
Model-based Prognostics with Fixed-lag Particle Filters

Matthew Daigle 1 and Kai Goebel 2

1 University of California, Santa Cruz, NASA Ames Research Center, Moffett Field, CA, 94035, USA
matthew.j.daigle@nasa.gov

2 NASA Ames Research Center, Moffett Field, CA, 94035, USA
kai.goebel@nasa.gov

ABSTRACT

Model-based prognostics exploits domain knowl-
edge of the system, its components, and how they
fail by casting the underlying physical phenom-
ena in a physics-based model that is derived from
first principles. In most applications, uncertain-
ties from a number of sources cause the predic-
tions to be inaccurate and imprecise even with
accurate models. Therefore, algorithms are em-
ployed that help in managing these uncertainties.
Particle filters have become a popular choice to
solve this problem due to their wide applicability
and ease of implementation. We present a gen-
eral model-based prognostics methodology using
particle filters. In order to provide more accu-
rate and precise estimates, and, therefore, more
accurate and precise predictions, we investigate
the use of fixed-lag filters. We develop a detailed
physics-based model of a pneumatic valve, and
perform comprehensive simulation experiments
to illustrate our prognostics approach. The exper-
iments demonstrate the advantages that fixed-lag
filters may provide in the context of prognostics,
as measured by prognostics performance metrics.

1 INTRODUCTION
Prognostics is a key enabling technology for apply-
ing condition-based maintenance. The goal of prog-
nostics is to make end of life (EOL) and remaining
useful life (RUL) predictions that enable timely main-
tenance decisions to be made. As with diagnostics,
prognostics methods may typically be categorized as
either data-driven or model-based approaches. Data-
driven prognostics approaches rely on run-to-failure
data that are used to train algorithms to recognize
trends and estimate EOL and RUL. Indeed, data-driven
prognostic approaches dominate the literature at this
point; see (Schwabacher, 2005) for a survey. How-
ever, there are numerous cases where the necessar-
ily large amount of run-to-failure data does not exist.
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Here, model-based approaches offer a viable alterna-
tive. Model-based prognostics approaches exploit do-
main knowledge of the system, its components, and
how they fail in order to provide accurate EOL and
RUL predictions (Roemer et al., 2005; Byington et al.,
2004; Saha and Goebel, 2009). The underlying physi-
cal phenomena are captured in a physics-based model
that is derived from first principles, therefore, model-
based approaches can provide EOL and RUL estimates
that are much more accurate and precise than data-
driven approaches, if the models are accurate. Still,
modeling the physics of a system (or even just a com-
ponent) is rarely a trivial task.

We adopt a model-based prognostics approach that
is based on joint state-parameter estimation. Many
model-based prognostics frameworks perform state
and parameter estimation using particle filters, which
approximate the posterior as a set of discrete, weighted
samples. Although suboptimal, the advantage of parti-
cle filters is that they can be applied to systems which
may be nonlinear and have non-Gaussian noise terms,
where optimal solutions are unavailable or intractable.
Further, because they are based on probability distribu-
tions, they help in managing the uncertainty that may
arise from a number of sources. In (Saha and Goebel,
2009), the authors apply a particle filtering approach
to prediction of end of discharge and EOL in lithium-
ion batteries. In (Orchard et al., 2008), the authors
present a particle filter-based diagnosis and prognosis
framework using correction loops, with application to
crack growth in aircraft components. In (Abbas et al.,
2007), the authors apply a particle filter-based progno-
sis method to prediction of battery grid corrosion.

Similar to these approaches, we also develop a gen-
eral model-based prognostics methodology using par-
ticle filters. Unlike previous work, however, we in-
vestigate the use of fixed-lag filters to improve esti-
mation and, subsequently, prediction. Fixed-lag filters
incorporate observations beyond a given time point to
calculate the estimate at that time point. Since more
information is being used, estimates can be more ac-
curate and more precise. The disadvantage to using
fixed-lag filters is that state estimates are delayed, i.e.,
the state estimate for time t is only computed once ob-
servations from some later time are available. Since
prognostics often deals with very large time scales, the
delay in the state estimate inherent with fixed-lag fil-
ters is acceptable given the possible improvements in
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Figure 1: Prognostics architecture.

estimation and prediction that they offer. However, to
our knowledge, the use of fixed-lag filters in the con-
text of prognostics has not been explored.

In this paper, we develop a prognostics framework
that incorporates fixed-lag particle filters. As a case
study, we construct a detailed physics-based model of
a pneumatic valve, and use this model to study the
effects of different damage mechanisms. We run a
number of prognostics experiments in simulation to
demonstrate how fixed-lag filters may improve estima-
tion and EOL/RUL predictions. Prognostics perfor-
mance is evaluated using established prognostic met-
rics (Saxena et al., 2008; 2009).

