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Prognostics Methods for Battery Health Monitoring
Using a Bayesian Framework

Bhaskar Saha, Member, IEEE, Kai Goebel, Scott Poll, and Jon Christophersen

Abstract—This paper explores how the remaining useful life
(RUL) can be assessed for complex systems whose internal state
variables are either inaccessible to sensors or hard to measure
under operational conditions. Consequently, inference and esti-
mation techniques need to be applied on indirect measurements,
anticipated operational conditions, and historical data for which
a Bayesian statistical approach is suitable. Models of electrochem-
ical processes in the form of equivalent electric circuit parame-
ters were combined with statistical models of state transitions,
aging processes, and measurement fidelity in a formal frame-
work. Relevance vector machines (RVMs) and several different
particle filters (PFs) are examined for remaining life prediction
and for providing uncertainty bounds. Results are shown on
battery data.'

Index Terms—Battery health, Bayesian learning, particle filter,
prognostics, relevance vector machine, remaining useful life.

1. INTRODUCTION

ROGNOSTICS is the emerging science of predicting the

health condition of a system and/or its components based
upon knowledge of past usage, current state, and future condi-
tions. Past usage may be in the form of archived or historical
data of similar system operations, an operational log of the
system under study, or a combination of the two. The current
state is usually a function of the sensor feedback or some
feature derived from it. Future conditions encompass the op-
erational and environmental parameters under which one wants
to evaluate the health of the system. Such usage scenarios may
be prespecified, derived from statistical analyses of archived
instances, or based on expert opinion. In the case of battery
health, the important questions boil down to whether the battery
will provide the required power during the current discharge
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cycle, what kind of degradation processes are at work, and how
many more missions this battery can support. These concepts
are encapsulated in the terms state-of-charge (SOC), state-
of-health (SOH), and state-of-life (SOL), respectively. While
SOH is predominantly a diagnostics issue, SOC and SOL are
primary prognostic concerns. A good battery prognostic algo-
rithm should be able to accurately predict the remaining battery
capacity for current and future cycles while also maintaining a
reasonable tradeoff with respect to computational burden.

Traditional approaches to battery health management have
mostly concentrated on addressing the SOC issue with limited
attention to SOH and SOL. Commercial techniques include
voltage monitoring, Coulomb counters, and internal impedance
measurements. These methods often suffer from model and
measurement inaccuracies, leading to erroneous estimates of
battery health, the results of which may be catastrophic (e.g.,
the Mars Global Surveyor satellite). Such uncertainties have
also prevented the adoption of cost-effective and environment-
friendly rechargeable batteries over primary batteries in critical
applications [4]. In recent years, significant advances have been
made in the modeling of batteries [5] as well as the application
of advanced mathematical tools in predicting battery health [8].
However, the problem of uncertainty management in battery
health prediction under conditions that are different from the
training data set is still largely untouched.

The Bayesian learning framework introduced in [10] is a
first attempt at explicitly incorporating and propagating un-
certainty in battery aging models. The relevance vector ma-
chine (RVM)-particle filter (PF) approach presented provides
a probability density function (pdf) for the end-of-life (EOL)
instead of just a mean time to failure. The results show
good accuracy and precision in the prognostic predictions as
well as their improvement with more measurements. An ex-
tension of this paper [6] discusses the comparative benefits
of using a model-based (PF) approach, as opposed to data-
driven techniques like neural networks (NNs) and Gaussian
process regression (GPR) in dealing with model uncertainties
and nonnominal operating conditions. In this paper, we extend
our work in [10] to reduce the uncertainty in the prediction
result using a Rao—Blackwellized PF (RBPF) framework. The
idea behind the RBPF is to divide the state space into de-
terministic and probabilistic parts and analytically solve for
the former while using PF for the latter, thus reducing the
variance in the state estimate [2]. It is to be noted that some
overlaps in content with [6] and [10], pertaining to the lit-
erature survey, data description, RVM-PF methodology, and
its results, have been maintained to ensure completeness and
readability.
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II. METHODOLOGY
A. RVM

Support vector machines (SVMs) [12] are a set of related
supervised learning methods used for classification and regres-
sion that belong to a family of generalized linear classifiers. The
goal is to separate an n-dimensional data space (transformed
using nonlinear kernels) by a n — 1-dimensional hyperplane
that creates the maximum separation (margin) between two
classes. This technique can be extended to regression problems
in the form of support vector regression [3]. Regression is
essentially an inverse classification problem where, instead of
searching for a maximum margin classifier, a minimum margin
fit needs to be found. However, SVMs are not well suited to
diagnostic applications due to the lack of probabilistic outputs.
The RVM is a Bayesian form representing a generalized linear
model of identical functional form to the SVM [11]. In addition
to the probabilistic interpretation of its output, it uses far fewer
kernel functions for comparable performance [11].

