘.84 — /
75°C 1.447 -10.95 $03 -
125°C 1.337 -8.106 =3 0.2 -
Table 3: Normalized Phase Growth CoefTicients and 0.1 4
Exponents for the CABGA 256 Package
Temperature | Equation (3) 0 T T : )
g y 0.0024 0.0026 0.0028 0.003 0.0032
= el _1l= .
In(S,)=1n ” 1|=Ina,+b,(Int) 1/T (Kelvin)
0
bo In(ao) Figure 15; Plot of In(bo) and Aging temperature for
60°C 1.338 -10.60 CABGA36
75°C 1.293 -9.44 0.4 -
125°C 1.161 -7.04
-7 03 - ¥ = 291.26x - 0.582
S
-8 \E 0.2 -1
0.1 -
2
E’ 0 T T T 3
10 0.0024 0.0026 0.0028 0.003 ~ 0.0032
Figure 16: Plot of In(bo) and Aging temperature for
.12 . . . . : v CABGA256
0.0024 0.0025 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 . . .
o The graphs for the higher temperature have higher normalized
1T (Kelvin™) phase growth values. The increase in normalized phase
Figure 13: In(as) versus Aging temperature for CABGA 36 growth parameter correlates with the underlying physics. since
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the higher temperatures will produce more phase growth in an
identical period of time. Lquation (3) for phase growth
evolution under thermal aging has been fit 10 experimental
data. The equation parameters have been derived based
statistical fit of the experimental data. Table 2 and Table 3
show the values for the phase growth coefficient and the
phase growth exponent for the CABGA 36 and the CABGA
256 packages. Values indicate that the aging temperature
increases the value of the phase growth coelficient.  The
coclficient term  changes  with temperature of - exposure
because of the underlying agelomeration of phases proceeds at
a faster pace ava higher temperature. The activation encrey of
the coefTicient term has been computed by fiting the data to
Equation (7), Figure 13 and Figure 14 show the relationship
between Infag) and (1/T), where T is the absolute temperature.
Slope of the fit of In(ay) versus (1/T) is Es/Kg, where Ey is the
activation energy: Ky is Boltzmann's Constant (8.617x107
ev/K). The Activation energy of phase growth is caleulated as
0.63eV for CABGA 36 and D.614eV for CABGA 256.

Table 3: Activation Enerey for Phase Growth Exponent

In(hi) Eu (¢V)
CABGA 30 -0.258 0.019
CABGA 256 -0.582 0.025

Slope of this fit is Ep/Kyu. where Ey is the activation energy:
Ki is Boltzmann's Constant  (8.617x107 ev/K). The
Activation energy ol phase growth is calculated as 0.019¢V
for CABGA 36 and 0.025¢V [or CABGA 256 ( Table 5).

B htermetallic Thickness Damage Proxy
The image analysis software has been used to measure the
average intermetallic thickness. Equation (10) has been used
to capture the evolution of intermetallic growth under
exposure  to thermal aging. The data for normalized
intermetallic thickness versus aging time has been it 1w
Equation (10). The coefiicient and activation energy has been
derived from statistical fit of experimental measurements of
the intermetallic growth from cross-sections.

T

Figure 17: Optical Microscopic images of IMC Growth in

CABGA36 at different time intervals at 60°C,
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504 hr

672 hr

CABGA256 at different time intervals at 60°C
168 hr
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Figure 19: Optical Microscopic images of INIC Growth in
CABGAS3G6 at different time intervals at 75°C.
168 hr

336 hr 504 hr

10

000

Figure 20: Optical Microscopic images of [IMC Growth in
CABGA236 at different time intervals at 757°C.

