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Sensors are vital components for control and advanced health management techniques. However, sensors
continue to be considered the weak link in many engineering applications since often they are less reli-
able than the system they are observing. This is in part due to the sensors’ operating principles and their
susceptibility to interference from the environment. Detecting and mitigating sensor failure modes are
becoming increasingly important in more complex and safety-critical applications. This paper reports
on different techniques for sensor fault detection, disambiguation, and mitigation. It presents an expert
system that uses a combination of object-oriented modeling, rules, and semantic networks to deal with
the most common sensor faults, such as bias, drift, scaling, and dropout, as well as system faults. The
paper also describes a sensor correction module that is based on fault parameters extraction (for bias,
drift, and scaling fault modes) as well as utilizing partial redundancy for dropout sensor fault modes).
The knowledge-based system was derived from the results obtained in a previously deployed Neural Net-
work (NN) application for fault detection and disambiguation. Results are illustrated on an electro-
mechanical actuator application where the system faults are jam and spalling. In addition to the functions
implemented in the previous work, system fault detection under sensor failure was also modeled. The
paper includes a sensitivity analysis that compares the results previously obtained with the NN. It con-
cludes with a discussion of similarities and differences between the two approaches and how the knowl-
edge based system provides additional functionality compared to the NN implementation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction historical examples of system anomalies directly related to sensor
When sensors are performing suboptimally, the overarching
functionality that uses sensor responses is potentially impaired be-
cause sensors play a vital role in ensuring optimal performance and
safety in any complex engineering system. The most basic problem
is how to distinguish abnormal sensor behavior from ordinary (and
nominal) system behavior. This is sometimes not completely
straightforward because system dynamics and external distur-
bances mask the sensor malfunction. Where diagnosis of the exact
sensor fault is desirable, it may be further hampered by the large
number of fault modes that are manifested with similar symptoms.
Another challenge is how to distinguish between a sensor failure
and a system failure when the two have similar fault signatures.

The following sections examine the sensor fault problem in
more detail and describe potential solutions. Section 2 briefly
presents the motivation for the work, based on reviews of some
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failures in the aerospace domain, as well as some related works on
sensor fault. Section 3 contains a brief description of the testbed
and NN based approach that was used as a baseline in evaluating
performance of the knowledge-based (KB) system. The evaluation
was done on the basis of the most common faults in temperature
and vibration sensors, as well as system faults in an electrome-
chanical actuation system, as described in Balaban, Saxena, Bansal,
Goebel, & Curran (2009). Section 4 provides the details of the KB
system, built on the knowledge acquired during the NN effort. This
knowledge base was developed as a combination of object-
oriented modeling, semantic network, and rules. Section 5 includes
a description of the validation work, and sensitivity analysis to
compare the system results with the NN approach outcomes.
Section 6 presents the two approaches implemented to mitigate
sensor faults. The paper concludes with an evaluation of similari-
ties and differences between the NN and KB approaches.
2. Motivation and related works

The impact of sensor failure can vary considerably with the
application domain. It can range from a nuisance (e.g. when the
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setpoint of an air conditioner is not properly read) to equipment
damage (e.g., when sensors on an assembly line are malfunction-
ing) or even loss of life.

2.1. Sensor failures in aerospace applications

Sensor failures in the aerospace domain often impact safety. The
literature is full of examples where a sensor malfunction led to
either loss of mission or loss of life. Attempts to deal with these is-
sues through multiple redundancy often come with weight, cost,
and complexity penalties and are not guaranteed to ameliorate
the problem (as illustrated in the following examples):

� Mars Polar Lander (MPL) mission control lost contact with the
MPL spacecraft during its final descent to the Mars surface. Sub-
sequent attempts to reestablish contact were all unsuccessful.
The MPL mission was declared lost. The failure investigation
determined that the most likely cause of failure may have been
the misreading by a micro-switch sensor of a landing leg
deployment recoil shock as an indication of surface touch-
down. This erroneous sensor reading was the signal upon which
the spacecraft software relied to ‘‘assume’’ that surface touch-
down had occurred and commanded the shutdown of the
spacecraft landing retro-rockets. This is believed to have
resulted in a high velocity crash of the MPL spacecraft onto
the planet surface, with resulting unrecoverable damage (NASA,
2002).
� When Mars Exploration Rovers-B (Opportunity) landed on Mars

on January 25, 2004, an anomalous nighttime current draw was
detected. A stuck-on Instrument Deployment Device (IDD)
warm-up heater was initially suspected. Unfortunately, there
were only flight temperature sensors on two of the five IDD
actuators and the suspected actuator with the stuck-on heater
had a flight temperature sensor that failed during the rover
thermal balance testing before flight. Because of the high risk
for an in situ repair, the project opted to forego replacement
of this temperature sensor (Tsuyuki et al., 2004).
� On another deep space mission, Pioneer Venus, the challenge of

dealing with sensor failures was also present. It should be noted
here that the Pioneer Venus probe mission is actually regarded
as successful. The probes were launched towards the surface
and were not designed to survive the landing (although one
continued to send data for a while after impact). Nonetheless,
there was unexplained behavior of the sensors that caused the
loss of valuable data in the deep atmosphere Table 1 presents
some anomalies found in the four Pioneer Venus probes.

