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a b s t r a c t

This paper presents a reliability-based prediction methodology to obtain the remaining useful life of
composite materials subjected to fatigue degradation. Degradation phenomena such as stiffness
reduction and increase in matrix micro-cracks density are sequentially estimated through a Bayesian
filtering framework that incorporates information from both multi-scale damage models and damage
measurements, that are sequentially collected along the process. A set of damage states are further
propagated forward in time by simulating the damage progression using the models in the absence of
new damage measurements to estimate the time-dependent reliability of the composite material. As a
key contribution, the estimation of the remaining useful life is obtained as a probability from the
prediction of the time-dependent reliability, whose validity is formally proven using the axioms of
Probability Logic. A case study is presented using multi-scale fatigue damage data from a cross-ply
carbon-epoxy laminate.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In general, the problem of damage prognosis is challenging
[1–3] not only due to its complexity and multidisciplinary nature,
but also for its direct impact on safety and cost. While structural
health monitoring (SHM) technology has experienced a consider-
able development over the past two decades, little effort has gone
into integrating SHM with prognostics science for lifecycle reas-
sessment and condition-based maintenance [4]. The latter is
especially significant for composite materials due to their increas-
ing use in high-performance applications such as aeronautics or
space. Composites are well-known for their high strength-to-
weight ratios, but also for being susceptible to damage from the
beginning of lifespan [5,6]. This damage can be hard to detect [7]
and usually becomes a critical issue for reliability and competi-
tiveness of composite structures [8]. Continuous assessment of the
health state using state-of-the-art SHM technology, and based on
that, the prediction of the remaining time until which the
structure is expected to continue performing the required

function, is of key importance for the efficient and reliable use of
composite materials.

Damage prognostics can be defined as the estimation of the
remaining useful life (RUL) of a system based on knowledge about
the current damage state and the future degradation process of the
system [1]. The methodology for damage prognostics typically
consists of two main steps: first, an estimation of the current
damage state based on (incomplete) up-to-date information from
the system response given by SHM data; and second, a propaga-
tion forward in time of the updated state estimate (while no new
SHM data are available) until the failure threshold is reached. The
inherent complexity of this process implies uncertainty that comes
not only from uncertain system inputs (upcoming loads, environ-
mental conditions, etc.) but also from the lack of knowledge about
the physics of the damage process. This uncertainty can increase
dramatically when dealing with full-scale composite structures in
real environments. Thus, probability-based frameworks are best
suited for prognostics, rather than deterministic or point-valued
RUL estimations [9].

In the literature, there is a growing number of articles dealing
with probability-based approaches for damage prognostics, for
example in the areas of rotating machinery [10–12], pneumatic
valves [13,14], fatigue of metals [15–17], just to name but a few.
Depending on the chosen modeling option for forward damage
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propagation, approaches can be roughly classified into model-
based or data-driven [18]. However, the number of contributions
in the context of composites is still very limited [19–21], where the
benefits of the probability-based prognostics approach can be fully
exploited to deal with the variability and complexity of the
degradation process in composites.

In the present paper, a model-based prognostics framework is
proposed in application to fatigue degradation in composite
materials. For the problem of damage state estimation, which
takes place before the problem of damage prognostics, an
approach based on particle filters (PF) [22,23] is adopted to
sequentially estimate the joint probability density function (PDF)
of damage states and model parameters as long as new SHM data
are collected. By PF, the analytical joint distribution of states and
parameters obtained by Bayes’ Theorem is approximated through
a discrete set of weighted particles, that represent random sample
realizations in the joint states–parameters space [24]. Every time
new data become available, the particles (states and parameters)
are updated and further propagated forward in time by simulating
the damage evolution model. Examples of PF-based approaches in
the context of damage prognostics are found in [15,25–29].

In addition, a general methodology for time-dependent relia-
bility calculation is proposed based on filtered information about
the future states of the system. This methodology is particularly
useful for damage prognostics in composites where several
damage modes may coexist, since reliability encapsulates informa-
tion about the overall system performance. An approach for
predicting time-dependent reliability has been adopted by
[30,17] in a similar manner, however in the present paper it is
accomplished by PF focusing on damage in composites. In parti-
cular, it is shown that the time-dependent reliability calculation at
a given time can be estimated as the sum of the normalized

weights of the predicted particles that lie within a predefined
useful domain, which is defined as the subregion of the state–space
where system performance is authorized. Finally, a method for
directly obtaining the RUL as a probability from the time-
dependent reliability is proposed, whose validity is demonstrated
using the axioms of Probability Logic [31,32]. See Fig. 2 for a
scheme of the proposed prediction framework based on reliability.

As a case study, the proposed prognostics approach is demon-
strated using SHM data for matrix-crack density and stiffness
reduction from a tension–tension fatigue experiment in a cross-
ply CFRP laminate. Damage data are taken from NASA Ames
Prognostics Data Repository (Composites dataset) [33]. Results
show the suitability and potential of the proposed approach in
performing RUL prediction with adequate management of the
associated uncertainty.

The remainder of the paper is organized as follows. Section 2
discusses the theory behind fatigue damage in composites and
presents the proposed methodology for fatigue damage modeling.
The sequential state estimation problem by means of PF is
presented in Section 3. Section 4 formally defines the prognostics
problem and describes the methodology proposed to obtain the
RUL estimation from the time-dependent reliability. In Section 5,
the proposed framework is applied to a set of fatigue damage data
to serve as an example. Finally, concluding remarks are provided
in Section 6.

2. Fatigue damage modeling

The progression of fatigue damage in composites involves a
progressive or sudden change of the macro-scale mechanical proper-
ties, such as stiffness or strength, as a consequence of different

Fig. 1. Panel (a) Schematic view of a FRP composite laminate with stacking sequence given by ½ϕo
1=ϕ

o
2=ϕ

o
3�S : Panel (b) Illustration of one of the plies with indication of ply and

laminate directions. Panel (c) Illustration of microscopic damage for a ϕnϕ
2
=90n90 =ϕnϕ

2

h i
laminate (as the laminate used in the case study) along with basic geometrical

parameters.
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fracture modes that evolve at the micro-scale along the lifespan of
the structure [6]. In this work, the longitudinal stiffness loss is chosen
as the macro-scale damage variable, given that, in contrast to the
strength variable, it can be measured through in-situ non-destructive
methods, which is of key importance for the filtering-based reliability
approach proposed here. At the micro-scale level, matrix micro-
cracking [34] is selected as the dominant fracture mode for the early
stage of damage accumulation.