The paper is organized as follows. Section 2 for-
mulates the prognostics problem and overviews the
computational architecture we adopt. Section 3 de-
velops the damage estimation method using fixed-lag
particle filters. Section 4 describes the EOL/RUL pre-
diction procedure. Section 5 presents the pneumatic
valve case study with experimental results in simula-
tion. Section 6 concludes the paper.

2 PROGNOSTICS APPROACH
2.1 Problem Formulation
The problem of prognostics is to predict the EOL
and/or the RUL of a component, where EOL is de-
fined as the time point at which a component no longer
meets specified functional and/or performance require-
ments, and RUL is the time remaining until that point.
In this paper, we develop a general model-based ap-
proach, where the system model is given by

ẋ(t) = f(t,x(t),u(t),v(t))
y(t) = h(t,x(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu

is the input vector, v(t) ∈ Rnv is the process noise
vector, f is the state equation, y(t) ∈ Rny is the output
vector, n(t) ∈ Rnn is the measurement noise vector,
and h is the output equation.

Our goal is to predict EOL at a given time point
tP using the discrete sequence of observations up to
time tP , denoted as y0:tP . In order to determine when
EOL has been reached, we require a condition that is
a function of the system state, CEOL(x(t)), which de-
termines whether EOL has been reached, where

CEOL(x(t)) =
{

1, if EOL is reached
0, otherwise.

Using this function, we can define EOL as

EOL(tP ) , arg min
t≥tP

CEOL(x(t)) = 1.

RUL is then simply defined as

RUL(tP ) , EOL(x(tP ))− tP .

Because of the noise inherent in the process and the
measurements, we must compute a probability distri-
bution of the EOL or RUL, i.e., the goal is to compute,
at time tP , p(EOL(tP )|y0:tP ) or p(RUL(tP )|y0:tP ).

2.2 Prognostics Architecture
We adopt a model-based approach, wherein we de-
velop detailed physics-based models of components
and systems that include descriptions of how fault pa-
rameters evolve in time. These models depend on
unknown and possibly time-varying damage/wear pa-
rameters θ(t) ⊂ x(t). Therefore, our solution to
the prognostics problem takes the perspective of joint
state-parameter estimation. In discrete time k, we esti-
mate xk and use the estimates to predict EOL and RUL
at desired time points.

In order to improve the state estimates, and, there-
fore predictions, we utilize fixed-lag filters, where
we compute p(xk−L|y0:k), where L is the lag. Us-
ing p(xkP−L|y0:kP ) at time kP − L, we compute
p(EOLkP−L|y0:kP ) and p(RULkP−L|y0:kP ).

We employ the prognostics architecture in Fig. 1.
The system is provided with inputs uk and provides
measured outputs yk. The fault detection, isolation,
and identification (FDII) module provides a fault set
F, which is used by the damage estimation module to
determine estimates of the states including unknown
parameters, represented as a probability distribution
p(xk−L|y0:k). This distribution is used by the pre-
diction module, which computes EOL and RUL using
hypothesized future inputs. EOL and RUL are com-
puted as probability distributions p(EOLkP−L|y0:kP )
and p(RULkP−L|y0:kP ). In this paper, we focus on
the damage estimation and prediction modules, and as-
sume a solution to FDII.

3 DAMAGE ESTIMATION
To estimate the damage, we need to estimate
p(xk|y0:k). In this paper, we use the particle filter for
this purpose (Arulampalam et al., 2002; Cappe et al.,
2007). With particle filters, the state distribution is ap-
proximated by a set of discrete weighted samples, or
particles, {xik, wik}Ni=1, where N denotes the number
of particles, xik denotes the state estimate for particle
i, and wik denotes the weight of particle i.

Particle filters are best suited to estimation in nonlin-
ear systems with possibly non-Gaussian noise, where
optimal solutions are unavailable or intractable. In this
respect, they can be viewed as a general (suboptimal)
solution to the state estimation problem. Performance
can be improved by increasing the number of particles,
but this also results in higher computational costs. The
number of particles must be chosen to suit the applica-
tion requirements.
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As described in Section 2, parameters augment the
state vector, i.e., θk ⊂ xk. In this way, the particle
filter is being used to perform joint state-parameter es-
timation. Here, the parameters θk evolve by some un-
known random process that is independent of the state
xk. To perform parameter estimation within a parti-
cle filter framework, however, we need to assign some
type of evolution to the parameters. The typical so-
lution is to use a random walk, i.e., for parameter θ,
θk = θk−1 + ξk−1, where ξk−1 is a noise term, and
typically Gaussian. During the sampling step, particles
are generated with parameter values that will be dif-
ferent from the initial guesses for the unknown param-
eters. The particles with parameter values closest to
the true values should be assigned higher weight, thus
allowing the particle filter to converge to the true val-
ues. The selected variance of the random walk noise
must be large enough so as to allow convergence in
a reasonable amount of time, but small enough such
that when convergence is reached, the parameter can
be tracked smoothly. Since the parameter values are
unknown to start with, this can be a difficult task, but
knowledge of the correct order of magnitude of the pa-
rameter is helpful. If the unknown parameters are con-
stant, then other approaches can be employed to im-
prove estimates and offset the increase in covariance
contributed by the random walk (Liu and West, 2001;
Clapp and Godsill, 1999).