Temperature sensors on all four spacecrafts showed a discon-
tinuous drop in temperatures, while net flux radiometers showed
a sudden decrease in readings concurrent with a sharp increase
in atmospheric temperature. It is worth mentioning that out of
18 anomalies presented in the original table, six had direct refer-
ence to temperature sensors (NASA, 2007). While this list is by
no means exhaustive, it illustrates the risks encountered when
Table 1
Some anomalies experienced by the Pioneer Venus Probes at and below 12.5 km altitude.

Anomaly

Temperature sensors failed
Changes and spikes in pressure data
Failure of net flux radiometer fluxplate temperature sensors
Change in the indicated deployment status of the atmosphere structure temperature
Erratic data from two thermocouples embedded in the heat shield
Erratic data from a thermistor measuring junction temperature of the heat–shield th
control actions are performed based on flawed sensor information.
Unfortunately, despite advances in materials, communications,
computer technologies, and other areas, sensors continue to be
an area of concern in aerospace systems.

2.2. Related works

This section presents some of the recent applications of intelli-
gent systems to sensor fault management, as well as the most rel-
evant aspects of the test stand used as testbed to collect data for
baseline and fault scenarios. The scenarios were, subsequently,
used to develop a NN to model, detect, and disambiguate some
sensor faults. The section also briefly describes the NN system
itself.

Athanasopoulou and Chatziathanasiou (2009) describe a proce-
dure for identifying sensor faults and reconstructing the erroneous
measurements, in the context of a Thermal Power Plant (TPP) oper-
ation. Knowledge discovery, based on historical data, was success-
fully applied to deriving models that estimate the value of one
variable based on other variables correlated to it. The validation
part of the project was based on rules derived from the measuring
equipment requirements, plant operation specifications, and per-
sonnel experience. Data mining (DM) algorithms were applied for
deriving models that estimate the value of one variable based on
others used as input parameters. The estimated values could be
used instead of the ones recorded by a measuring instrument that
is out of order. The research concluded that DM algorithms could
be used successfully in reconstruction of signals from faulty sen-
sors. The main innovation presented in the paper, comparing to
the similar applications reported in the literature, relates to the
fact that the reasoning algorithm was based on models derived
from historical TPP operation data. This promises to allow the sys-
tem to adapt, by extracting new models, to operational changes
due to wear, maintenance, component replacement, or even addi-
tion of new equipment for similar intended operational usage.

Ding, Fennel, and Ding (2004) introduce an on-line sensor mon-
itoring and fault diagnosis scheme for an electronic stability pro-
gram (ESP) that consists of: an anti-lock break system (ABS), a
traction control system and a yaw torque control. The basic idea
for the scheme is in construction of analytical redundancy for sen-
sors using system models. On this basis one can generate residual
signal between expected and actual outputs. A fault detection and
isolation (FDI) algorithm then evaluates the residual signals for
abnormalities. The project applied a scheme to define residuals,
which enhances the robustness of the detection system to model
uncertainty and ensures a low false alarm rate, while also reducing
fault sensitivity, thus only large magnitude faults can be detected.
The scheme classifies driving situations as steady (straight on and
steady cycle driving) or unsteady driving. Depending on the driving
condition, different limits are defined for the following variables:
vehicle speed, steering angle, change of steering angle, and lateral
acceleration or yaw rate (depending on the sensor under consider-
ation). The system applies different strategies for residual genera-
tion based on the driving situation. Fault detection threshold is set
Probe
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to be the maximum influence of the model uncertainties, and also
depends on the driving situation. The project demonstrates imple-
mentation for an automotive system with three sensors to con-
sider: yaw rate, lateral acceleration, and steering wheel angle.
The paper presents simulations for straight-on and slalom
manoeuvres. The fault detection scheme was successfully tested
by a manufacturer, and is now produced and installed on different
types of cars.

Figueroa et al. (2004) present a framework to model smart sen-
sors in a rocket test facility. The framework proposes the integra-
tion of knowledge bases related to sensors, processes, actuators
and other components. A key feature of the test facility is the eval-
uation of condition for all elements performed both autonomously
and using feedback from other higher-order elements. The frame-
work links distributed smart sensors into a coherent network using
standardized interfaces and an expert system tool as the core.
3. Description of the testbed and NN approach

3.1. Testbed used for sensor fault diagnosis

The testbed described in Balaban et al. (2009) served as a start-
ing point for this research. A ballscrew electromechanical actuator
was used as the plant in the experiments performed on a test stand
located at Moog Inc., where the test actuator was connected to a
hydraulic load cylinder (acting as a load actuator) by a rotating
horn. Control and data acquisition were performed by real-time
software running on dSPACE platform.

Vibration was measured at four points on the test actuator, as
shown in Fig. 1. All three axes of vibration were measured, with
an additional measurement in the Z-direction using an accelerom-
eter mounted directly on the nut of the ball screw. Temperature
measurements were provided by a T-type thermocouple on the
nut and a resistance temperature detector embedded in the stator
of the motor. Load was sensed by a load cell. The position of the rod
end of the test actuator was measured by a linear differential volt-
age transducer (LVDT). Current transducers were used on each mo-
tor phase to measure the phase currents. For data acquisition, the
motor drive output an analog signal representing the torque pro-
ducing current, as well as the motor velocity.

Sensor faults were injected a posteriori, as described in the next
section. Permutations of the following conditions were used to run
2 � 2 � 2 = 8 scenarios for each of the mechanical component fault
cases:

� Motion profile: sinusoid or triangular wave.
� Load type: constant or spring.
� Load level: low (860 lbs spring force, 900 lbs constant force) or

high (1725 lbs spring force, 1800 lbs constant force).