To accurately represent the relation between the internal
damage and its manifestation through macro-scale properties,
several families of damage mechanics models have been proposed
in the literature [35]. These models are based on first principles of
admissible ply stress fields in the presence of damage, and can be
roughly classified into (1) analytical models, (2) semi-analytical
models, and (3) computational models. The two last families have
been shown to be promising, however they are computationally
prohibitive in a filtering-based prognostics approach, where a
large amount of model evaluations is required. Therefore, the
focus here is on the set of analytical models, that depending on the
level of assumptions adopted to model the stress field in the
presence of damage, they can be classified (from simpler to more
complex) into shear-lag models [36,37], variational models [38],
and crack opening displacement (COD) based models [39,40].
Among them, the shear-lag models have received the most
attention in the literature and, as a consequence, a vast number
of extensions and variations can be found [35]. Shear-lag models
use one-dimensional approximation of the equilibrium stress field
after cracking to derive expressions for stiffness properties of the
cracked laminate. The main modeling assumption of shear-lag
models is that, in the position of matrix cracks, axial load is
transferred to uncracked plies by the axial shear stresses at the
interfaces. These models are usually restricted to cross-ply lami-

nates or ϕnϕ
2

=90n90=ϕnϕ
2

� �
lay-ups, where ϕA �901;901½ � is the ply-

angle of the outer sublaminates (see Fig. 1). For general laminates
with arbitrary stacking sequence, COD-based models are best
suited. These models are expected to better capture the various
damage mechanisms since they involve more complex damage
mechanics, but it might be at the expense of more information
extracted from the data [41]. Then, if such models are utilized for
future prediction, as in prognostics, the results are expected
significantly dependent on the available data. However, it should
be noted that the methodology proposed in this paper is not
restricted to the above models but applicable to any damage
modeling option.

In this work, the classical shear-lag model [36,42] is the method
chosen to represent the relation between the micro-cracks density
and the stiffness loss, as it provides reasonable accuracy results
while it depends less on the data quality. Therefore, it is expected
to be less sensitive to the noise on data, as has been shown to hold
true for composites materials by a recent study [41].

2.1. Stiffness reduction model

Following the unifying formulation by [43] for shear-lag mod-
els, the effective longitudinal Young's modulus En

x can be calcu-
lated as a function of the crack-spacing in the 901 layers as

En

x ¼
Ex;0

1þa 1
2l
RðlÞ

ð1Þ

where Ex;0 is the initial longitudinal Young's modulus of the
undamaged laminate and l ¼ l=t90 is the half crack-spacing nor-
malized by the 901 sublaminate thickness. The normalized half-
crack spacing l can be expressed as a function of ρ, the matrix
crack density, as: l ¼ 1=2ρt90. The term a in Eq. (1) is a function of

mechanical and geometrical properties of the laminate as defined
in Appendix A. The function RðlÞ, known as the average stress
perturbation function, is defined as

RðlÞ ¼ 2
ξ
tanhðξlÞ ð2Þ

where ξ, the shear-lag parameter, can be obtained for the classical
shear-lag model [36,42] as follows:

ξ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G23

1
E2

þ t90
tϕE

ðϕÞ
x

 !vuut ð3Þ

The superscript ðϕÞ denotes “property of the ϕnϕ
2

� �
-sublaminate”

(see Fig. 1 for further details).

2.2. Damage propagation model

Having identified the model to express the relationship
between the effective Young's modulus and micro-cracks density,
the next step is to address the time evolution of the micro-cracks
density. To this end, the shear-lag model is used to obtain the
energy released per unit crack area due to the formation of a new
crack between two existing cracks, denoted here by G. This energy,
known as energy release rate (ERR), can be calculated as [44]

G¼ σ2
xh

2ρt90
1

En

xð2ρÞ
� 1
En

x ðρÞ

� �
ð4Þ

where σx is the applied axial tension, and h and t90 are the
laminate and 901 sublaminate half-thickness, respectively. The
term En

x ðρÞ, as a function of ρ, is the effective laminate Young's
modulus due to the current damage state which can be calculated
using Eq. (1). The energy released calculated by Eq. (4) can be
further introduced into the modified Paris’ Law [45] to obtain the
evolution of matrix-cracks density as a function of fatigue cycle n,
as shown below:

dρ
dn

¼ AðΔGÞα ð5Þ

where A and α are fitting parameters, and ΔG is the increment in
ERR for a specific stress amplitude, i.e., ΔG¼ Gðσx;maxÞ�Gðσx;minÞ.
Since the term ΔG involves the expression for the micro-damage
mechanics model En

x ðρÞ, a closed-form solution for Eq. (5) is hard to
obtain. To overcome this drawback, the resulting differential
equation can be solved by approximating the derivative using
unit-time finite differences, assuming that damage evolves cycle-
to-cycle as

ρn ¼ ρn�1þA ΔGðρn�1Þ
� �α ð6Þ

where ρn is the matrix-cracks density at fatigue cycle nAN.

3. Bayesian state estimation

Having defined the model for damage propagation forward in
time, the next step is to develop a method for sequential damage
state estimation as new SHM data are collected. This is accom-
plished by Bayesian state estimation [46], that recursively uses
Bayes’ Theorem to incorporate the information from current SHM
measurements along with the output of the damage propagation
model, while accounting for the underlying uncertainties (e.g.,
modeling errors and measurement noise). To this end, a probabil-
istic description of the deterministic models described in Section 2
is required, which is developed in the next section. The Bayesian
state estimation methodology is presented next. The proposed
procedure will make extensive use of the concept of damage state,
as a damage event predicted at a certain time or fatigue cycle, as
explained below.
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3.1. Stochastic system modeling

Let us consider a generic damage progression model defined in
state–space form using the following discrete state transition
equation:

xn ¼ gðxn�1;un;θÞþvn ð7Þ
where gðxn�1;un;θÞ : Rnx � Rnu � Rnθ-Rnx is a possibly nonlinear
function of the latent damage state xnARnu . Here xnARnx that
may depend on a set of nθ (uncertain) model parameters
θAΘ�Rnθ along with a set of input parameters to the system
xnARnu . Here vnARnx is a model-error term that represents the
difference between the actual system response xn and the model
output g. This model error is conservatively assumed to be
modeled as a zero-mean Gaussian distribution, which, supported
by the Principle of Maximum Information Entropy (PMIE) [47,31],
leads to the largest prediction uncertainty (largest Shannon
entropy). Thus, the selection of any other probability model would
lead to an unjustified underestimation of prediction uncertainty
[32]. It follows that the entire state transition equation is also
modeled as a Gaussian distribution as

pðxn jxn�1;un;θÞ ¼ ð2πÞnx jΣvn j
� ��ð1=2Þexp �1

2
xn�xnð ÞTΣ�1

vn xn�xnð Þ
� �

ð8Þ
where xn9gðxn�1;un;θÞ, and Σvn ARnx�nx is the covariance matrix
of the model error vn. Observe that the state transition equation,
as defined in Eq. (8), satisfies the Markov property [48], i.e., the
modeled process is conditionally dependent on the past sequence
only through the last state. Thus the proposed state transition
equation describes a Markovian process of order one.