Micrographs of phase structure are shown in Figure 17,
Figure 18 at 60°C, Figure 19, Figure 20 at 75°C, Figure 21 a1
123°C for the CABGA 36 and CABGA 256 packages at a
time-interval of 168 hours. The phase-coarsening in the
microstructure is clearly visible by comparison of 672 hour
microstructure with O-hour microstructure,
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Figure 21: Optical Microscopic images of IMC Growth in
CABGAR6 at different time intervals at 123°C,
168 hr

336 hr 504 hr

Figure 22: Optical Microscopic images of IMC Growth in
CABGA2Z36 at different time intervals at 125°C,
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Figure 23: Relation between Normalized IMC Growth (Y )
and Aging Time (1) for CABGA 36

Figure 23 and Figure 24 show the plots of normalized
intermetallic crowth at different isothermal aging temperature
and at various time intervals for CABGA 36 and CABGA 256
respectively.  The graphs for the higher temperature have
higher normalized intermerallic growth values. The increase
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in normalized intermetallic thickness parameter correlates
with the underlying physics. since the higher temperatures will
produce more intermetallic thickness due to higher ditfusion
rates in an identical period of time.  Equation (11) for IMC
srowth under thermal aging has been fit 1o experimental data,
The equation parameters have been derived based statistical fit
of the experimental data.
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Figure 24: Relation between Normalized IMC Growth (Y,)
and Aging Time (1) for CABGA 256

Table 6: Normalized IMC Growth Coefficients and Exponents
for the CABGA 36 Package

Temperature | Equation (10)
P —E
Y, =kt"exp —= | =kt
i
K, (CABGA36) | K, (CABGA256)
60°C 0.0072 0.0071
75°C 0.0194 0.0168
125°C (1.2620 0.1833
-1
2
-3

Ink)

-} - \
5 e,
.
N
-6 E - -

OD24 L0025 0.0026 0.0027 0.0028 0.0029 00030 (1003
I/Temperature in Kelvin (1/T)
Figure 25: In(k ) vs Aging temperature for CABGA36

Table 6 shows the values for the IMC wrowth coeflicient for
the CABGA 36 and the CABGA 256 packages.  Values
indicate that the aging temperature increases the value of the
IMC growth coefficient. The coefficient term changes with
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temperature of exposure because of the underlying Fickinn-
diffusion at the interface proceeds at a faster pace at a higher
temperature. The activation energy of the coefTicient term has
been computed by fitting the data to the tollowing torm of the
Equation (13). Taking a natural logarithm of Equation (13).
the relationship has been reduced to that of a straight line
shown in Equation (14). where Kk, is the temperature
dependent IMC-growth coefficient. Figure 25 and Figure 26
show the refationship between In(k, ) and (1/77), where T is

the absolute temperature.

lad

In(k)

-6 T .
0.0024 00025 0.0026 0.0027 0.0028 0.0029 D.0030 0.0031

-1 T T T

I/Temperature in Kelvin (1/T)
Figure 26: Plot nl'lu(k“ ) vs Aging temperature (CABGA
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256)
Table 7: Activation Energy for Phase Growth Coefficient
In(ky) La(eV)
CABGA 36 17.017 0.63
CABGA 256 14.954 0.57

Slope of this fit is Ey/Kg, where B, is the activation energy;
Ke is Bolizmann's Constant (8.617x107 ev/K). The
Activation energy of phase growth is calculated as 0.63eV for
CABGA 36 and 0.37¢V for CABGA 250,

V. DAMAGE MAPPNG

In this section. o method for damage mapping has been
developed using the data gathered on the test vehicles.
Temperature and time combinations required to achieve a
specified value of normalized phase growth have been
calculated. The damage accrued can thus be sustained in a
shorter time at a high temperature or in a longer time at a
lower temperature. Re-arranging Equation (5),

In(S,)=In(a,)+b, () (15)

. | _E (16)
In(S, )= ln[ a, L\p(ﬁ“l]
- E
+b,cxp£ "Jln(l_)
Re-arranging the equation: (17

DM g VESTTIIN R 20

=5 Miteriate Retiability

9

hrcxl’[ .IL!‘” ]
Kyl

Where, Ky is the Boltzmann's constant, 8.617¢-5 ¢V/K, al -

1879623, E, = 0.03 ¢V, bl = 0.772, [}, -~ 0.019 ¢V, Fisure 27
shows the relation between aging temperatures (1/T)in Kelvin
scale and required aging time in hours for a particular value of
damage state in terms of phase growth for both the CABGA
36 and CABGA 256 packages.