Since the above experiments produced short segments of data
at fixed operating conditions, extended duration scenarios were
Fig. 1. Location of sensors on electro-mechanical actuator (Balaban et al., 2009).
created by splicing data from different types of experiments. The
new scenarios were designed to preserve the character of the col-
lected data as much as possible, while extending the duration to
180 s each and varying load and position profiles. These scenarios
contain two main segments – the initial part consists of nominal
data, to represent a healthy system before the fault occurs, and a
later part representing fault data (90 s per segment). Since the
hardware limitations of the test stand required that the faults be
seeded before the corresponding experiments began, nominal data
was chosen from experiments conducted under the same condi-
tions. The seeded faults included mechanical faults typically ob-
served in EMA systems. Furthermore several sensor faults were
simulated in the experimental data to generate scenarios with sen-
sor fault data. The task of the diagnostic classifier was to distin-
guish between the sensor and system faults and, further, to
determine the exact fault type. Specific sensor fault types were
chosen based on the type of sensors used in the testbed and their
common fault modes available from the literature. The sensor fault
types used are listed below:

� Bias: bias was injected as an offset in the sensor output of the
nut temperature sensor. It was specified as percentage of the
average baseline temperature (80 �F), calculated over the set
of nominal (no fault injected) scenarios. Gaussian noise was
then introduced into the actual amount of bias added, with a
signal-to-noise ratio (SNR) of 5.
� Drift: drift fault was also injected into the output of the nut tem-

perature sensor. The fault was defined as a changing, mostly
growing, offset and was specified by drift velocity (offset grown
in a certain period of time). The effect of drift was further com-
pounded with noise by adding several small segments of ran-
domly varying drift slopes. The length of constant drift
velocity segments was also randomized. Gaussian noise was
introduced into the velocity value for this randomization, so
for each segment the velocity may be somewhat different from
its neighbors. The SNR for the later factor was set to 5.
� Scaling: scaling was simulated by amplifying or attenuating the

signal by a scaling factor. The scaling factor was also added with
Gaussian noise resulting in SNR of 5.
� Loss of signal: this fault represents a dead sensor and was simu-

lated by replacing the sensor data from the point of fault injec-
tion with zeros.

Four types of experiments were designed. Dataset was parti-
tioned into two parts based on the load levels, i.e. high load
(�1700 lbs) and low load (�800 lbs) conditions. For the first exper-
iment the NN was trained using only the high load data and fault
detection and identification was performed on low load data that
the NN never saw. The next experiment reversed the order by
training on low load data and testing on high load cases. Another
training set was created by combining data from both load levels.
In the third experiment the NN was trained with 30% of the data
set and tested on the other 70%. Finally, the NN was trained on
70% of the data and tested on the remaining 30%. The results from
all these four experiments were documented and compared.
Aggregated results were also used to perform a sensitivity analysis
for various levels of sensor fault magnitudes. For detailed results
please refer to Balaban et al. (2009). The following section presents
some details of the NN implementation.

3.2. Description of the NN approach

In order to detect and isolate various fault types (both system
and sensor), offline signal processing was carried out to identify
signatures of each fault in the collected data. This step is called fea-
ture or condition indicator (CI) extraction and is one of the most
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important steps in building a successful (accurate and reliable)
diagnostic system.

For a practical implementation, it is desirable that the features
be not only computationally inexpensive, but also explainable in
physical terms. Furthermore, they should: (a) be characterized by
large between-class and small within-class variance; (b) be fairly
insensitive to external variables like noise; and (c) uncorrelated
with other features. Keeping these criteria in mind, a set of seven
features was selected (Temperature Deviation – TD – and Drift
Indicator – DI – on the ballscrew nut and motor housing thermo-
couples; Standard Deviation – SD – on the X, Y, and Z accelerome-
ters) that were expected to detect an anomaly and distinguish
between a healthy system, two actuator fault modes, and four sen-
sor fault modes, as shown in Table 2. It should be noted that such
representation of faults and features are common to several classi-
fier approaches for diagnosis, as exemplified for instance by the
dependency matrix in TEAMS (Kurtoglu, Johnson, Barszcz, Johnson,
& Robinson, 2008).

All features and fault combinations, shown in Table 2, were
used in the previous study using the NN as a diagnostic algorithm,
with the following descriptions: TD – absolute deviation from the
nominal temperature range. DI – a binary feature that assumes the
value of one, if a finite rate of change of temperature is detected
and zero otherwise, and SD – standard deviation of the signal with-
in one sampling window. The combination of faults and features
shown in Table 2 also provides a starting point for the knowl-
edge-based approach for diagnosis, by providing fault signatures
and trends to be encoded in the knowledge base. A general descrip-
tion of the previously developed Neural Network is provided below
to give the reader an appreciation of that approach.

A multicategory classifier was implemented using a three-layer
NN. The first layer consisted of nine nodes, with tan-sigmoid trans-
fer functions, one for each feature in the input feature vector. The
hidden layer had five nodes with logsigmoid transfer functions and
the output layer had seven nodes with logsigmoid transfer func-
tions—one for each of the seven classification categories. All input
features were continuous, real-valued, and were standardized to
have zero-mean and unit variance (Duda, Hart, & Stork, 2000). Bin-
ary targets were assigned such that of the seven output bits only
the correct category bit would be set 1 and the rest would remain
0. Initial weights for the network were chosen based on standard-
ized input ranges in order to ensure uniform learning (Duda et al.,
2000). Networks were trained using the resilient backpropagation
(RPROP) algorithm (Riedmiller & Braun, 1993).