As discussed in Section 2, the progression of damage is studied
in this paper by focusing on the matrix-cracks density ρn, and the
normalized effective stiffness Dn ¼ En

x=Ex;0, so that the following
joint state transition equation of two components g¼ g1; g2

� �
AR2

is defined, as follows:

x1;n ¼ ρn ¼ g1ðρn�1;un;θÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðEq: 6Þ

þv1;n ð9aÞ

x2;n ¼Dn ¼ g2ðρn;un;θÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðEq: 1Þ

þv2;n ð9bÞ

where xn ¼ x1;n; x2;n
� �

AR2 is the system response at time nAN.
Subscripts 1 and 2 correspond to the damage subsystems, namely,
matrix-crack density and normalized effective stiffness, respec-
tively. The vector vn ¼ v1;n; v2;n

� �
AR2 corresponds to the model

error of the overall system. A key concept here is the consideration
of model errors v1;n and v2;n as stochastically independent, even
though the models corresponding to the damage subsystems, g1
and g2, are mathematically related, as shown in Section 2. It
follows that the covariance operator Σvn is a diagonal matrix, i.e.
Σvn ¼ diag σ2

v1;n ;σ
2
v2;n


 �
, where σv1;n and σv2;n are the corresponding

standard deviations of model errors v1;n and v2;n, respectively.
Therefore, the state transition equation of the overall system, as
defined in Eq. (8), can be readily expressed as a product of
univariate Gaussians, as1

pðxn jxn�1;θÞ ¼ pðDn jρn;θÞpðρn jρn�1;θÞ ð10Þ
where

pðρn jρn�1;θÞ ¼
1ffiffiffiffiffiffi

2π
p

σv1;n

exp � ρn�g1ðρn�1;θÞ
� �2

2σ2
v1;n

 !
ð11aÞ

pðDn jρn;θÞ ¼
1ffiffiffiffiffiffi

2π
p

σv2;n

exp � Dn�g2ðρn;θÞ
� �2

2σ2
v2;n

 !
ð11bÞ

Let us now suppose that the system response can be measured
during operation and that, at a certain fatigue cycle n, the
measured system response can be expressed as a function of the
latent damage state xn, as follows:

yn ¼ xnþwn ð12Þ
where yn ¼ y1;n; y2;n

� �� ðρ̂n; D̂nÞAR2 are the measurements of
both, matrix-cracks density and normalized effective stiffness
respectively, and wn ¼ w1;n;w2;n

� �
AR2 is the vector of measure-

ment errors. As stated before, the PMIE is used to choose wn as a
zero mean Gaussian PDF with covariance matrix Σwn . Thus, the
measurement equation defined in Eq. (12) can be expressed in
probabilistic terms as

pðyn jxn;θÞ ¼ ðð2πÞ2 jΣwn j Þ�1=2expð�1
2 ðyn�xnÞTΣ�1

wn
ðyn�xnÞÞ

ð13Þ
Since the measurements of each subsystem (micro-cracks and
effective stiffness) are considered as stochastically independent,
then Σwn ¼ diag σ2

w1;n
;σ2

w2;n


 �
, being σw1;n and σw2;n the standard

deviation of the corresponding measurement errors w1n and w2n ,
respectively. Thus, Eq. (12) can be readily expressed as

pðyn jxn;θÞ ¼ pðρ̂n jρnÞpðD̂n jDnÞ ð14Þ

where

pðρ̂n jρnÞ ¼
1ffiffiffiffiffiffi

2π
p

σw1;n

exp � ρ̂n�ρn

� �2
2σ2

w1;n

 !
ð15aÞ

pðD̂n jDnÞ ¼
1ffiffiffiffiffiffi

2π
p

σw2;n

exp �ðD̂n�DnÞ2
2σ2

w2;n

 !
ð15bÞ

The PDFs for the state transition equation and the measurement
equation defined in Eqs. (10)–(14) provide a complete statistical
description of the system being modeled.

Finally, the set of uncertain model parameters θ is selected
among the complete set of mechanical and fitting parameters
describing Eqs. (1)–(6) (see Table 2) through a global sensitivity
analysis [49]. The set of mechanical properties fE1; E2; tg together
with the Paris’ Law's fitting parameter α emerged as sensitive
parameters to the model output uncertainty [41], so that they are
selected for sequential updating as shown below. Further, the
standard deviations of the model errors v1;n and v2;n are added as
candidates for updating since they are uncertain a priori, thereby
resulting in the model parameter vector: θ¼ α; E1; E2; t;σv1;n ;

�
σv2;n ÞAR6.

3.2. Sequential state estimation

The aim of sequential state estimation is to recursively estimate
the posterior joint PDF of the latent damage state xn ¼ ðρn;DnÞ
along with model parameters θ, at every time n a new measure-
ment is available. To this end, an augmented state zn ¼ fxn;θg is
defined in the joint state–parameter space Z �Rnx þnθ , represent-
ing the overall system response including model parameters. Thus,
given a sequence of measurements up to time n, y0:n9fy0;
y1;…; yn�1; yng, the goal is to estimate the probability of the up-
to-date sequence of damage states of the system z0:n9fz0;
z1;…; zn�1; zng through the conditional PDF pðz0:n jy0:nÞ. This is
accomplished by Bayes' Theorem, as follows:

pðz0:n jy0:nÞ ¼
pðyn jznÞpðz0:n jy0:n�1ÞR

Zpðyn jznÞpðz0:n jy0:n�1Þ dz0:n
1 In what follows, the conditioning on the model input un is dropped for

simpler notation.
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ppðyn jznÞpðzn jzn�1Þpðz0:n�1 jy0:n�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
last update

ð16Þ

where

pðzn jzn�1Þ ¼ pðxn jxn�1;θnÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðEq: 10Þ

pðθn jθn�1Þ ð17aÞ

pðyn jznÞ ¼ pðyn jxn;θnÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðEq: 14Þ

ð17bÞ

In Eq. (16), it is assumed that pðyn jz0:n; y0:n�1Þ ¼ pðyn jznÞ and that
pðzn jz0:n�1; y0:n�1Þ ¼ pðzn jzn�1Þ, based on the definition of the
measurement equation (Eq. (12)) and the Markovian property of
the state transition equation, respectively. It is also assumed that
the initial damage state z0 is known in advance, hence
pðz0 jy0Þ � pðz0Þ (note that y0 is not a measurement), being
pðz0Þ ¼ pðx0 jθÞpðθÞ the prior PDF of the system state.

A key problem that typically arises when sequentially updating
the state sequence z0:n ¼ fx0:n;θ0:ng as an augmented state is the
non-dynamics nature of θ, which makes it difficult to obtain the
PDF pðθn jθn�1Þ in Eq. (16), and therefore, to explore the space of
parameters Θ. A common solution is to add an independent
random perturbation ξn to the set of updated parameters at time
n�1 before evolving to the next predicted state at time n, i.e.,
θn ¼ θn�1þξn. It induces a Markovian-type artificial dynamics
[22,50] to model parameters, whereby the PDF pðθn jθn�1Þ is
prescribed. For example, if ξn is assumed to be modeled as a
zero-mean Gaussian, then the required PDF pðθn jθn�1Þ is obtained
as

pðθn jθn�1Þ ¼N ðθn�1;Σξn Þ ð18Þ

where Σξn ARnθ�nθ is the covariance matrix of the random walk

which, in this work, is specified as Σξn ¼ diagðσ2
ξn;1

;…;

σ2
ξn;j

;…;σ2
ξn;nθ

Þ, i.e., each individual component of θ performs an

independent random walk, being σ2
ξn;j

the variance of the random

walk of θn;j, the jth component of the parameter vector θ. Observe
that by this method, the model parameters are virtually time-
evolving although they are essentially not dependent on time. In
addition, note that such time-dependence imposes a loss of
information in θ over time (e.g., larger spread in pðθn jy0:nÞ) since
additional uncertainties are artificially added to model parameters,
which ultimately influences the precision of the state estimation.
Several methods have been proposed in the literature to overcome
this drawback, with the most popular being those that impose a
shrinkage over Σξn as long as new data are collected [50]. An
efficient method of this class has been recently proposed by Daigle
and Goebel [51], which consists in modifying the variances
σ2
ξn;j