In(t)=

B CABGA256 + CABGA36
9 1
8 -
7 i 0;=l
v
13
£5
s
=3 |
3
2 |
1 i
0 + — —
0.002 0.0025 0.003 0.0035 0.004
1/T (Kelvin')

Figure 27: Iso-phase growth plots of Aging temperature (1) vs
Aging time(t) for Phase Growth
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Figure 28: [so-IMC growth plots o' Aging Time, In{T) vs
Aging Temperature,

Convergence of damage mapping has been demonstrated by
comparing the damage mapping data from two identical
failure mechanisms for two different parts. Similarly. Figure
28 shows the same relations for IMC. In this section, a
method for damage mapping has been developed using the
data sathered on the test vehicles.  Temperature and time
combinations required 1o achieve a specified value of
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normalized IMC growth have been calculated. The damage  based on  two  damage proxies including  normalized

accrued can thus be sustained in o shorter time at a high
temperature or in a longer time at a lower temperature.  Re-
arranging Equation (10),

(18)

(= E,

kyexp| —

_ K,

Where. Ku is the Boltzmann's constant, 8.617e-3 eV/K. kI =

2.46¢7. The convergence of the curves for the same failure
mechanisms indicates the merit of the proposed approach.

/

VI USING THE DAMAGE MAPPING FOR OVERLAPPING

ENVIRONMENTS

The 256 BGA test assemblies have been exposed to 168 hours
of aging a1 1257C, followed by 250 ¢yeles in -40°C 10 125°C
(TC1) and then redeploved in thermal eyeling environment of
0 to 100°C (TC2). The problem statement is to find the
previous consumed life and the remaining useful life in TC2.
In order 1o prognosticate the prior acerued damage and the
remaining useful life. the parts have been withdrawn at
periodic intervals of 250 cyeles to measore the phase growth
and intermetallic growth in the TC2 deployed samples. The
withdrawn samples have been cross-sectioned,

10

% 1,000
Environments of 168 hours @@ 1259C + 250 Cycles TC-1 + x-
Cyeles TC-2. 256 VO PBGA. magnification 1000x for Phase
Growth.

Figure 29: Optical Images for samples exposed to Multiple

The normalized phase prowth parameter and  normualized
intermetallic thickness have been studied in the second-level
interconneets of  the test  assemblies using a confocal
microscope (Figure 29, Figure 30). Damage in the second-
level interconnects of the test samples was prognosticated
using the Levenberg-Muarquardt Algorithm, Details of the 1M
algorithm can be found in [Madsen 2004].  Damage ncerued
from aging and eyeling environments has been equivalenced

Vinp [€) 1o

TR Personal ase iy penninsh o sepublicationieed BUi Bt required TEEE piétiing

imermetallic thickness and normalized phase growth,  An
identical measure of damage can be accrued in an electronic
assembly using a varied combination of thermal stresses such
as thermal aging and thermal eyceling. Microstructural leading
indicators have been wsed to identify the damage state and
compute equivalent time under the Tuture use conditions of the
thermal aging and thermal cycling which will result in the
same level of damage as sustained during environment
conditions of prior deployment.

21,000 10:m

Figure 30: Optical Images for samples exposed to Multiple

Environments of 168 hours @ 125°C + 250 Cyeles TC-1 + x-

Cycles TC-2, 256 /O PBGA, magnification 1000x lor IMC
growth,

168h
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Figure 31: 3D plot of error versus Noumber of Cyeles, Lile
computed from LM-algorithm for 168hrs TA + 250 cyeles
TC1 + 250 cyeles TC2 and 168hrs TA + 250 cveles in TCT 4
500 cvceles in TC2 for 256 PBGA.