We employ the sampling importance resampling
(SIR) particle filter, and implement the resampling step
using systematic resampling (Kitagawa, 1996). In par-
ticle filters, the posterior density is approximated by

p(xk|y0:k) ≈
N∑
i=1

wikδ(xk − xik).

The fixed-lag smoothing distribution can be approxi-
mated by (Doucet et al., 2000)

p(xk−L|y0:k) ≈
N∑
i=1

wikδ(xk−L − xik−L).

So, to compute p(xk−L|y0:k), we need to determine
the weight of the particle at time k. This can be
computed by running the standard particle filter al-
gorithm within an inner loop up to time k to deter-
mine the weight of the particles at k, and assigning
these weights to the particles for time k − L. The
particle filter may then proceed from time k − L as
usual. However, the resampling step complicates this
procedure. During resampling, particles may be either
dropped or multiplied. This results in a loss of diver-
sity of the particle paths and smoothed estimates based
on these paths degnerate (Arulampalam et al., 2002;
Cappe et al., 2007). The solution we adopt is to
skip the resampling step during the lookahead portion,
which avoids the degeneracy that would be introduced
by resampling.

The pseudocode for a single step of the fixed-lag
SIR filter is shown as Algorithm 1. Each particle is
propagated forward to time k (without resampling),
and the particle weight is assigned using yk. As with
the standard SIR filter, the weights are then normal-
ized, followed by the resampling step (see (Arulam-

Algorithm 1 Fixed-lag SIR Filter
Inputs: {xik−L−1, w

i
k−L−1}Ni=1,uk−L:k,yk

Outputs: {xik−L, wik−L}Ni=1

for i = 1 to N do
for j = 0 to L do

xik−L+j ∼ p(xk−L+j |xik−L+j−1,uk−L+j−1)
end for
wik−L ← p(yk|xik,uk)

end for

W ←
N∑
i=1

wik−L

for i = 1 to N do
wik−L ← wik−L/W

end for
{xik−L, wik−L}Ni=1 ← Resample({xik−L, wik−L}Ni=1)

palam et al., 2002) for pseudocode). With L = 0, the
algorithm is equivalent to the standard SIR filter.

4 PREDICTION
In the prediction phase, we wish to compute at time
kP − L, the distributions p(EOLkP−L|y0:kP ) and
p(RULkP−L|y0:kP ). The fixed-lag particle filter com-
putes

p(xkP−L|y0:kP ) ≈
N∑
i=1

wikP−Lδ(xkP−L − xikP−L).

We can approximate a prediction distribution n steps
forward as (Doucet et al., 2000)

p(xkP−L+n|y0:kP ) ≈
N∑
i=1

wikP−Lδ(xkP−L+n − xikP−L+n).

So, for a given state xikP−L propagated n steps forward
(without new data), we can simply take its weight as
wikP−L. Similarly, we can approximate the EOL as

p(EOLkP−L|y0:kP ) ≈
N∑
i=1

wikP−Lδ(EOLkP−L − EOL
i
kP−L).

The idea, then, is to propagate each particle forward to
EOL and use the particle’s weight at time kP − L for
the weight of the EOL prediction.

The pseudocode for the prediction procedure is
given as Algorithm 2. Each particle i is propagated for-
ward untilCEOL(xik) evaluates to 1, at which EOL has
been reached for this particle. Prediction requires hy-
pothesizing future inputs of the system ûk. The inputs
must be chosen carefully because different inputs of-
ten have different effects on damage progression. The
choice depends on the particular application.

5 CASE STUDY
In order to illustrate our prognostics methodology, we
take a pneumatic valve as a case study. We develop
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Algorithm 2 EOL Prediction
Inputs: {xikP−L, w

i
kP−L}

N
i=1

Outputs: {EOLikP−L, w
i
kP−L}

N
i=1

for i = 1 to N do
k ← kP − L
xik ← xikP−L
while CEOL(xik) = 0 do

Predict ûk
xik+1 ∼ p(xk+1|xik, ûk)

xik ← xik+1

k ← k + 1
end while
EOLikP−L ← k

end for

Figure 2: Pneumatic valve.

a physics-based model of the valve and its damage
mechanisms. We then present simulation experiments
to demonstrate parameter estimation and EOL and
RUL prediction for different choices of the lag L.

5.1 Component Modeling
Pneumatic valves are complex mechanical systems
used in many domains. These valves are actuated
by gas, and can use different types of actuators. A
normally-closed valve with a linear cylinder actuator
is depicted in Fig. 2. The valve is opened by filling the
chamber below the piston with gas up to the supply
pressure, and evacuating the chamber above the pis-
ton down to atmospheric pressure. The valve is closed
by filling the chamber above the piston, and evacuat-
ing the chamber below the piston. The return spring
ensures that when pressure is lost, the valve will close
due to the force exerted by the return spring.