The sensor-feature pairs were determined to uniquely cover a
fixed number of component and system faults scenarios. This
meant that if the NN is presented with similar faults in a different
sensor than what was used for training, it will be challenging for it
to identify a correct sensor-fault combination in its current topol-
ogy. Adding more fault scenarios in this fashion would increase the
complexity of the NN and therefore this approach has poor scala-
bility due to additional offline analysis and efforts required. Fur-
thermore, with this approach the NN would require training with
the new scenario data which may not always be available when
Table 2
Fault versus feature matrix expanded from Balaban et al. (2009).

Faults/features TDnut TDmot SDx

Return channel ball jam x x x
Spall x
Nut thermocouple drift x
Nut thermocouple bias x
Motor thermocouple drift
Z Accel scaling
X Accel complete failure x
a system is deployed. A more generic approach to expand the NN
capability would be to redesign the NN where the characteristics
of various sensor fault types are learned irrespective of which sen-
sors are used and augment it with the system fault scenarios of
interest. The results from the NN approach are further discussed
in the next section, along with the results from the KB diagnostic
work.
4. Knowledge-based approach for fault detection

This section describes the knowledge-based diagnostic ap-
proach for sensor fault detection and disambiguation. Using a sym-
bolic AI approach, an expert system was developed based on the
knowledge generated during the development of NN-based
diagnoser.

4.1. Knowledge-base description

This expert system was developed in CLIPS (Giarratano & Riley,
1994), using a combination of object-oriented modeling, semantic
networks, and rules. This particular choice of developmental
framework was guided by the following factors:

– CLIPS Object-Oriented Language (COOL) module allows to take
full advantages of object-oriented modeling;

– The representation paradigm was chosen based on previous
experiences in developing expert systems to different engineer-
ing domains, including hydraulic system design, cogeneration
power plant design, and natural gas transportation modeling
– to name a few (Matelli, Bazzo, & Silva, 2009, 2011; Silva &
Back, 2000);

– The combination of object-oriented modeling, semantic net-
work, and rules in an incremental approach allows modularity,
expandability, and robustness in the knowledge base (Giarrat-
ano & Riley, 1994; Gonzalez & Dankel, 1993);

– The framework allows for a rapid prototyping by the knowledge
engineer, which was of a benefit in this case, given previous
experience and time limitations.

This section explains the main knowledge representation ele-
ments and the system verification. Fig. 2 presents the UML activity
diagram corresponding to the system functions.

From Fig. 2, the main functions can be summarized as:

– Load experiment file, set of five files with load level indicator
(described below).

– Update nominal values, based on the load level, since the base-
line changes with the load.

– Process time-series data corresponding to each sensor.
– Extract features every half second within a 1 s long sliding

window.
– Detect main failure modes per sensor: bias, drift, scaling, and

dropout.
SDy SDz DI-Tnut DI-Tmot

x x
x x

x

x
x



Fig. 2. Expert system UML activity diagram.
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– Compose system faults, based on the status of different sensors,
reason about system failure modes: jam or spall.

– Generate a report with fault detection time and rationale for
selecting the particular type of fault.

In Fig. 2, each block represents a set of rules and methods that
perform the aforementioned functions. As a key system function,
feature extraction calculates and stores the following features for
each cycle (i.e. half-second window): average standard deviation,
mean value, and signal amplitudes. The features are extracted in
a one second long window sliding every half a second. Therefore,
for a 30 s experiment file used here as the basis to analyze sensor
and system faults, feature extraction creates three vectors, with 60
values each. These vectors were modeled as CLIPS multislot attri-
butes (Giarratano & Riley, 1994).

The main system function, i.e. sensor fault detection, is per-
formed by three different processes, bias and drift fault detections
are aggregated in the same method, whereas scaling and dropout
detection are modeled separately, with the reasons for such
choices explained below.

Due to the number of tests conducted to verify the system (dis-
cussed later in the paper), it was important to keep a proper record
on each test, thus the Experiment class is created to identify inputs
and generate reports. Such a feature also allows to execute multi-
ple experiments in the same system session, and to replicate each
experiment, if necessary. In order to perform the above functions,
allowing the manipulation of the different types of sensors and a
series of experiments, a considerable amount of knowledge was
modeled in the system object hierarchy. Fig. 3 shows the class-
object diagram composing the KB core.

As the main structure in object-oriented modeling, Fig. 3 depicts
the KB system class diagram. As seen in Fig. 3, Sensor is the main sys-
tem class (with only its key attributes presented here). It has two
subclasses to model specific sensors, i.e. accelerometers and ther-
mocouples. Although these sensors are quite different, due to the
amount and type of information available in the current knowledge
base it was decided for both classes to have the same attributes. The
specific method to detect bias and drift was redefined, thus the need
to create such sub-classes, once again, here object-oriented model-
ing played an important role by allowing easy implementation of
polymorphism, i.e. allowing two types of sensors to perform the
detection method in different manners. The reason for such distinc-
tion is that while for accelerometers the key parameter to fault
detection is the standard deviation trend, for thermocouples such
parameters are nominal value and amplitudes. Table 3 gives the
rationale for each of the key attributes of the sensor class.