; j¼ 1;…;nθ by adding a negative scalar proportional to the

relative distance between the actual and the target spread of the
marginal posterior pðθn;j jy0:nÞ, as follows:

σ2
ξn;j

¼ σ2
ξn� 1;j

1�Pn

j

RMADðθn;jÞ�RMADn

j

RMADðθn;jÞ

 !
ð19Þ

where RMADðθn;jÞ is the relative median absolute deviation of
pðθn;j jy0:nÞ, RMADn

j is the target RMAD for pðθn;j jy0:nÞ, and Pn

j A 0;1½ �
is a scaling constant that tunes the speed of convergence to
RMADn

j . In [51], a comprehensive discussion about the optimal

choice for Pn

j and RMADn

j is found. The term RMADðθn;jÞ can be
readily calculated based on samples from the marginal posterior

pðθn;j jy0:nÞ, as follows:

RMADðθn;jÞ ¼
medianð jθðkÞ

n;j�fmedianð ~θn;jÞj g
K

k ¼ 1

� �
medianð ~θn;jÞ

ð20Þ

where ~θn;j ¼ fθð1Þ
n;j ;…;θðkÞ

n;j ;…;θðKÞ
n;j g is a set of K samples from

pðθn;j jy0:nÞ. The adopted method for sequential parameter updat-
ing is summarized within Algorithm 1 below.

3.3. Particle filters for joint state and parameter estimation

The sequential state estimation methodology presented before
requires the evaluation of multi-dimensional integrals of the type
occurring in Eq. (16), which are usually intractable except some
special cases using linear models and Gaussian uncertainties [23].
An alternative for the general case of both non-linear and non-
Gaussian state–space models is by the use of particle methods [46],
a set of sequential Monte Carlo methods which provide samples
approximately distributed according to the posterior PDF
pðz0:n jy0:nÞ with a feasible computational cost. Particle filters (PF)
[22,23] is one of the most common techniques among particle
methods. With PF, a set of N samples or particles fzðiÞ0:ng

N

i ¼ 1 with
associated set of weights fωðiÞ

n gNi ¼ 1 are used to obtain an approx-
imation for the required posterior PDF of the damage state, as

pðz0:n jy0:nÞ �
XN
i ¼ 1

ωðiÞ
n δðz0:n�zðiÞ0:nÞ ð21Þ

where δ is the Dirac delta. Given that the posterior density is
seldom known exactly, it is not possible to obtain samples from it
directly. For this reason, a sequential importance sampling (SIS)
approach is adopted to straightforwardly generate samples from
an importance density qðz0:n jy0:nÞ. Thus, to compensate for the
difference between the importance density and the true posterior
density, the unnormalized weights are computed as follows:

ω̂ðiÞ
n ¼ pðzðiÞ0:n jy0:nÞ

qðzðiÞ0:n jy0:nÞ
ð22Þ

where ωðiÞ
n ¼ ω̂ðiÞ

n =
PN

i ¼ 1 ω̂
ðiÞ
n , i¼ 1;…;N. For practical reasons, the

importance density is conveniently chosen as qðz0:n jy0:nÞ ¼
qðz0:n jy0:n�1Þ, therefore it can be factorized as qðz0:n jy0:n�1Þ ¼
qðzn jzn�1Þqðz0:n�1 jy0:n�1Þ [23]. Then, by substituting Eq. (16) into
Eq. (22), the unnormalized importance weight for the ith particle
at time n can be rewritten as

ω̂ðiÞ
n p

pðzðiÞ0:n�1 jy0:n�1Þ
qðzðiÞ0:n�1 jy0:n�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ωðiÞ
n� 1

pðzðiÞn jzðiÞn�1Þpðyn jzðiÞn Þ
qðzðiÞn jzðiÞn�1Þ

ð23Þ

Typically, the PDF qðzn jzn�1Þ in Eq. (23) is chosen to coincide with
the state transition equation pðzn jzn�1Þ since it is easy to evaluate
[22,52]. By means of this, Eq. (23) simplifies to

ω̂ðiÞ
n pωðiÞ

n�1pðyn jzðiÞn Þ ð24Þ
and the resulting algorithm is called bootstrap filter [22]. This is the
algorithm adopted for the research in the present paper.

When particularizing to the fatigue problem investigated here,
the data y0:n are compounded by simultaneous measurements of
both, micro-cracks density and normalized effective stiffness.
Thus, by substituting Eq. (14) into 24, the formula for updating
the particle weights leads to the next expression:

ω̂ðiÞ
n pωðiÞ

n�1pðρ̂n jρðiÞ
n ÞpðD̂n jDðiÞ

n Þ ð25Þ
A pseudocode implementation for the PF is provided as Algorithm
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1. Observe that a systematic resampling step is implemented in
Algorithm 1 to avoid the well-known drawback of weight degen-
eracy. During the resampling, particles are either dropped or
reproduced that may result in a loss of diversity of the particles
[23]. If necessary, a control step on this degeneracy by using the
effective sample size (ESS) [53] may be incorporated before the
resampling step.

Algorithm 1. SIS particle filter with parameter adaptation.

inputs:
N, {number of particles per time step}
NT , {threshold of effective sample size (ESS)}P

ξ0
¼ diag σ2

ξ0;1
;σ2

ξ0;2
;…;σ2

ξ0;nθ

� �
, {initial covariance for artificial

dynamics}
K, {number of samples for RMAD calculation [51] for jth

component of θ}
RMADn

j , {target RMAD for jth component of θ}
Pn

j , {to control speed of convergence to RMADn

j }
Algorithm:

Initialize θð1Þ
0 ; xð1Þ

0


 �
;…; θðiÞ

0 ; xðiÞ
0


 �
;…; θðNÞ

0 ; xðNÞ
0


 �h i
, where

ðθðiÞ
0 ;xðiÞ

0 Þ � pðθÞpðx0 jθÞ
Assign the initial weights: fω̂ðiÞ

0 ¼ 1=Ng
N

i ¼ 1
At nZ1 {time n evolves as new SHM data arrive}
for i¼1 to N do

Sample from Eq. (18): θðiÞ
n � pð	jθðiÞ

n�1Þ
Sample from Eq. (11a):ρðiÞ

n � pð:jρðiÞ
n�1;θ

ðiÞ
n Þ

Sample from Eq. (11a):DðiÞ
n � pð	jρðiÞ

n ;θðiÞ
n Þ

Set zðiÞn ¼ fρðiÞ
n ;DðiÞ

n ;θðiÞ
n g and zðiÞ0:n ¼ ðzðiÞ0:n�1; z

ðiÞ
n Þ

Update weights according to Eq. (25): ω̂ðiÞ
n ¼ωðiÞ

n�1pðyn jzðiÞn Þ
end for
for i¼1 to N do

Normalize weights ωðiÞ
n ¼ ω̂ ðiÞ

nPN

i ¼ 1
ω̂ ðiÞ

n

end for
for j¼1 to nθ do

Sample f ~θ ðkÞ
n;jg

K

k ¼ 1
� pðθn;j jy0:nÞ �

PK
k ¼ 1ω

ðkÞ
n δðθn;j�θðkÞ

n;j Þ
Compute RMADðθn;jÞ according to Eq. (20)
Update variance of random walk:

σ2
ξn;j

¼σ2
ξn� 1;j

1�Pn

j
RMADðθn;jÞ�RMADn

j

RMADðθn;jÞ


 �
end for

set Σξn ¼ diag σ2
ξn;1

;…;σ2
ξn;nθ

� �
if EESoNT then

Resampling of N particles according to weights

ωðiÞ
n ; i¼ 1;…;N.