This type of supervised machine learning starts with a set
of input vectors {t, },=1,. n and their corresponding targets
{01} n=1.... ~. The aim is to learn a model of the dependency
of the targets on the inputs to make accurate predictions of
for unseen values of t. Typically, the predictions are based on
some function F'(t) defined over the input space, and learning
is the process of inferring the parameters of this function. In the
context of SVM, this function takes the form

N
Pt;w) =Y wK(t,t;) +wp (1)

i=1
where w = (w1, ws,...,wy )T is a weight vector, and

K (t,t;) is a kernel function.
In the case of RVM, the targets are assumed to be samples
from the model with additive noise

0, = F(tn;w) + ¢, 2)

where ¢,,’s are independent samples from some noise process
(Gaussian with mean 0 and variance o2). Assuming the inde-
pendence of 6,,, the likelihood of the complete data set can be
written as

1
bl ) = 2ro) P oxp {50 - aw?} @)

where ® is the N x (N + 1) design matrix with & = [p(t1),
o(t2),...,o(tn)]T, wherein @(ty) = [1, K(t,,t1), K(t,,
t2)a cee 7K(tn;tN)v]T

To prevent overfitting, a preference for smoother functions is
encoded by choosing a zero-mean Gaussian prior distribution
Pg over w as

N
p(win) = [ [ Po(wilo,n;") )

=1

where 7 is a vector of N + 1 hyperparameters. To complete

the specification of this hierarchical prior, we must define

hyperpriors over 1) as well as over the noise variance o.

Having defined the prior, Bayesian inference proceeds by
computing the posterior over all unknowns given the data from
Bayes’ rule, i.e.,

p(0lw,n,0%)p(w,n,0?)
p(0) '

Since this form is difficult to analytically handle, the hyper-
priors over 1) and o2 are approximated as delta functions at their
most probable values nyp and o3;p. Predictions for new data
are then made according to

p(w,n,0°|0) = )

p(60.]0) = / p(0.w, o2p)p(w]0, ip, op )dw.  (6)

B. PFs

Bayesian techniques also provide a general rigorous frame-
work for dynamic state-estimation problems. The core idea is to
construct a pdf of the state based on all available information.
For a linear system with Gaussian noise, the method reduces
to the Kalman filter. For nonlinear systems or non-Gaussian
noise, there is no general analytic (closed-form) solution for
the state-space pdf. The extended Kalman filter (EKF) is the
most popular solution to the recursive nonlinear state estimation
problem [7]. In this case, the desired pdf is approximated by a
Gaussian, which may have significant deviation from the true
distribution causing the filter to diverge. In contrast, for the
PF approach [1], the pdf is approximated by a set of particles
(points) representing sampled values from the unknown state
space and a set of associated weights denoting discrete proba-
bility masses. The particles are generated and recursively up-
dated based on a probabilistic model as well as measurements.
In other words, PF is a technique for implementing a recursive
Bayesian filter using Monte Carlo (MC) simulations and, as
such, is known as a sequential MC (SMC) method.

Particle methods assume that the state equations can be
modeled as a first-order Markov process with the outputs being
conditionally independent. This can be written as

X = f(Xp-1) + Wi

i =h(xk) + vk @)

where k is the time index, x denotes the state, y is the output
or measurements, and w and v are samples from independent
noise distributions.

Sampling importance resampling (SIR) is a very commonly
used PF algorithm that approximates the filtering distribu-
tion denoted as p(xx|yo.x) by a set of P weighted particles
{(w,(;)7 x,(;)) :i=1,..., P}. The importance weights w,(;) are
approximations to the relative posterior probabilities of the
particles such that

P
/f(Xk)p(Xkb’o:k)dxk: ~ Zwl(f)f (Xr(ci)>
=1

®)

P .
Z w,il) =1.
i=1
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Fig. 1. Lumped parameter model of a cell (reproduced from [6, Fig. 3] and
[10, Fig. 1]).