As the system is required to perform fault detection for two load
levels, defined as high and low, there are typical-values attributes
for both levels. This vector attribute specifies five key parameters
for each sensor: nominal value, average standard deviation
(Average-SD), standard deviation of standard deviation, maximum
and minimum amplitudes. These values are previously calculated
using the baseline-values method, by feeding the system with base-
line scenarios for both load levels. As presented in Fig. 3, every
experiment identifies the corresponding load level. Therefore,
based on this load level the system sets the five nominal para-
meters, to be used as baseline for each experiment. It is worth
mentioning that, although the approach implementation here is
defined for only two load levels, due to the baseline-values method
the system structure can be expanded to cover more levels.

With regard to fault isolation, the system provides two classes:
Fault and Possible-Causes. The main attribute types and descrip-
tions of the Fault class are specified from reasoning based on the
status of each sensor within the context of the overall system. For
example, in order to identify the jam fault it is necessary to have
an off-nominal pattern in all three accelerometers and a change
in both thermocouples, whereas the spall fault typically manifests
itself via a faulty pattern in accelerometers X, Y, and Z only.

Another important aspect of the system is documentation of
possible root causes. A comprehensive survey on different failure
mechanisms for each type of sensor is presented in Balaban et al.
(2009). However, in the previous approach identification of such
failure mechanisms was not implemented. In order to provide this
feature in the current effort, the Possible-Causes class is modeled.
Although not shown in Fig. 3, the system does incorporate eight in-
stances of the Possible-Causes class corresponding to the combina-
tion of four failure modes: bias, drift, scaling and dropout with two
types of sensors: thermocouples and accelerometers. Therefore,
depending on the result, the system presents a description of the
most common root causes for that specific fault-sensor combina-
tion. A root cause isolation module was not implemented, since
it was considered beyond the scope of this effort.
5. Diagnostics results

Different fault scenarios were considered for validation. Based
on the experience in Balaban et al. (2009), it was expected that



Fig. 3. Class (instance) diagram.

Table 3
Main sensor class attributes.

Attribute Description

Status Nominal by default. This is a key attribute for describing the fault, assuming different values according to the system inference, e.g. bias, drift, and
scaling

Nominal
value

Defines the nominal sensor value based on the typical values of attributes and the load level, explained below

Description Multislot attribute to compose the sensor faulty scenario, in a user-friendly manner, including status value and fault detection time
Cycles-SD Multislot to store the standard-deviation per cycle, used to detect bias and drift in accelerometers, to replicate the analysis seen in Table 2
Cycles-AVG Multislot to store the mean values calculated per cycle
Cycles-AMP Multislot to store the signal amplitude values calculated per cycle, used to detect the scaling fault
Average-SD Mean standard-deviation obtained from the baseline-values method, applied for both load levels
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the ability to detect each fault should vary considerably with val-
ues of fault parameters. Therefore it was necessary to perform sen-
sitivity analysis to verify whether such behavior would be
observed for the KB approach as well. Raw data that included base-
line files and system fault scenarios (jam and spall) were available
for different load levels. Fig. 4 depicts generation of fault scenarios
used to produce the test cases with different fault magnitudes for
the validation process.

The baseline files were used to set up nominal feature values,
via baseline-values method, and to generate, via simulation, fault
sensor scenarios for four failure modes. In order to perform the
sensitivity analysis, the latter were set up using different sensors
and fault parameters. The original system fault scenarios consid-
ered the occurrence of fault from the start, thus these new files
were also merged with the corresponding baseline signatures to
simulate the occurrence of faults at different times. Simulated fault
injection was accomplished via AMESim� (LMS Imagine, 2008).
Sensor faults were inserted as signal changes with constant
parameters. The focus of this work lies in identifying fault detec-
tion and isolation capabilities and therefore the following four per-
formance indicators, shown in Table 4, were recorded (note that
True Negatives (TN) were not recorded).

In order to replicate, as close as possible, the test conditions
from Balaban et al. (2009), different types of tests were performed.
The results are grouped according to failure mode. First, drift fault
test results are presented. Fault was injected in the actuator nut
thermocouple with different drift slope values.

Fig. 5 presents the results of 22 drift sensitivity experiments
based on 11 distinct slope values and 2 load levels. High load is de-
picted by the diamond symbol and low load is depicted with the
circle symbol. The x-axis shows increasing slope values while the
y-axis shows the categorization into FN, MC, and TP. There was
no FP observed in any of the experiments. As the slope increases,
the ease with which KB system is able to resolve the presence of
drift improves from FN (at the smaller slope value) to TP at higher
slope values. This behavior was consistent with the results



Fig. 4. Activity diagram to generate inputs for verification.

Table 4
Experiment results description.

Results Description

True positive (TP) Fault is properly detected and identified
False positive (FP) Fault is incorrectly detected, i.e. there is no fault, but the system triggers a response. Such a result can cause unnecessary delays or sometimes

even mission abort
False negative (FN) There is a fault, but the system is unable to detect it. In some critical applications, FN can result in catastrophic failures
Misclassification

(MC)
Fault is detected but incorrectly identified, for example the actual fault is bias, but the system classified it as drift

Fig. 5. Sensitivity analysis – drift fault.