Set ωðiÞ
n ¼ 1=N ; i¼ 1;…;N.

end if

It should be noted that when data are available over a set of
non-regularly scheduled cycles fn;nþk;…;nþℓgAN, with
ℓ4kþ1; k41, samples from the state transition equation
pðznþ1 jznÞ cannot be directly drawn. This is due to the one-step
description of the matrix-cracks evolution model, as observed in
Eq. (9a). To overcome this drawback, which is usual in fatigue
testing, the Total Probability Theorem can be applied to bridge the
missing damage path growth between two non-subsequent mea-
surements. For example, for general cycles n and nþℓ, with
ℓANZ1, the PDF pðznþℓ jznÞ for the ℓ-step-ahead damage states

can be obtained as

p znþℓ jznð Þ ¼
Z
Z
p znþℓ jznþ1:nþℓ�1; znð Þp znþ1:nþℓ�1 jznð Þ dznþ1:nþℓ�1

ð26Þ
where znþ1:nþℓ�1 ¼ znþ1; znþ2;…; znþℓ�1


 �
AZ is the sequence of

missing states between the measuring times n and nþℓ. Making
use of the Markov property of state transition equation, Eq. (26)
can be rewritten as follows:

p znþℓ jznð Þ ¼
Z
Z

∏
nþℓ

t ¼ nþ1
pðzt jzt�1Þ dznþ1:nþℓ�1 ð27Þ

To numerically solve this multi-dimensional integral, an approx-
imation can be readily obtained by conditional sampling, using
recursively the one-step transition equation as defined in 10, i.e.:
first sample zðiÞnþ1 using the aforementioned one-step transition
equation conditional on the initial damage state zn, i.e.,
zðiÞnþ1 � pð	jznÞ; then sample the succeeding state conditional on
the previous sample, i.e., zðiÞnþ2 � pð	jzðiÞnþ1Þ; finally, repeat the same
process until the target time nþℓ is reached.

3.4. Future state prediction

Having estimated the probability distribution of the current
damage state at the time of prediction n, the next step for
prognostics is to predict the distribution of future states of the
system ℓ-steps forward in time in the absence of new observation,
i.e., pðznþℓ jy0:nÞ, with ℓ41. This distribution can be obtained by
the Total Probability Theorem as

pðznþℓ jy0:nÞ ¼
Z
Z
pðznþℓ jzn:nþℓ�1; y0:nÞpðzn:nþℓ�1 jy0:nÞ dzn:nþℓ�1

¼
Z
Z

∏
nþℓ

t ¼ nþ1
pðzt jzt�1Þ

" #
pðzn jy0:nÞ dzn:nþℓ�1 ð28Þ

where pðzn jy0:nÞ is the up-to-date information about the system at
time n, and pðzt jzt�1Þ, with t4n, is the state transition equation
which represents the future behavior of the system. It is important
to remark here that, for simplicity but without loss of generality,
input parameters un (e.g., loads, environmental conditions, etc.)
are assumed to be known in advance and they are dropped from
the formulation. Replacing pðzn jy0:nÞ in Eq. (28) by its particle-
filter approximation (Eq. (21)), a particle estimation of the pre-
dictive PDF pðznþℓ jy0:nÞ can be obtained as

pðznþℓ jy0:nÞ �
Z
Z

∏
nþℓ

t ¼ nþ1
pðzt jzt�1Þ

" #XN
i ¼ 1

ωðiÞ
n δðz0:n�zðiÞ0:nÞ dzn:nþℓ�1

¼
XN
i ¼ 1

ωðiÞ
n

Z
Z
pðznþ1 jzðiÞn Þ ∏

nþℓ

t ¼ nþ2
pðzt jzt�1Þ dznþ1:nþℓ�1 ð29Þ

Note that last equation cannot be solved analytically, however it
can be sampled by drawing one conditional sample sequence

zðiÞnþ1:nþℓ¼ zðiÞnþ1; z
ðiÞ
nþ2;…; zðiÞnþℓ

n o
from each of the N multidimen-

sional integrals in Eq. (29), using the conditional sampling meth-
odology explained in the last section. Each of the simulated

sequences zðiÞnþ1:nþℓ; i¼ 1;…;N adopts the weight ωðiÞ
n of the

corresponding “stem” sample zðiÞn ; therefore an approximation of
the ℓ-step predictive ahead PDF can be obtained as

pðznþℓ jy0:nÞ �
XN
i ¼ 1

ωðiÞ
n δðznþℓ�zðiÞnþℓÞ ð30Þ

where zðiÞnþℓAzðiÞnþ1:nþℓ; i¼ 1…N.
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4. Condition-based prediction of reliability

Reliability is a probabilistic metric that provides information
about the system performance in relation to a predefined limit
state or threshold function. When the states of the system under
study are time-dependent, as in the case of fatigue degradation in
composite materials, then the reliability calculation may depend
upon the health state of the system at a generic time instant,
leading to the concept of time-dependent reliability [30,54,55]. In
this context, it is possible to formulate the problem of ℓ-step-
ahead prediction of reliability, denoted here as Rnþℓj n, using the
most up-to-date information about the system at time n. It is
further shown in this section that the predicted time-dependent
reliability also serves to derive a cumulative distribution function
(CDF) of the RUL in a straightforward manner.

4.1. Time-dependent reliability

Let us define the useful domain U � Z as the non-empty subset
of authorized states of the system, and the complementary subset
U ¼ Z⧹U, as the subset of states where the system behavior
becomes unacceptable, or simply, where system failure occurs.
Then, the time-dependent reliability can be defined as the prob-
ability2 of the system to belong to the useful domain U at general
time nþℓ, based on updated information about the system states
at cycle n. In mathematical terms

Rnþℓj n ¼ PðznþℓAU jy0:nÞ ¼
Z
U
pðznþℓ jy0:nÞ dznþℓ ð31Þ

where pðznþℓ jy0:nÞ is the ℓ-step ahead predictive PDF of the
system, as defined in Eq. (28). The last probability integral, defined
over the useful domain U, can be redefined over the complete
z-space by introducing an indicator function IðUÞðzÞ, as follows:

Rnþℓj n ¼
Z
Z
IðUÞðznþℓÞpðznþℓ jy0:nÞ dznþℓ ð32Þ

where IðUÞðzÞ : Z-f0;1g maps a given point in the joint state–
parameter space Z to the Boolean domain f0;1g, such that