We develop a physics model of the valve based on
mass and energy balances. The system state includes
the position of the valve, x(t), the velocity of the valve,
v(t), the mass of the gas in the volume above the pis-
ton, mt(t), and the mass of the gas in the volume be-
low the piston, mb(t):

x(t) =

 x(t)
v(t)
mt(t)
mb(t)

 .
The position when the valve is fully closed is defined

as x = 0. The stroke length of the valve is denoted by
Ls; when the valve is fully open its position is x = Ls.

The derivatives of the states are described by

ẋ(t) =

 v(t)
1
m

∑
F

ft(t)
fb(t)

 ,
where m is the combined mass of the piston and plug,∑
F is the sum of forces acting on the valve, and ft(t)

and fb(t) are the mass flows going into the top and
bottom pneumatic ports, respectively.

The inputs are considered to be

u(t) =

 pl(t)
pr(t)
ut(t)
ub(t)

 ,
where pl(t) and pr(t) are the fluid pressures on the
left and right side of the plug, respectively, and ut(t)
and ub(t) are the input pressures to the top and bot-
tom pneumatic ports. These pressures will alternate
between the supply pressure and atmospheric pressure
depending on the commanded valve position.

The sum of forces acting on the piston includes (1)
the forces from the pneumatic gas: (pb(t)− pt(t))Ap,
where pb(t) and pt(t) are the gas pressures on the bot-
tom and the top of the piston, respectively, and Ap
is the surface area of the piston, (2) the forces from
the fluid flowing through the valve: (pr(t)− pl(t))Av ,
where Av is the area of the valve contacting the fluid,
(3) the weight of the moving parts of the valve: −mg,
where g is the acceleration due to gravity, (4) the
spring force: −k(x(t) − xo), where k is the spring
constant and xo is the amount of spring compression
when the valve is closed, (5) friction: −rv(t), where r
is the coefficient of kinetic friction, and (6) the contact
forces at the boundaries of the valve motion:

kc(−x), x < 0
0, 0 ≤ x ≤ Ls
−kc(x− Ls), x > Ls,

where kc is the (large) spring constant associated with
the flexible seals.

The pressures pt(t) and pb(t) are calculated as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))

pb(t) =
mb(t)RgT
Vb0 +Apx(t)

where we assume an isothermal process in which the
gas temperature is constant at T , Rg is the gas con-
stant for the pneumatic gas, and Vt0 and Vb0 are the
minimum gas volumes for the gas chambers above and
below the piston, respectively.

The gas flows are given by:

ft(t) = fg(pt(t), ut(t))
fb(t) = fg(pb(t), ub(t))
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where fg defines gas flow through an orifice for choked
and non-choked flow conditions (Perry and Green,
2007): fg(p1, p2) =

CsAsp1

√
γ

ZRgT

(
2

γ+1

) γ+1
γ−1

,

p1 ≥ p2 ∧ p1/p2 ≥
(
γ+1

2

)γ/(γ−1)

CsAsp1

√
γ

ZRgT

(
2

γ−1

)((
p2
p1

) 2
γ −

(
p2
p1

) γ+1
γ

)
,

p1 ≥ p2 ∧ p1/p2 <
(
γ+1

2

)γ/(γ−1)

CsAsp2

√
γ

ZRgT

(
2

γ+1

) γ+1
γ−1

,

p1 < p2 ∧ p2/p1 ≥
(
γ+1

2

)γ/(γ−1)

CsAsp2

√
γ

ZRgT

(
2

γ−1

)((
p1
p2

) 2
γ −

(
p1
p2

) γ+1
γ

)
,

p1 < p2 ∧ p2/p1 <
(
γ+1

2

)γ/(γ−1)

where γ is the ratio of specific heats, Z is the gas com-
pressibility factor, Cs is the flow coefficient, and As is
the orifice area. Choked flow occurs when the pressure
ratio exceeds

(
γ+1

2

)γ/(γ−1)
.

We select our measurement vector as

y(t) =

 x(t)
pt(t)
pb(t)
fv(t)


where fv is the fluid flow through the valve:

fv(t) =
x(t)
Ls

CvAv

√
2
ρ |pfl − pfr|sign(pfl − pfr),

where Cv is the (dimensionless) flow coefficient of the
valve, and ρ is the liquid density, and we assume a
linear flow characteristic for the valve.

Fig. 3 shows a nominal valve cycle. The valve is
commanded to open at 0 s. The top pneumatic port
opens to atmosphere and the bottom opens to the sup-
ply pressure (approximately 5.3 MPa, or 750 psig).
When the force on the underside of the piston is large
enough to overcome the return spring, friction, and the
gas force on the top of the piston, the valve begins to
move upward as the pneumatic gas continues to flow
into and out of the valve actuator. At about 8 s the
valve is completely open. The valve is commanded
to close at 15 s. The bottom pneumatic port opens to
atmosphere and the bottom opens to the supply pres-
sure. When the force balance becomes negative, the
valve starts to move downward, and completely closes
at around 20 s. The valve closes faster than it opens
due to the return spring.