1 For interpretation of color in Figs. 6 and 10, the reader is referred to the web
version of this article.
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obtained from the baseline NN approach. Where the system gener-
ated MC, the fault was detected, but misclassified as bias. As pre-
sented in Balaban et al. (2009), the NN diagnoser was slightly
sensitive to small drifts. For small drifts it became difficult to dis-
ambiguate between drift fault and nominal behavior, resulting in a
higher false negative rate. As Fig. 5 shows, the KB system also re-
sulted in MC or FN for low drift velocities. Therefore, both systems
have similar behavior in this respect. A closer examination of the
raw signals explains this outcome (Fig. 6). For the sake of clarity,
only four curves for different slopes are presented.
In Fig. 6 the baseline signal (solid red1 line), with time in sec-
onds, is a signal with relatively high noise values. The fault was in-
jected at the start. Given a trajectory that is long enough, the fault
would likely be detected eventually, irrespective of how small the
slope value is (as long as it is increasing steadily). Small but
increasing fault values are often interpreted as incipient faults



Fig. 6. Thermocouple signal values (�F) – high load level (baseline and average fault
signals).

Fig. 8. Nut thermocouple baseline and average values (�F) bias fault – high load
level.
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(Frank, 1990) where faults are initially small and not easy to detect.
The noise present in the system sometimes throws off the KB sys-
tem output and results in false positives. In other cases a fault pres-
ence is identified (true positive) but the fault gets misclassified.
Therefore, to improve the robustness of the system against noisy
patterns and abnormal but random behaviors (e.g., signal spikes),
the KB system waits and temporarily averages the estimates to re-
move the effects of noise. However, this results in longer detection
times since now the system has to wait to observe if the feature re-
mains out-of-range for a predefined time duration before a fault is
declared. Consequently for drift faults the time to detect the drift
also depends on the magnitude of drift slope, as discussed later.

The dependence on parameter values is also present in other
failure modes. Fig. 7 shows the analysis for the bias fault (which
was injected on the nut thermocouple). The same baseline signal
as shown in Fig. 6 was used. The x-axis shows the increase in the
bias factor (%), ranging from 5% to 100% peak-to-peak magnitude
offset.

In this case, no MC was observed. At bias factors of 10% or more
for the high load case and 20% or more for the low load case, the
system properly identified the fault. Fig. 8 shows some correspond-
ing signals. Here again, only a few curves corresponding to the
tests, referred in Fig. 7, are presented.

As previously described in Table 3, the system calculates the
signal mean values every half second. This feature is stored as
Fig. 7. Sensitivity ana
cycle-AVG attribute. Fig. 8 shows the original baseline signal, the
cycle-AVG values for baseline, and for two bias signals, considering
5% and 70%. As can be seen, although a 5% bias clearly shifts the
signal from its original mean value, noise in the bias signal pre-
vents proper detection.

For better comparison with the baseline results (see Table 2),
scaling was injected in accelerometer X. Scaling factors of 0.1–2.0
were used to compare with the NN results. Since for scaling factors
close to 1 the fault signal is very similar to the original signal more
scaling values with smaller increments (0.05) were used to obtain
a finer picture of the sensitivity analysis. Similar to the bias fault,
no MC was observed, and the expert system was able to properly
identify the fault for scaling factors higher than 1.2 (for high load)
and 1.6 (low load), the system also identified the fault for scaling
factors equal to or lower than 0.95. Fig. 9 shows the analysis for
the scaling fault with variations relative to the baseline (scale fac-
tor of 1).

When the dropout fault was injected in accelerometer Z, the KB
system properly detected it. System faults (jam and spall – as seen
in Fig. 4), were combined to produce scenarios with different fault
injection times. Both system faults (jam and spall) were detected
for both load levels when injected at 0, 10 and 20 s (12 different
experiments in total). As any mechanical fault, it is expected that
lysis – bias fault.



Fig. 9. Sensitivity analysis – scaling fault.
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jam and spall, if present in a lesser degree, would not be detected
as easily, however those signals were not available from the base-
line experiments.

The sensitivity analysis results show that the overall system
performance is similar to the NN approach, i.e. emulated sensor
bias, drift and scaling resulted in similar detection characteristics.
It should be noted that the knowledge representation scheme
adopted in the KB models each sensor class with its own fault
detection method. Although this requires a higher degree of tuning,
the KB system can deal with a broader set of fault/sensor combina-
tions (as shown in Table 5).

Table 5 highlights the two main differentiating points between
the NN and KB approaches. The specific implementation of NN in
Balaban et al. (2009) worked well given the problem description
at that time (the four sensor and two system fault scenarios). How-
ever, if addition of another fault type is desired, the NN-based ap-
proach would require additional training data and a complete
retraining of the NN (and possibly even its restructuring). The KB
approach is more generic because it can accommodate more sensor
faults of the types that are already modeled by just a new instan-
tiation of the respective sensor class. Therefore, as depicted in
Table 5, the KB is well equipped to detect and diagnose all four
types of sensor faults on any of the thermocouples and scaling
and dropouts on any of the accelerometer signals. This generaliza-
tion provides additional flexibility for the diagnoser designer for
practical implementation with relatively little additional effort.
Furthermore, since the fault reasoning is performed for all fault
types independently, the KB system is able to handle multiple
simultaneous faults. These attributes can be seen as advantages
over the previously implemented NN approach while the perfor-
mance is comparable. It is, however, important to point out that
with this paper we do not intend to establish a theoretical compar-
ison between these two AI techniques, in terms of their applicabil-
ity, but rather intend to point out differences in the scope of both
systems in their current implementation. The development of the
expert system has relied on the knowledge generated during that
able 5
omparison in terms of detected fault/sensor scenarios.

Neural Network

Sensor Fault modes

Nut Thermocouple Drift, bias
Accelerometer Z Scaling
Accelerometer X Dropout
Total: 4 fault/sensor scenarios + 2 system faults The other sensors (Accel Y and Motor

Thermocouple) are only used to identify jam and spall faults (see Table 2)
specific NN implementation, this does not mean that the NN based
approach could not be implemented in other ways to incorporate
these additional functionality if needed. It must be noted that the
NN offers an advantage because the classification boundaries are
learned directly from the data. For KB systems, this would require
acquisition of additional background knowledge, which is a time
consuming tuning process.