IðUÞðzÞ ¼
1 if zAU

0 if zAU

�
ð33Þ

By replacing pðznþℓ jy0:nÞ by its future estimate given by Eq. (30),
an estimate of the integral in Eq. (32) can be obtained as

Rnþℓj n �
Z
Z
IðUÞðznþℓÞ

XN
i ¼ 1

ωðiÞ
n δðznþℓ�zðiÞnþℓÞ

" #
dznþℓ

¼
XN
i ¼ 1

ωðiÞ
n IðUÞðzðiÞnþℓÞ ð34Þ

From the last equation, it is shown that the ℓ-step ahead predicted
reliability of the system can be readily approximated as the sum of
the weights of the subset of particles that satisfy IðUÞðzðiÞnþℓÞ ¼ 1, i.e.,
those that lie within the useful domain at time nþℓ. By evaluating
Eq. (34) for different values ℓZ1, a time dependent reliability
function is obtained. Note that, as a particular case of the time-
dependent reliability, an estimation of the updated reliability Rnj n
can be obtained at time n (when the last SHM measurement is
available) as

Rnj n ¼
XN
i ¼ 1

ωðiÞ
n IðUÞðzðiÞn Þ ð35Þ

where fzðiÞn ;ωðiÞ
n gNi ¼ 1 is a set of N discrete samples to approximate

the PDF pðzn jy0:nÞ.

4.2. Calculation of RUL based on time-dependent reliability

Once the problem of future state prediction has been assessed
and the time-dependent reliability of the system has been derived,
the next natural step for prognostics is to estimate the remaining
useful life of the engineering component/system; i.e., to estimate
the minimum time ℓ when the predicted state is expected to lie
within the failure domain U . In mathematical terms

RULn ¼ inf ℓAN : znþℓAU

 � ð36Þ

In the context of the fatigue problem investigated in this paper, the
RULn corresponds to the minimum amount of prospective fatigue
cycles starting from n, such that damage (matrix-cracks or stiffness
loss) goes beyond a predefined damage threshold, that is defined
as the boundary of the useful domain U. Observe that, based on
the definition in Eq. (36), it is clear that the proposition RULnrℓ½ �
implies the proposition znþℓAU

� �
and vice versa, i.e., RULnr½

ℓ� ⟺ znþℓAU
� �

. However, it is necessary to further explore the
correspondence between both propositions in terms of probability,
which would allow us a direct connection between the RUL and
time dependent reliability. In the next subsection, the equivalence
between P RULnrℓjy0:n

� �
and P znþℓAU jy0:n

� �
is derived and

examined under the axioms of Probability Logic [31,32].

4.2.1. Derivation of probability of RUL from probability logic
In Probability Logic, PðbjaÞ is interpreted as the degree of

plausibility of proposition b based on the information given by
proposition a [32]. In other words, given the proposition a, then
proposition b holds with probability PðbjaÞ. In the specific situa-
tion when then proposition b gives complete information about a,
i.e. b ) a, then PðajbÞ ¼ 1. In contrary, when b implies not a, then
PðajbÞ ¼ 0. Four axioms are defined in Probability Logic:

PðbjaÞZ0 ð37aÞ

PðbjaÞþPð � bjaÞ ¼ 1 ð37bÞ

Pðbjb&aÞ ¼ 1 ð37cÞ

Pðc&bjaÞ ¼ Pðcjb&aÞPðbjaÞ ð37dÞ
where � b reads “not b” and a&b reads “a and b”. From these
axioms, the property PðbjaÞr1 is obtained, which can be readily
derived from axioms (37a) and (37b).

Let us now suppose that proposition a represents the data y0:n,
b represents RULnrℓ½ �, and c represents znþℓAU

� �
. As evident

from the definition in Eq. (36), the proposition RULnrℓ½ � implies
the proposition znþℓAU

� �
and vice versa , i.e., b ⟺ c. Next, from

axiom (37d):

Pðb&cjaÞ ¼ Pðbj c&aÞPðcjaÞ ð38aÞ

¼ P bj ðb ⟺ cÞ&að Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 1;by axiom ð37cÞ

PðcjaÞ ð38bÞ

where the equivalence c&a� ðb ⟺ cÞ&a is used in Eq. (38b). Thus
Pðb&cjaÞ ¼ PðcjaÞ and also Pðb&cjaÞ ¼ PðbjaÞ, based on the corre-
spondence b ⟺ c. The latter formally proves the following
equality in terms of probabilities: P RULnrℓjy0:n

� �¼ P znþℓAð
U jy0:nÞ.

4.3. Prognostics based on time-dependent reliability

The reasoning given above allows us to establish a rational con-
nection between the RUL as a probability and the time-dependent
reliability, provided that the events znþℓAU

� �
and RULnrℓ½ �

occur with the same probability; hence the following identity
2 In what follows, Pð	Þ is used to denote probability, whereas a PDF is expressed

as pð	Þ.
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holds

FRULn ðℓÞ9P RULnrℓjy0:n
� �¼ P znþℓAU jy0:n

� �
¼ 1�P znþℓAU jy0:n

� �
¼ 1�Rnþℓj n ð39Þ

which makes use of the definition of time-dependent reliability
given in Eq. (31). In the last equation, FRULn ðℓÞ denotes the CDF of
the random variable ℓAN. Thus, the probability P RULnrℓjy0:n

� �
can be approximated using Eq. (34) as

P RULnrℓjy0:n
� �� 1�

XN
i ¼ 1

ωðiÞ
n IðUÞðzðiÞnþℓÞ ð40Þ

Note that it is possible to compute the entire CDF of RULn by
evaluating Eq. (40) for different values of ℓZ1 until the value
Rnþℓj n ¼ 0 is reached, which leads to FRULn ðℓÞ ¼ 1. See Fig. 2 for a
scheme of the proposed reliability-based prognostics framework.
The calculation of the time-dependent reliability can be updated
each time n new data are collected. The outcomes of these steps
are conceptually illustrated in Fig. 3. Observe that the reliability-
based prognostics methodology presented here is general enough
and can include the effect of other damage modes (others than ρ
and D) at different scales (ply, laminate, structure) by just
considering them into the definition of the damage state zAZ
for the stochastic system modeling, as explained in Section 3.1.

5. Case study

The proposed framework is applied to fatigue cycling data
obtained from a set of run-to-failure fatigue experiments in cross-
ply graphite-epoxy laminates. Torayca T700G unidirectional pre-
impregnated (commonly known as prepreg) material was used for
15.24 cm� 25.4 cm coupons with dogbone geometry and
02=904
� �

s stacking sequence. A notch (5.1 mm�19.3 mm) was
created in these coupons to induce damage modes other than
matrix-cracks, such as delamination, thereby introducing addi-
tional sources of uncertainty and then demonstrating the pro-
posed framework under more realistic conditions. The main
mechanical properties of such coupons are listed in Table 2.