5.2 Damage Modeling
Our general approach to damage modeling is as fol-
lows. First, we identify parameters in the model that
characterize the extent of specific forms of damage,
and these augment the state vector x. We then incor-
porate models of how those parameters change over
time with system operation. It is the parameters of
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Figure 3: Nominal valve operation.

these equations that are unknown and must be esti-
mated, and also augment x for that purpose. In the
valve model, we consider damage or wear character-
ized by the increase in friction coefficient, the decrease
in spring constant, the appearance and growth of an in-
ternal valve leak between the volumes on either side of
the piston, and the appearance and growth of external
leaks at the pneumatic ports.

One damage mechanism present in valves is sliding
wear. The equation for sliding wear takes on the fol-
lowing form (Hutchings, 1992):

V̇ (t) = w|F (t)v(t)|,
where V (t) is the wear volume, w is the wear coef-
ficient (which depends on material properties such as
hardness), F (t) is the sliding force, and v(t) is the slid-
ing velocity. Friction will increase linearly with slid-
ing wear, because the contact area between the slid-
ing bodies becomes greater as surface asperities wear
down (Hutchings, 1992). Lubrication between the
sliding bodies can also degrade over time. We there-
fore model the change in friction coefficient in a form
similar to sliding wear:

ṙ(t) = wr|Ff (t)v(t)|
where wr is the wear coefficient, and Ff (t) is the fric-
tion force defined in the previous subsection. Fig. 4
shows the effect of an increase in friction on the valve
cycle. From the simulation, we can determine the
value of the friction parameter, r∗, at which the valve
has reached EOL. At this value, the friction force be-
comes large enough that the valve cannot open within
the 15 s limit, as shown in Fig. 4. So, CEOL(x(t)) = 1
if r(t) ≥ r∗.

We assume the same equation form for spring dam-
age:

k̇(t) = −wk|Fs(t)v(t)|,
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Figure 4: Valve operation with increasing wear.

wherewk is the spring wear coefficient and Fs(t) is the
spring force. The more the spring is used, the weaker
it becomes. We define k∗ as the largest value of k at
which the valve will not fully close upon loss of sup-
ply pressure. Fig. 4 shows the effect of a decrease in
the spring parameter on the valve cycle. In normal op-
eration, without the spring tending the valve to close,
the valve will open faster and close slower. However,
the spring must be strong enough to close the valve
against system pressure when the actuating pressure is
lost. So, CEOL(x(t)) = 1 also if k(t) ≤ k∗.

An internal leak in the valve can appear at the seal
surrounding the piston as a result of sliding wear. The
pneumatic gas is then able to flow between the vol-
umes above and below the piston, decreasing the re-
sponse time of the valve. We parameterize this leak by
its equivalent orifice area, Ai(t), described by:

Ȧi(t) = wi|Ff (t)v(t)|,
where wi is the wear coefficient. The mass flow at the
leak, fi(t), is computed using the gas flow equation:

fi(t) = fg(pt(t), pb(t)).

As sliding wear occurs, the leak size keeps increas-
ing. The presence of an internal leak makes it more
difficult to actuate the valve, because it causes gas to
flow into the lower pressure volume that is being evac-
uated and out of the higher pressure volume that is be-
ing filled. We define A∗i as the minimum internal leak
area at which the valve cannot open within the 15 s
limit. So, CEOL(x(t)) = 1 also if Ai(t) ≥ A∗i . Fig. 4
shows the effect of an internal leak on the valve cycle.

External leaks can also form, most likely at the ac-
tuator connections to the pneumatic gas supply, due
to corrosion and other environmental factors. Without
knowledge of how the leak size progresses, we assume
the growth of the area of the leak holes, Ae(t), is lin-
ear:

Ȧe(t) = we,

where we is the wear coefficient. We use additional
t and b subscripts to denote leaks at the top and bot-
tom pneumatic ports, respectively. The effect of the
formation of a leak at the top pneumatic port is that
it becomes easier to open the valve but more diffi-
cult to close it. Conversely, the effect of a leak at the
bottom pneumatic port is that it becomes more diffi-
cult to open but easier to close the valve. Through
simulation we can determine the minimum size leak
holes at which the valve cannot open or close within

the 15 s limit, A∗e,t and A∗e,b . (An alternative is
to use a maximum allowable leakage rate to define
EOL.) So, CEOL(x(t)) = 1 also if Ae,t(t) ≥ A∗e,t
or Ae,b(t) ≥ A∗e,b. Fig. 4 shows the effect of external
leak on the valve cycle.