As a key issue in dealing with sensors as the ‘‘weak link’’ in a
system, we evaluated detection of system fault under the possibil-
ity of presence of sensor faults. Two different approaches were
considered to mitigate the effect of sensor faults while detecting
system faults, described in the next two sections.
6. Fault mitigation

6.1. Heuristic approach – utilizing sensor redundancy

During the system design phase it is often desirable to under-
stand how many sensors need to be fielded for proper fault detec-
tion and isolation. Although some approaches facilitate sensor
design and placement (Kurtoglu et al., 2008), oftentimes, this deci-
sion is made in a somewhat ad-hoc fashion. Alternatively, it would
be desirable to evaluate how robust the system is to sensor failure
in order to assess its chances of survival in adverse conditions.
Therefore, the prototype KB approach was expanded to reason on
system faults given a reduced set of sensors. Of course, it should
be expected that elimination of critical sensors comes with a pen-
alty. This penalty could manifest itself in a lower detection accu-
racy and/or in longer detection times. It must be noted that the
detection time depends on signal-to-noise ratio and confidence
on the relevant sensor readings. Therefore, the detection time, a
feature already calculated by the detection method but not used
in the inference process, was added as a key evaluation parameter.
For example, instead of relying on three accelerometers and two
thermocouples to detect the jam fault, rules were added to reason
based on only four of these sensors, provided that their fault
Expert system

Sensor Fault modes

Nut and Motor Thermocouples Drift, bias, scaling, dropout
X, Y and Z Accelerometers Scaling, dropout

Total: 14 fault/sensor scenarios + 2 system faults + possible identification of
multiple sensor fault scenarios



Table 6
Comparing expert system output for a jam fault scenario with and without a sensor fault present.

Jam fault without faulty sensor Jam fault with a faulty sensor

List of faulty/change sensors: List of faulty/change sensors:

(s1 status change at 21.5) (s1 status change at 21.5)

(s2 status change at 22.5) (s2 status change at 22.5)

(s3 status change at 22.5) (s3 status change at 22.5)

(s4 type temperature_motor status change at 20.5) (s4 type temperature_motor status change at 20.5)

(s5 type temperature_nut status change at 20.0) (s5 type temperature_nut status dead failure detected at 10.0)

Fault type: Channel ball jam Fault type: Channel ball jam

Description: (sensors s1 s2 s3 s4 and s5 status change within 2 s

of each other)

Description: (sensors s1 s2 s3 s4 status change and s5 status dead failure

detected at 10.0)
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detection times were close to each other, e.g. within a 2 second
range. The system fault description was modified to consider such
sensor faults. The next table compares the reports generated by the
KB prototype for a system fault scenario with and without the
presence of a faulty sensor.

In Table 6, the symbols s1–s5 correspond to the five sensors:
accelerometers X, Y and Z, and thermocouples on the motor and
Fig. 10. Sensor correction results
on the nut, respectively. In the above scenarios, the system
analyzed the same data files, with the exception that in one of
them (the nut thermocouple signal) was modified to simulate a
dropout failure at 10 s. All of the remaining sensors kept their ori-
ginal baseline signals for 20 s, before injecting jam fault.

As shown in Table 6, the system reports each sensor status sep-
arately, as it is calculated by the detection method according to the
(a – signals, b – errors) (�F).



J. C. Silva et al. / Expert Systems with Applications 39 (2012) 10977–10989 10987
sensor class (i.e. thermocouple or accelerometer), plus a fault type
description. In order to accommodate reasoning with faulty sen-
sors, the knowledge base structure was expanded to include the
corresponding fault detection times as parameters in the reasoning
process. Furthermore, as characteristics of each sensor are differ-
ent, the occurrence of a system fault, such as jam, triggers changes
in sensors at similar, but not exactly the same time steps. Thus, a
2 s range, chosen based on data processing constraints, was used
as an acceptable time window to distinguish between a sensor
fault and a system fault. Notice here the fact that for identifying
both system faults more than one sensor was needed. This implies
that the signatures from all these sensors should change approxi-
mately at the same time as the fault actually appears in the system.
Whereas in case of a sensor fault only the signature from that
faulty sensor changes and the rest remain unchanged. In one rare
case all sensors signatures can change simultaneously, which is
when all sensors fail at the same time the likelihood of which is ex-
tremely low next to none. Capitalizing on this fact if a sensor fault
is detected at any time its output may be ignored in making a deci-
sion about the system fault appearing at a later time. Therefore, by
treating the faulty sensor output as a ‘don’t care’ input the infer-
ence may be based on the remaining sensors only. This was possi-
ble in this case due to built in redundancy into the system, but may
not be always possible. This function is addressed by a set of rules
represented by the block ‘‘compose system fault’’, in Fig. 2, which
analyses the status of each sensor being defined by the detection
methods and identifies a system fault, if such fault exists.

6.2. Algorithmic approach – sensor correction

As discussed earlier, an important feature of a robust system is
its ability to perform in the presence of failed sensors. This can be
potentially accomplished through in-situ sensor value correction.
In order to implement such a feature, new attributes were added
Fig. 11. Sensor correction results
in the KB’s sensor class, in order to represent each fault parameter.
For example, bias-level, slope, and scale-factor corresponding to
bias, drift, and scaling respectively. The detection method was ex-
panded to incorporate the extraction of these fault parameters.