The tests were conducted under load-controlled tension–tension
cyclic loading with a maximum applied load of 31.13 (KN), a
frequency f¼5 (Hz), and a stress ratio R¼0.14 (relation between
the minimum and maximum stress for each cycle). Monitoring data
were collected from a network of 12 piezoelectric (PZT) sensors using
Lamb wave signals and three triaxial strain-gages. Both micro-crack

density and stiffness reduction data were considered as NDE mea-
surements during the fatigue test. The mapping between PZT raw
data and micro-cracks density was done following the methodology
proposed in [56]. More details about these tests are reported in
[33,57]. Damage data used in this example correspond to laminate
L1S19 in [33] (see a summary in Table 1). Fig. 4 provides a schematic
view of the experimental set-up.

Results for sequential state estimation along with multi-step
ahead prediction for both micro-cracks density and normalized

Fig. 2. Conceptual scheme for prognostics based on time-dependent reliability. Every time new data are collected, the damage state is updated and further propagated
forward in time whereby the time-dependent reliability is predicted. As by-product, a estimation of RUL is obtained.

Fig. 3. Illustrative example of the proposed framework for prognostics based on
time-dependent reliability. Top panel: samples of z-states along with their
idealized sample trajectories against time steps fn�1;n;…;nþℓg, where n is the
last time when data become available. The horizontal line represents the boundary
between the useful domain U and its complementary region U . Bottom panel:
predicted reliability from time n. Observe the correspondence between the
predicted reliability Rnþℓj n and the PðRULnrℓjy0:nÞ, as shown in Eq. (39).
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effective stiffness are presented for three different time instants
(cycles) in Fig. 5. Note that at the beginning of each plot (left side
before the multi-step ahead prediction) the collected data up to
cycle n, n¼ f1;4;8g � 104, are represented along with the
sequence of filtered states, which are estimated using Algorithm
1 with N¼5000 particles. For this case study, the systematic
importance resampling (SIR) variant of the SIS algorithm is
adopted, whereby the resampling step is run every time new data
are collected. Damage states are initialized at x0 ¼ ðρ0;D0Þ, being
ρ0 ¼ 0:1 (cracks/mm) and D0 ¼ 1 (dimensionless). The standard
deviation of the measurement error parameters are set to
σw1;n ¼ 0:05 (cracks/mm) and σw2;n ¼ 0:01, taking them as known.
The scaling variables RMADn

j and Pn

j are fixed to 0:3 	 RMAD0;j and
0.001 respectively, where RMAD0;j is calculated according to Eq.
(20) using samples from the marginal prior PDF pðθjÞ; j¼ 1;…;6.
The chosen prior PDFs for model parameters θ¼ fθ1;θ2;…θ6g are
specified in Table 2. The diagonal elements σξ0;j of the covariance
matrix Σξ0 (recall Eq. (18)) are appropriately selected through
initial test runs and set to 0:5% of the 5th–95th inter percentile
range of the marginal priors pðθjÞ; j¼ 1;…;6. To reveal the uncer-
tainty reduction in model parameters θ, the posterior mean of the
jth component is plotted against cycles in Fig. 6 for j¼ 1;…;6, as
well as their 25–75%, 5–95% probability bands.

Moreover, time-dependent reliability estimations are obtained
using the methodology described in Section 4.1. The results are

shown in Fig. 7 for selected cycles n¼ f0:1;1;3;5;7;9g � 104. For
this example, the useful domain is defined by the subset
U ¼ fðρ;DÞA ½0;0:418� � ½1;0:88�g �R2, where ρ is expressed in
[cracks/mm] and D is dimensionless. By comparing between
consecutive plots in Fig. 7, one can observe that the reliability
prediction gradually tends to converge as more SHM data become
available.

The RUL calculated from the predicted reliability is shown in
Fig. 8, where two cones of accuracy at 10% and 20% of the true RUL
(denoted as RUL n) are drawn to help evaluating the prediction
accuracy and precision [58].

Observe that the RUL prediction is appreciably inaccurate for
the initial stages of the fatigue process, which suggests that a
number of cycles are required for SHM data to train model
parameters. From this period, not only the prediction precision
clearly improves with time (values closer to RULn line), but also
the prediction spread gradually tends to diminish. Observe also
that from cycle n¼ 5 	 104, the estimated mean values for the RUL
(labeled by the circles in Fig. 8) get higher values with respect to
the RULn line, progressively leaving the accuracy area. However,
the median RUL estimates (labeled by the squares) remain within
the accuracy region. An explanation for this observation is pro-
vided in view of the asymptotic behavior of the damage process
for both, micro-cracks density and normalized stiffness decrease,
as shown in Fig. 5. Note that from cycle n¼ 5 	 104, the model

Table 1
Experimental sequence of damage for the cross-ply 02=904

� �
s Torayca T700 CFRP laminate used in the case study. The data are presented for micro-cracks density (ρn) and

normalized effective stiffness (Dn).

Fatigue cycles, n 101 102 103 104 2 	104 3 	104 4 	104 5 	104 6 	104 7 	104 8 	104 9 	104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5
Dn 0.954 0.939 0.930 0.924 0.902 0.899 0.888 0.881 0.896 0.872 0.877 0.885 0.880

Fig. 4. Fatigue experiment for a T700G CFRP 02=904
� �

s laminate. Shown in the left is the in situ set-up of the specimen on the testing machine. Observe the SHM system
based on PZT sensors (SMART Layer s from Acellent Technologies Inc), which are placed on top and bottom of the specimen. The right panel shows a X-ray image of the
specimen after 100 fatigue cycles. The bright white areas denote delaminated interfaces whereas the horizontal white lines are matrix cracks.

J. Chiachío et al. / Reliability Engineering and System Safety 142 (2015) 134–147142



0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

collected data
upcoming data
updated state
filtered prediction (median)
50% probability bands
95% probability bands

0 2 4 6 8 10

x 10
4

0.85

0.9

0.95

1
collected data
upcoming data
updated state
filtered prediction (median)
50% probability bands
95% probability bands

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

x 10
4

0.85

0.9

0.95

1

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

x 10
4

0.85

0.9

0.95

1

Fig. 5. Sequential state estimation for matrix micro-cracks density (cracks=mm) and normalized effective stiffness (dimensionless) up to a certain cycle n, where n¼ 1� 104 (a
& b), 4� 104 (c & d) and 8� 104 (e & f). The multi-step ahead predicted damage states are represented using dashed gray lines for the 5–95% probability bands and solid gray
lines for the 25–75% probability bands.

Table 2
Nominal values and prior uncertainty of model parameters used in calculations. The rest of parameters in damage mechanics models (Eq. (1)–(6)) are obtained using the
classical laminate theory [60] and the relations given in Appendix A. The nominal values for fitting parameters have been defined through initial fitting tests.