5.3 Experimental Results
We performed a number of simulation experiments to
validate our prognostics methodology and evaluate the
usefulness of fixed-lag filters for prognostics using per-
formance metrics described in (Saxena et al., 2008;
2009). In each experiment, we considered additive
zero-mean process and measurement noise, used N =
500 particles, and used a sample time of 0.01 s. We as-
sumed that only a single damage mechanism was ac-
tive, and, in each experiment, started from the point
where damage has been identified and the only un-
known is the wear coefficient (initially assumed to be 0
for parameter estimation). We tuned our particle filters
by adjusting the amount of process and measurement
noise it considered, assuming the order of magnitude
of the wear coefficients were known. With the noise
variances selected, we then varied only the lag L.

Validation of the Methodology
First, we provide an example scenario that demon-
strates the effectiveness of our model-based method-
ology. Fig. 5 shows estimation results for the case of
an internal leak with L = 3. There was little error
present in the tracking of the outputs, so we show only
the estimation results of the internal leak area, Ai(t),
and its wear coefficientwi. In our framework, accurate
and precise tracking of the hidden damage parameter
translates to accurate and precise predictions of EOL
and RUL. In this case, the estimate of wi converges in
about 3 cycles, or 90 s. After that point, Ai(t) can be
tracked well.

The EOL predictions for each prediction point (ev-
ery 10 cycles, where one cycle corresponds to 30 s) are
shown in Fig. 6, with a mixture of Gaussian distribu-
tions fitted to the particle populations for visualization
purposes. The true EOL for the chosen value of wi
is 106 cycles. The probability distributions all cover
the true EOL, and as time progresses, the predictions
become significantly more accurate and precise.

This result is also shown by the α-λ accuracy met-
ric (Saxena et al., 2008), as given in Fig. 7. Here,
α ∈ [0, 1] defines bounds as a function of RUL, and
λ ∈ [0, 1] denotes the fraction of the time from the
first prediction to the true EOL. We use the extended
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Figure 5: Estimation results for the growth of an inter-
nal leak, where L = 3.

Table 1: RUL predictions for internal leak
tP RUL∗ RUL RAMean R̃UL RAMedian MAD
10 96 93.45 0.973 92.52 0.964 8.79
20 86 78.23 0.910 76.58 0.890 6.02
30 76 70.51 0.928 68.58 0.902 6.04
40 66 63.54 0.963 62.57 0.948 6.05
50 56 56.13 0.998 55.28 0.987 4.70
60 46 45.20 0.983 44.52 0.968 4.86
70 36 35.85 0.996 34.59 0.961 4.26
80 26 28.12 0.919 27.53 0.941 3.00
90 16 15.63 0.977 15.52 0.970 1.28

100 6 5.26 0.876 5.47 0.911 0.88

version of the metric, which incorporates a third pa-
rameter, β ∈ [0, 1], which defines a bound on the frac-
tion of the probability mass of a prediction that falls
within the α-bounds (Saxena et al., 2009). The met-
ric evaluates to true at a given prediction point (i.e., a
given λ) if the fraction of the probability mass within
the α-bounds, which we denote by πα, is greater than
β. The metric, therefore, simultaneously captures as-
pects of both accuracy and precision. Fig. 7 shows the
RUL predictions as box plots at each prediction point.
The percent of the probability mass which falls within
the α-bounds is shown above each box plot, along with
the outcome of the metric. The α and β values would,
in reality, be imposed by desired performance criteria
of the prognostic system. Here, we choose reasonable
values of α = 0.1 and β = 0.5. In this case, the metric
fails at the second and third prediction points, as less
than half of the probability mass is contained within
the α-bounds. It should be noted, however, that the
means of the distributions do fall within the bounds at
those two points. If α is increased to 0.122, the metric
is satisfied at all points.
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Figure 6: EOL predictions for the growth of an internal
leak, where L = 3.
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Figure 7: α-λmetric for the growth of an internal leak,
where L = 3, α = 0.1, and β = 0.5.

The predictions are quantified in Table 1, which pro-
vides the means and medians (in cycles) of the RUL
distributions at each prediction point. Relative ac-
curacy (RA) is also given, which, for a given pre-
diction time tP , is defined as (Saxena et al., 2008;
2009):

RAM (tP ) = 1− |RUL
∗(tP )−M(RUL(tP ))|

RUL∗(tP )
,

where M denotes a selected measure of central ten-
dency for the prediction distribution, and RUL∗(tP )
denotes the true RUL at tP . We use RUL to denote
the mean of the distribution and R̃UL to denote the
median, and RAMean and RAMedian to denote the rela-
tive accuracies computed with the mean and median,
respectively, as the measures of central tendency. The
table shows that RA is, on average, fairly high, and in
this case, the mean provides a more accurate point es-
timate, as the average RA based on the mean is 0.952,
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Table 2: Average performance for external leak predictions
Fault Lag RMSE Cwe,b RAMean RA−Mean RAMedian RA−Median π̄α π−α MAD
Bottom External Leak 0 7.74× 10−11 313.31 0.895 0.662 0.923 0.791 0.352 0.230 21.14