Based on analysis shown earlier, the drift fault is the most dif-
ficult fault to detect because it has a temporal element. Therefore,
in order to implement the slope calculation, instead of defining a
single attribute to represent the calculated slope, the system mod-
els slope as a vector, whose calculation starts 2 s after the detection
time. This lag was required in order to have a satisfactory slope cal-
culation in the presence of noise, because signal features are ex-
tracted in half-second windows, for each measure of slope. Thus,
in order to calculate the slope at time t, the system considers the
average of slopes calculated based on the last four points (i.e.: t;
t � 0.5; t � 1.0; t � 1.5). This definition was obtained empirically
by calculating slope based on different number of points. As such,
this approach may require further work to be applied to other data
sets, since it may be influenced by signal noise amplitude and per-
iod. Averaging improves slope calculation even under considerable
noise. Slope calculation improves with increasing time. At the
beginning of the correction phase, the calculated slope is not very
good, it turns out that its part on the correction method (i.e. er-
ror1 + slope.dt) is not that significant, therefore the correction is
not impacted. Because, as shown in Fig. 10b, the total error is much
smaller as drift starts. The correction method subtracts the calcu-
lated error from the signal. Fig. 10 presents the results of the sensor
correction using the calculated slope.

Fig. 10a depicts a drift signal (slope = 0.250) inserted at 2 s (so-
lid red line). The green line shows the corrected signal. The fault is
detected at 4.5 s. Two marks on X-axis indicate fault injection and
detection times. As mentioned above, the correction method starts
2 s after fault was detected. Until correction takes place, both fault
and corrected signals are identical, therefore in Fig. 10a, only the
green line is visible up to t = 6.5 s because it covers up the fault
(a – signals, b – errors) (�F).



Fig. 13. Correction results for bias fault (a – signals, b – errors) (�F).

Fig. 12b. Sensor correction – scaling (s = 0.4).Fig. 12a. Sensor correction – scaling (s = 2.0).

10988 J. C. Silva et al. / Expert Systems with Applications 39 (2012) 10977–10989



J. C. Silva et al. / Expert Systems with Applications 39 (2012) 10977–10989 10989
signal before this time. To evaluate the quality of signal correction,
the original baseline signal (blue line) is also shown. In addition,
Fig. 10b presents the errors corresponding to fault and corrected
signals. Tests were conducted for different values of slope and fault
injection times, including slope magnitudes above the detection.
As reported in Section 4, the time to fault detection (and therefore
to correction) depends on the fault magnitude. Fig. 11 shows a test
with one of the smaller slope values.

Fig. 11a presents the result of sensor correction, with a drift in-
serted at 5 s (slope of 0.175). The KB system takes a longer time to
detect it (in this case at 9 s, as marked on X-axis) because of the
smaller slope value, but once the correction method starts (at
11 s), the error decreases.

Similar approaches were implemented for the other two fault
modes, bias and scaling. Fig. 12 presents results of scaling fault
experiments with two different magnitude factors (s = 2.0 and
s = 0.4).

Figs. 12a and 12b show results of sensor fault correction for
scaling faults with scaling factors of 2.0 and 0.4, respectively. For
a better presentation, only Fig. 12a shows the baseline signal also.
In both experiments, fault was inserted at 10 s. As can be seen, the
system takes a shorter time to detect downscaling fault (in this
example 2.5 s) compared to upscaling. The reason for that can be
explained by the manner in which the detection method was
implemented. To identify a scaling fault, the signal amplitude
needs to be out of its nominal range, defined by the maximum
and minimum amplitudes values, for at least four cycles. Due to
this signal profile, an upscaling fault can manifest in an amplitude
within the nominal range. More tests would be necessary to con-
firm similar behavior with an exhaustive set of different signal pro-
files. The correction method for bias fault follows a similar
approach, with the results presented in Fig. 13.

Fig. 13a shows a fault signal (red solid line) with a bias inserted
at 10 s. The green line represents the corrected signal. As shown in
Fig. 13b, once the correction process takes place (at 12.5 s), the er-
ror decreases to acceptable values, i.e. an absolute error of 0.4 is
smaller than the limit of detection found in the bias sensitivity
analysis, seen in Fig. 7.

7. Conclusion

The paper presents the results of deploying a knowledge-based
system for detection, identification, and disambiguation of various
sensor and system faults in an electromechanical actuator system.
Furthermore, the paper presents some approaches for mitigation of
the most common sensor faults: bias, drift, scaling and dropout.
Based on the sensitivity analysis, the KB system performance
showed similar results compared to a NN-based inference system
implemented previously. In addition, the system expanded on
the previous work in three aspects. First, the KB system broadened
the scope, both in terms of sensor/fault combinations and function-
ality (i.e. the system can handle more sensor-fault pairs without
significant modifications). Secondly, the KB system demonstrated
robustness of fault detection in the presence of sensor dropouts,
since it was able to reason about system fault cases even when a
key sensor signal was absent. Thirdly, the KB system was able to
calculate fault parameters and correct sensor fault signals for the
fault types discussed. More complex superimposed fault modes
were not tested and remain to be investigated in the future. Finally,
it is important to mention that it would be premature to draw con-
clusions that this approach is generic enough to handle all prob-
lems of this type, although the results obtained give hope that
health management systems could be designed in ways that are
more robust to sensor faults.
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