Type Parameter Nominal value Units Prior PDF

Mechanical E1ðθ1Þ 127:55 	 109 Pa LN ðlnð127:55 	 109Þ;0:1Þ
E2ðθ2Þ 8:41 	 109 Pa LN ðlnð8:41 	 109Þ;0:1Þ
tðθ3Þ 1.5�10�4 m LN ðlnð1:5 	 10�4Þ;0:1Þ
G12 6:20 	 109 Pa Not applicable

ν12 0.31 – Not applicable
G23 2:82 	 109 Pa Not applicable

Fitting αðθ4Þ 1.80 – LN ðlnð1:80Þ;0:2Þ
A 1 	 10�4 – Not applicable

Errors σv1 ðθ5Þ – #cracks=m 	 cycle Uð0:5;1:5Þ
σv2 ðθ6Þ – – Uð0:001;0:003Þ
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produces a large amount of predicted samples that already lie
within the failure domain U at time of prediction n. This leads to
an increasing density of predicted RULn concentrated at cycle n, in
addition to a distributional tail of RULn corresponding to those
particles that have not reached the failure region at cycle n. These
particles hit the failure threshold at cycles much higher than n, as
a consequence of the asymptotic damage progression. Thus, the
predicted mean values of RUL show a positive shift with respect to
the RULn values, whereas the median RUL estimates remain closer
to RULn. The last observation is clearly manifested at n¼ 9 	 104,
which corresponds to the cycle when the measured damage
reaches the failure region. Observe in Fig. 8 that the estimation
of RULn at n¼ 9 	 104 displays an upper distributional tail, that
makes sense with the updated reliability value Rnj n ¼ 0:42 at that
cycle, meaning that there is up to a 42% of remaining reliability for
cycles nZ9 	 104.

6. Concluding remarks

A prediction methodology based on reliability was proposed to
obtain the remaining useful life of composites under fatigue
conditions. The remaining useful life was derived from a propaga-
tion of the time-dependent reliability. Physics-based models were
considered to predict the future evolution of damage, due to the
benefits for predicting reliability and RUL. The validity of this
framework was demonstrated on SHM data collected from a
tension–tension fatigue experiment using a CFRP cross-ply lami-
nate. Reliability, as defined in this work, emerged as a suitable
unified system-health indicator for prognostics as it encapsulates
information about the system health state while it allows predict-
ing the RUL of the system.

More research effort is needed to develop more efficient prog-
nostics algorithms to improve the accuracy at the final stage of the
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process where damage typically reaches an asymptotic behavior. In
addition, an improvement of much interest would be the extension of
the proposed framework from coupon level to component or sub-
system level under operational fatigue loads. This may require the
development of ad hoc diagnostics technology for detecting, sizing
and quantifying damage extent through built-in SHM sensors, as well
as especially-designed prognostics methodology that accounts for the
particularities of the experimental setup.
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Appendix A. Nomenclature and basic relations

For ply and laminate properties, the nomenclature exposed in
Table 3 is adopted in this work. Notice that the subscripts f1;2;3g
refer to ply properties defined in local axes while the subscripts
fx; y; zg refer to sublaminate or laminate properties defined in
global axes, that corresponds to the laminate coordinate system
(see Fig. 1b). The first local direction “1” coincides with fibers
direction at a given ply or lamina (on-axis direction), while
directions “2–3” are the in-plane and out-of-plane transverse
directions. For global axes, “x” refers to the fatigue loading
direction, while “y–z” refers to the in-plane and out-of-plane
transverse directions, respectively. In addition, the superscript

ðϕÞ denotes “property of the ϕnϕ
2

� �
-sublaminate”.

The function a in Eq. (1) is defined as a function of the laminate
and ply properties as follows:

a¼ E2t90
E1tϕ

1�νðϕÞxy

νðϕÞxy t90
EðϕÞy

þν12tϕ
E2

t90
EðϕÞy

þ tϕ
E1

0
BBBBB@

1
CCCCCA
1�ν12ν

ðϕÞ
xy

1�ν212
E2
E1

ðA:1Þ

where properties with the superscript ðϕÞ are referred to the outer

ϕnϕ
2

� �
-sublaminate. From the classical theory of laminates [59],

these properties can be readily obtained as

1

EðϕÞx

¼m4

E1
þn4

E2
þ 1

G12
�2

ν12
E1

� �
m2n2 ðA:2aÞ

1

EðϕÞy

¼ n4

E1
þm4

E2
þ 1

G12
�2

ν12
E1

� �
m2n2 ðA:2bÞ
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νðϕÞxy

EðϕÞx

¼ ν12
E1

� 1þ2ν12
E1

þ 1
E2

� 1
G12

� �
m2n2 ðA:2cÞ

where m¼ cos ðϕÞ and n¼ sin ðϕÞ, and ϕ is the angle between the

laminate x-axis and the fiber direction of ϕnϕ
2

� �
-sublaminate, as

Fig. 1b illustrates. The rest of the parameters involved in Eqs. (A.1)
and (A.2) are defined in Table 3. For cross-ply laminates, as the
laminate type considered in Section 5, ϕ¼ 01, thus the laminate
and sublaminate global axes fx; y; zg coincide with ply local axes
f1;2;3g. In this particular case, the following identities hold:

Eð0Þx ¼ E1; Eð0Þy ¼ E2; νð0Þxy ¼ ν12; Gð0Þ
xy ¼ G12; Gð0Þ

xz ¼ G12

The undamaged longitudinal Young's modulus of the overall
laminate Ex;0 can be obtained as Ex;0 ¼ 1=an

11, where an

11 is the
ð1;1Þth element of an, the normalized compliance matrix of the
laminate. The matrix an can be obtained as the inverse of the
normalized laminate stiffness matrix An, i.e., an ¼ ðAnÞ�1. For the
laminate type considered in this work, the stiffness matrix An can
be readily calculated using the rule of mixtures as

An ¼ ðtϕ=hÞQ
ðϕÞ þðt90=hÞQ

ð90Þ
, where Q

ðαÞ
;α¼ fϕ;90g, is the corre-

sponding stiffness matrix of the outer ϕnϕ
2

� �
-sublaminates and 90-

sublaminate respectively, defined as

Q
ðαÞ ¼

Q 11 Q 12 Q 16

Q 21 Q 22 Q 62

Q 61 Q 62 Q 66

2
64

3
75 ðA:3Þ

The elements of this matrix can be obtained as a function of the
corresponding sublaminate angle α as

Q 11

Q 22

Q 12

Q 66

Q 16

Q 26

2
6666666664

3
7777777775
¼

U1 U2 U3 0 0
U1 �U2 U3 0 0
U4 0 �U3 0 0
U5 0 �U3 0 0

0 0 0
1
2
U2 U3

0 0 0
1
2
U2 �U3

2
6666666666664

3
7777777777775
	

1
cos ð2αÞ
cos ð4αÞ
sin ð2αÞ
sin ð4αÞ

2
6666664

3
7777775 ðA:4Þ

where Ui; i¼ 1;…;5 are invariants of the ply, whose values are
defined regardless of the ply orientation as a function of the
components of the on-axis ply stiffness matrix, as follows:

U1 ¼ 3
8Q11þ3

8Q22þ1
4Q12þ1

2Q66 ðA:5aÞ

U2 ¼ 1
2Q11�1

2Q22 ðA:5bÞ

U3 ¼ 1
8Q11þ1

8Q22�1
4Q12�1

2Q66 ðA:5cÞ

U4 ¼ 1
8Q11þ1

8Q22þ3
4Q12�1

2Q66 ðA:5dÞ

U5 ¼ 1
8Q11þ1

8Q22�1
4Q12þ1

2Q66 ðA:5eÞ

where

Q11 ¼
E1

1�ν212
E2
E1

; Q22 ¼
E2

1�ν212
E2
E1

; Q12 ¼ ν12Q22; Q66 ¼ G12

ðA:6Þ
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