The weight update is given by

@ @) Pyrlxe)p(xe/xr-1)
k= Wiy
W(Xk|XO:k717y1:k)

€))

where the importance distribution 7(Xg|X0.x-1,Yo0:k) i ap-
proximated as p(X|Xx_1)-

Resampling is used to avoid the problem of degeneracy of
the PF algorithm, that is, avoiding the situation in which all
but one of the importance weights are close to zero. This step
needs to be performed when the effective number of particles
Pt < Pihreshold, Where P.g is computed as the inverse of
the sum of squared normalized particle weights given in (9).
Resampling is performed by drawing P particles from the
current set with probabilities proportional to their weights and
then simply replacing the current set with the new one and
assigning the same weight 1/P to all.

C. RBPF

In the case of models with large state vectors, resampling
may not be sufficient in reducing the variance of particle errors.
In such cases, if a part uy, of the state space xj, can be used to
analytically compute the remaining part, then x) = F(x;|uy),
which is known as the Rao—Blackwellized version of xj, can
be used as the state estimator with the same mean as x;, but a
variance that is smaller by E{var(xy|uy)} [9], where E and
var denote the statistical operators expectation and variance,
respectively. Hence, it statistically makes sense to use the RBPF
whenever possible.

III. IMPLEMENTATION
A. Model Development

To tie in the aforementioned techniques, namely, RVM and
PF, with the battery health monitoring problem, the process
is broken down into offline and online parts. During offline
analysis, the battery/cell operation is expressed in the form of
structural and functional models, which aid in the construction
of the “physics of failure mechanism” model. The features
extracted from electrochemical impedance spectroscopy (EIS)
are used to estimate the internal parameters (like the double
layer capacitance Cpy,, the charge transfer resistance Rcr, the
Warburg impedance Ry, and the electrolyte resistance Rp) of
the battery model shown in Fig. 1. The values of these internal
parameters change with various aging and fault processes like

od

Identfication

Regression

Eraction

Fig. 2. Schematic of model development (revised from [6, Fig. 8] and
[10, Fig. 2]).

plate sulfation, passivation, and corrosion. The parameters of
interest for our application are R and R since their values
show significant change due to the aging processes observed.
RVM regression is performed on parametric data collected
from a group of cells over a long period of time to find
representative aging curves. The use of probabilistic kernels
in RVM helps to reject the effects of outliers and the varying
number of data points at different time steps, which can bias
conventional least-square-based, model-fitting methods. Since
we want to learn the dependency of the parameters with time,
the RVM input vector t is time, whereas the target vector 6
is given by the inferred parametric values. Exponential growth
models, as shown in (10), are then fitted on these curves to
identify relevant aging parameters like C, and \,, e.g.,
X = Cy exp(Ayt) (10)
where x is the model predicted value of an internal battery
parameter X like Rct or Rg. The overall model development
scheme is depicted in the flowchart of Fig. 2.

B. Diagnosis and Prognosis

The system description model developed offline is fed into
the online PF process. Features extracted from sensor data
are used to estimate the SOC and SOH. Once the diagnostic
module detects a fault, it triggers the prognosis routine. The
PF incorporates the aging parameters Ag, and Ap., [from
(10)], the internal battery parameters Rg and Rcr, and C/1
(capacity at rated current) as components of the state vector x.
Thus, it performs parameter identification in parallel with state
estimation. The measurement vector y comprises the battery
parameters R}, and R{ extracted from measured data. The
system model is

ARp 1 T1k = X1 k-1 + Wik

ARop @ Tok = T2 k-1 + Wak

Rp w3, = w35 1exp(z1r - At) + w3,
Rer : wap = Tap—1 exp(xo) - At) + wa
C/l:x5, = @3 )+ 2ak) + 0+ ws

v = { R :iyip =3k + 01k an

REp 1 Yox = Tap + Vo k.

The values of Ar,, Aror, Cry, and Cr, learned from
RVM regression are used as estimates for x1,0, 22,0, 23,0,
and x4 ¢, respectively, whereas x5 o is not required since it is
defined in terms of 3 9 and 4 . The current capacity estimate
5,1 1s used to compute the SOC, whereas the future predictions
are compared against EOL thresholds to estimate SOL (as
shown in Fig. 3). The SOH analysis is performed based on
cause-and-effect studies published in the literature.
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Fig. 3. PF framework (revised from [6, Fig. 9] and [10, Fig. 3]).
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Fig. 4. Dependency between state variables (reproduced from [6, Fig. 5] and
[10, Fig. 8]).

In the context of our application, RcT + R was observed
to be highly linearly correlated to C/1 capacity (as shown in
Fig. 4). To take advantage of this property, an RBPF frame-
work is used, where x1.4 constitutes the part u; that can
be used to analytically determine the remaining part x5 j of
the state vector xj. This reduces the variance in the particle
values without changing their mean, resulting in more precise
(narrower) pdfs.