The approach has been applied 1o both danmage proxies ol

normalized  phase  growth  and  normalized  intermetallic

Stee iAo e drgedprubl e arioin_stasiidar e priablicationad o phdfindis Iteil line i dnl

N R 1



This srticle Juts Do ateepied thr prohliditinn in o' {ttute e ol (i joutial bt s fot heen Bilby editad Contidat mby chung

Trarde iz v Device an

TDMR-2014-11-0266-R.R 1

thickness used in this study. Damage mapping relationships
shown Equations (17) and (18) can be used to map damage to
different storage temperiture, e.g. if the test data was acquired
for 168 hours ar 125°C, and the intended usc condition
involved storage at 75°C, then an equivalent storage time 1o
accrue identical damage could be determined. Figure 31
shows the prognosticated values of acerued damage in 256
BGA assemblics after they have been subjected 10 (a) 168
hours of thermal aging + 250 Cyceles of thermal cycling in
TCH-A07C to 125°C) + 250 eyeles of thermal eycling in TC2
{07C to 1007C) (b) 168 hours of thermal aging + 250 Cycles
of thermal eyeling in TC1 (-40°C to 1257C) + 500 cycles of
thermal eyeling in TC2(0°C 1o 1007°C). The accried damage
s been prognosticated using both phase erowth parameter
and the intermetallic growth. The prognosticated TC2 cveles
for the 1681+ 250TC14+250TC2 case using phase growth and
IMC growth are 782 eycles and 760 cycles respectively. The
prognosticated TC2 cycles for the 168h=250TC1+300TC2
case nsing phase growth and IMC growth are 1051 cyeles and
1034 cycles respectively.

VI

In this paper two separate prognostication medels based on
two leading indicators of failure viz. phase-growth and inter-
metallic  compound  growth  of second level  solder
interconnects have been proposed and implemented for the
lite prediction of electronics. The sole purpose of evaluating
various performance metrics was to relatively compare the
two models and see which leading indicator of failure
accurntely predicts life. For this seven different performance
metrics viz, accuraey. precision, Mean Squared Error (MSE),
and Meun Absolute Percentage Error (MAPE). a-L accuracy,
relative accuracy (RA) and cumulative relative accuracy
(CRA) have been computed 1o compare the two models.

PROGNOSTICS PERFORMANCE MITRICS

A Average Biax

Average bins method averages the error in predictions made
all subsequent times alter prediction starts for the " UUT,
The metric can be extended to average bias over all ULITs to
establish overall bias [Saxena 2008a, b].
Lo
—_ =P

B =t
(EOP—P+1)

(19)

B Sample Standard Deviation (5)
Sample standard deviation measures the dispersion/speed of
the error with respeet o the sample mean of the error. This
metric is restricted o the assumption of normal distribution of
the error, It is, therefore, recommended to carry out a visual
inspection of error plots [Saxena 20084, b].

et fiesal pudlication: Citation rformution: DO ro0s TRMR 20

J Meerinh Redtability

O Mean squured error (MSE)
Mean squared error averages the square prediction error for
multiple UUTs at the same prediction horizon. A derivative of
MSE is root mean square error (RMSE) [Saxena 2008q. b,

(21)
MSE Z._\lll)

' (=)
Do Mean absolute pereentage error (A\LPE)
MAPE averages the absolute error in the predictions of
multiple UUTs at the same prediction horizon, Instead of the

mean, median can be used to compute Median absolute
pereentage error (MAAPE) in similar fashion [Saxena 2008,

b:
Z

'1.!

10{1&‘(1) (22)

r'(i)

MAPE(i) =

£ a-d wechracy
The a-2 curve has been plotted for both the madels as shown
in Figure 32 and Figure 33. It is a normalized plot of
Remaining Useful Life (RUL) Vs Life which is compared

against the -'rmlrld truth and the error bounds,
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Figure 32: -2 curve for Prognostication using phase-growth
as the damage proxy
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In this case the ground truth is the experimental data obtained
from accelerated testing shown by blue line in the plots and +
10% error bounds are imposed shown by dotted lines [Saxena
2008a, b]. It should be noted that the selection of error bounds
is application specific and typically tighter bounds are
imposed as the criticality of the system increases (Figure 32
and Figure 33).