(we,b = 1× 10−9) 1 7.42× 10−11 297.00 0.900 0.706 0.928 0.792 0.353 0.234 19.13

2 7.00× 10−11 291.07 0.907 0.727 0.931 0.824 0.355 0.243 18.79

3 7.19× 10−11 286.84 0.904 0.690 0.932 0.806 0.355 0.240 18.16

4 7.67× 10−11 304.20 0.902 0.702 0.926 0.800 0.348 0.237 19.72

Top External Leak 0 4.61× 10−10 332.39 0.961 0.894 0.967 0.917 0.528 0.418 10.83

(we,t = 1× 10−8) 1 4.68× 10−10 301.03 0.960 0.889 0.967 0.908 0.527 0.409 11.64

2 4.88× 10−10 332.37 0.960 0.888 0.966 0.911 0.534 0.413 10.53

3 4.91× 10−10 329.72 0.959 0.889 0.966 0.910 0.527 0.412 10.88

4 4.86× 10−10 312.19 0.961 0.897 0.967 0.915 0.531 0.422 11.41

whereas based on the median, the average RA is 0.944.
The table also includes the median absolute deviation
(MAD) of the distribution (in cycles) as a measure of
variability. As EOL is approached, the MAD con-
verges toward zero.

Evaluation of Fixed-lag Filters
We now examine how the use of fixed-lag filters can
improve estimation and, subsequently, prediction. To
illustrate this, we show results that quantify both esti-
mation performance and prognostics performance, and
demonstrate the link between the two aspects. Ta-
ble 2 shows results for a comprehensive set of simu-
lation experiments for a bottom external leak fault and
a top external leak fault. For each lag, 15 experiments
were performed. Each result in the table represents the
particular metric averaged over those 15 experiments.
Note that the same amount of noise was used in all ex-
periments, which in this case was ten times the amount
used in the internal leak example. Also, the wear co-
efficient for the top leak was chosen to be an order of
magnitude larger than that for the bottom external leak,
as this is the case to obtain similar EOL values (148
cycles for the bottom external leak, and 134 cycles for
the top external leak).

We quantify estimation performance by the root
mean square error (RMSE) of the weighted mean of
the hidden parameter estimate from its true value. A
smaller RMSE will entail a more accurate weighted
mean of the RUL distribution, and, therefore, higher
relative accuracy is achieved, and tighter α-bounds can
be met. In this case, for the bottom external leak, using
a lag improves performance in estimation, and this cor-
responds also to improvements in prediction, as quan-
tified by RA. A lag of 2 is optimal here, and as higher
lags are considered the RMSE begins to increase. This
occurs because the lookahead step becomes less reli-
able in noisy environments with higher lags. Process
noise accumulates and predictions may lose their ac-
curacy. However, the L = 4 case still outperforms the
L = 0 case for RMSE. For the top external leak, the
RMSE actually gets worse with a lag, but by a rela-
tively small amount. In the context of prediction, this
difference has no virtually no effect, as the remaining
metrics have almost no difference between the cases.
We attribute this to the fact that the wear parameter is
an order of magnitude larger than for the bottom ex-
ternal leak, and at this scale, the effects of the fault are

easily distinguishable from noise even without looka-
head.

We also report on the convergence of the damage
parameter estimation error, computed as the distance
from the origin to the centroid of the area under the
error curve (Saxena et al., 2008). A lower conver-
gence score corresponds to faster convergence. Since
the wear parameters are on the order of 10−9 and 10−8,
the units of the convergence score are roughly in sec-
onds. For the bottom external leak, the fixed lag cases
clearly have better convergence, with L = 3 being op-
timal. Intuitively, this makes sense, as at the beginning
of estimation, the lookahead allows particles farther
from the initial guess, but closer to the true value, to
be weighted more heavily, since L steps ahead, these
particles will be much more consistent with the obser-
vations than at the current time. A better convergence
also means that a reliable prediction can be achieved
earlier in time. For the top external leak, convergence
scores are mostly the same, except with the L = 1 and
L = 4 cases outperforming the other cases by approx-
imately 30 and 20 seconds, respectively.

The average RA scores in the table represent the RA
averaged over each prediction point of a single run (de-
noted as RA), and the single number reported in the
table for a given lag is this value averaged over the 15
experiments. We report RA calculated using both the
mean and the median of the distributions, and here,
the median provides a more accurate point estimate.
We also report the average minimum RA, i.e., for a
single run we take the minimum RA over all predic-
tion points, and this number is averaged over the 15
experiments. This worst-case scenario corresponds to
minimum α-bounds that can always be satisfied. For
the bottom external leak, the comparison between dif-
ferent lags is more pronounced. For the top leak, there
is virtually no difference.