IV. RESULTS

The data used had been collected from second-generation,
18650-size, Li-ion cells (i.e., Gen 2 cells) that were cycle-life
tested at the Idaho National Laboratory. The cells were aged
at 60% SOC and various temperatures (25 °C and 45 °C). It
is to be noted that, in the application scope of this paper, all
data were collected beforehand, and hence, all analyses are
effectively offline. We use the 25 °C data for training purposes
and the 45 °C data for testing to determine the robustness of our
approach to unmodeled operational conditions. Fig. 5 shows a
zoomed view of the shift in EIS data of one of the test cells aged
at 25 °C (full plot shown in [10, Fig. 4]).

Since the expected frequency plot of a resistance and a ca-
pacitance in parallel (Fig. 1) is a semicircle, we fit semicircular
curves to the central sections of the data in a least-square sense,
which are shown by black dashed lines in Fig. 5. The left
intercept of the semicircles give the Ry values, whereas the
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Fig. 5. Zoomed EIS plot with battery model parameter identification (repro-
duced from [6, Fig. 4] and [10, Fig. 5]).
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Fig. 6. RVM regression and growth model fit (revised from [10, Fig. 6]).
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Fig. 7. PF output (revised from [10, Fig. 7]).

diameters of the semicircles give the Rcr values. Fig. 6 shows
the output of the RVM regression along with the exponential
growth model fits for Ry and Rcr. The advantage of RVMs
in rejecting outliers and nonuniform sparseness of data can be
seen in the R regression fit of Fig. 6.

Fig. 7 shows both the state tracking and future state predic-
tion plots for test data. The threshold for fault declaration has
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Comparison of Particle Mean and Variance at Week 56
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Fig. 8. PF and RBPF particle means and variances.

arbitrarily been chosen. The growth rate of Rcr is consider-
ably larger than the training data, suggesting that the cell has
undergone rapid passivation due to the elevated temperatures
(SOH). The SOC, in any aging cycle, is derived by subtracting
the amount of charge drawn expressed as the integral of cur-
rent over time [ I -dt from the corresponding estimated C/1
capacity s .

Remaining useful life (RUL) is used as the relevant met-
ric for determining SOL. This is derived by projecting out
the x5 ), estimates of each particle from the time of predic-
tion tp into the future until they hit the predetermined EOL
threshold of 0.7 Ah at time tgor,. Both PF and RBPF prog-
nostic frameworks are implemented, with the latter having x5 j
as the deterministic state variable and the former assigning
an additive zero-mean Gaussian noise of variance 0.001 to
it. Although RUL is defined as tgor, — tp, we plot the es-
timated EOL values as RUL for ease of visualization. The
RUL pdf is computed by fitting a mixture of Gaussians to the
RUL values generated by the particle population. As expected
from theoretical considerations, the RBPF variance for x5 j
is less than the PF value by approximately 0.001 in three
separate cases with different ¢ p, whereas the means are similar
(shown in Fig. 8).

Fig. 9 shows the corresponding improvement in precision
(spread of the pdf over time) of the RUL pdf with similar
accuracy (centering of the pdf over the actual EOL). Fig. 10
shows that the RBPF still maintains the advantages of Bayesian
learning, as depicted by the RUL prediction improving in both
accuracy and precision with the inclusion of more measure-
ments before prediction.

V. CONCLUSION

The most significant challenges for making prognostic pre-
dictions are the inherent uncertainties in the system model,
external and internal noise, and sensor errors. In [10], we ex-
plored the possibility of posing the battery prognostic problem
in a Bayesian learning (RVM-PF) framework to encapsulate the
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randomness of RUL and improve its prediction with increasing
information (measurements). We presented the advantages of
this model-based approach over data-driven techniques capable
of handling uncertainties like NN and GPR in [6]. In this
paper, we have implemented a refinement of the PF prognostic
framework to further reduce the prediction uncertainty.

We exploit the correlations between battery performance
(C/1 capacity) and model parameters (R and Rcr) by posing
the RUL prediction task in an RBPF formulation. The presented
results show that it is possible to quantitatively analyze the
particle distribution representing the system state pdf in terms
of its contributing factors. This property can then be used, in
the presence of deterministic relations in the system model, to
significantly reduce the spread of the RUL distribution while
still maintaining the convergence properties of the basic PF
(improvement in accuracy and precision with more data). We
conclude that the RBPF is thus a suitable candidate for handling
prognostics for many engineered systems, where there is high-
fidelity expert knowledge about a part of the state space and
uncertainty in the rest.
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