F. Relative accuracy (RA)

Relative prediction accuracy is a notion similar to a-A
accuracy where, instead of finding out whether the predictions
fall within a given accuracy levels at a given time instant, we
measure the accuracy level. The time instant is again
described as a fraction of actual remaining useful life from the
point when the first prediction is made. An algorithm with
higher relative accuracy is desirable [Saxena 2008a. b).

.ty -r'(t)

r(t,)
Where t,= P + A (EOP — P), where EOP is the end of the
prediction, and P is the time index at which the first prediction
is made.

(23)
RA =1-

G. Cumulative Relative Accuracy (CRA):
Relative accuracy can be evaluated at multiple time instances.
To aggregate these accuracy levels, we define Cumulative
Relative Accuracy as a normalized weighted sum of relative
prediction accuracies at specific time instances [Saxena
2008a, b).
CRA

l EOL

=_._ZRA
EOP-P+1&

Where w is a weight factor as a function of RUL at all time
indices. In most cases it is desirable to weigh the relative
accuracies higher closer to the EOL.

(24)

Table 8: Comparison of Prognostics Metrics for the Two
Leading Indicators

Prognostic LM prognostication | LM prognostication
Metrics (Phase Growth) (IMC)
Sample

Standard 220.6121 292.8947
Deviation (S)

MSE 54181.35 130216.3
MAPE 0.065839 0.177259

RA (2=0.5) 0.9732 0.7836

CRA 0.007713 0.0074246

Table 8 shows the prognostics metrics for a point where 50%
of the life of system is consumed. Both leading indicators
based prognostic algorithms show comparable performance.

VIII. SUMMARY AND CONCLUSIONS

A damage mapping method has been developed based on the
underlying physics-based leading indicators to relate the
accrued damage under accelerated steady-state thermal storage
to accrued damage under exposure to operational steady-state

12

&~

temperature. The method has been developed on two different
board assemblies with two different packages including the
CABGA36 and the CABGA26 packages. Analysis results
indicate convergence of damage mapping relationships for the
two package architecturc examined for the failurc mechanisms
of solder joint failure and excessive intermetallics. The
usefulness of the damage equivalency relationships has been
demonstrated in the presence of overlapping thermal stresses.

IX. DISCUSSION

It is true that many additional factors including surface finish,
pad morphology (SMD, NSMD), board thickness. chip size,
pad finish may influence the solder joint reliability. The focus
of the current study is assessment of accrued damage in the
assemblies. The influence of board thickness and chip size
will influence the plastic work in the solder joints and thus be
captured in the phase coarsening measurements in the present
study. Localized effects in the solder joints such as thosc
caused by surface finish, pad morphology and pad finish on
the component and the board assembly will influence life of
the joint through variation in the damage thresholds that cause
failure. For example, the change in the finish may result in
earlier failure due to higher propensity for crack initiation and
propagation in certain finishes, Furthermore, the use of SMD
may predispose the solder joint for earlier failure through the
provision of a stress concentration at the edge of the solder
mask — thus in the process lowering the damage threshold for
crack initiation and progression. It is instructive to distinguish
the damage pre-cursors and leading indicators of failure from
the damage thresholds. Damage precursors used in the
present study do not address the damage thresholds. Instead
the damage precursors are intended for ~assessing the
progression of damage in the solder joints and mapping of
damage across a number of thermal operating and storage
conditions. However, the driving mechanism for the accrual
of damage, which is differential thermal mismatch in the
solder joints may vary with the changes in the cnvironmental
conditions and some of the global geometry and architecture
of the electronic assembly. It is this accrual of damage and
mapping of damage which the leading indicators of damage
target in the electronic assemblies.
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