It is also important to examine the improvement in
precision. This is quantified by the fraction of the pre-
diction distributions that are within the α-bounds (cho-
sen as 0.1). For a single run, we computed the average
fraction over all prediction points, denoted as π̄α. For
a given lag, the table reports this value averaged over
the 15 runs. We also report average minimum πα, de-
noted as π−α , computed in the same way as for aver-
age minimum RA. Here, the difference is small. For
the bottom external leak, when looking at the average
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Figure 8: EOL predictions for a top external leak with different lags.

Table 3: π−α values for different choices of α for a top
external leak

Lag α = 0.15 α = 0.10 α = 0.05

0 π−α = 0.716 π−α = 0.478 π−α = 0.242
1 π−α = 0.770 π−α = 0.572 π−α = 0.294
2 π−α = 0.766 π−α = 0.556 π−α = 0.314
3 π−α = 0.788 π−α = 0.574 π−α = 0.290
4 π−α = 0.768 π−α = 0.578 π−α = 0.300

worst case (π−α ), however, the difference is again more
pronounced, meaning that for a given α, the α-λ met-
ric can be satisfied with larger β values for fixed-lag
filters. For the top leak, there is again little differ-
ence. We also report the MAD (in cycles), averaged
over each run at the 30-cycle prediction point (the true
RUL at this point is 118 cycles). An improvement in
the fixed lag case is also visible here for the bottom
external leak.

To further illustrate precision improvements, we
show EOL predictions for the top external leak case
with L = 0 to 3 in Fig. 8, under ten times less noise
than the results reported in Table 2. EOL predictions
were made at 50 cycles, where the true EOL is 134 cy-
cles. The figure demonstrates that as L is increased,
the predictions become consistently more confident
and, hence, more useful in making maintenance de-
cisions. Table 3 shows this quantitatively, providing
π−α values for different choices of α. As the α-bounds
become tighter, the advantage of fixed-lag filters be-
comes more clear, as we see that a more significant
portion of the probability mass is contained within
tighter bounds as compared to the case with no lag.
This also suggests that fixed-lag filters can have a more
significant impact on performance when noise is small.

Overall, the results presented here show that fixed-
lag filters can result in improved prognostics perfor-
mance. While there is a visible performance increase
in some cases, there is a trade-off between the ex-
tra computation involved in fixed-lag filters and the
achieved performance gains. Compared to the case
with no lag, a fixed-lag filter with lag L will be doing
L + 1 times the computations. If the performance re-
quirement demands, for example, that average relative
accuracy be 0.9, all values for L presented in Table 2
satisfy this requirement, if RAMedian is used, so, in this
particular case, the extra computations offer no benefit

relative to the performance requirement. A fixed-lag
approach may not be able to satisfy significantly dif-
ferent α-bounds in which the L = 0 case cannot.

The choice of L is also an important factor. In Ta-
ble 2, L = 2 is optimal for the majority of the metrics
for the bottom external leak fault. However, this may
change depending on factors such as noise and sample
time. The approximation to the smoothing distribution
used here becomes less accurate as L increases, so at
some choice of L, it is no longer beneficial to be us-
ing a lag, i.e., estimation may become worse than the
L = 0 case. The sample time also affects the choice
of L, as with a smaller sample time, model uncertainty
has less of an effect than with larger values of L, in
which the uncertainty can build up over the lookahead
window. The magnitude of the damage parameter also
has an effect, as observed when comparing the results
for the top and bottom external leaks. If the damage is
progressing very slowly, then the progression is more
distinguishable from noise if considered over a lag, so
fixed-lag filters will be more beneficial. In practice,
wear parameters would be much less than those con-
sidered here, so fixed-lag filters may offer more signif-
icant benefits than demonstrated here.1

6 CONCLUSIONS
In this paper, we presented a general model-based
prognostics methodology using particle filters, formu-
lated as a joint state-parameter estimation problem.
State-parameter estimates are propagated forward in
time to obtain EOL and RUL predictions, based on
models that capture the progression of damage over
time, characterized by a set of unknown parameters.
We evaluated the use of fixed-lag particle filters within
our scheme, and, overall, fixed-lag filters were shown
to be able to provide improvements in state estimates
and predictions, however, the improvements they of-
fer depend on many factors, including the amount of
noise and the magnitude of the wear parameters. Ad-
ditional experiments are needed to investigate these is-
sues more closely.

In this paper, we considered only single damage
mechanisms active at any one time. This is not gen-
erally true, so, in future work, we will investigate the
general case. It is well-known that standard particle

1Values of damage parameters were selected to so that
EOL would be reached within reasonable experiment times.
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filters become less effective at estimating multiple pa-
rameters, and additional techniques must be used, such
as Rao-Blackwellization (e.g., see (Li et al., 2007) for
an application). In many cases, it is also safe to assume
that noise is Gaussian, in which further improvements
over the standard particle filter can be achieved. In fu-
ture work we would like to investigate these cases and
the performance gains that can be achieved, especially
in the fixed-lag case.
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