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Abstract 

Integrated Systems Health Management includes as key 
elements fault detection, fault diagnostics, and failure 
prognostics. Whereas fault detection and diagnostics have 
been the subject of considerable emphasis in the Artificial 
Intelligence (AI) community in the past, prognostics has not 
enjoyed the same attention. The reason for this lack of 
attention is in part because prognostics as a discipline has 
only recently been recognized as a game-changing 
technology that can push the boundary of systems health 
management. This paper provides a survey of AI techniques 
applied to prognostics. The paper is an update to our 
previously published survey of data-driven prognostics. 

Introduction   
NASA is currently planning long-duration human space 
exploration missions to the Moon and Mars. Reliability of 
the spacecraft will be extremely important for these 
missions, since they will be away from the Earth for 
months or years at a time. An important contributor to that 
reliability will be an on-board Integrated Systems Health 
Management (ISHM) system. ISHM can provide two 
advantages. First, it can increase safety, by detecting 
problems, quickly diagnosing them, and assessing 
remaining life before they become serious, so that 
controllers can respond rapidly and prevent major failures. 
Second, it can reduce costs by enabling corrective action to 
be scheduled more efficiently. Corrective action such as 
maintenance scheduling is most important for reusable 
systems, such as aircraft or the Space Shuttle, but even 
expendable piloted spacecraft, such as Apollo or Soyuz, 
have had some maintenance actions that can be performed 
by the astronauts during a mission. Future air and space 
vehicle may also benefit from robotic or autonomic 
maintenance. 

An ISHM system takes as input sensor values and the 
command stream, and ideally performs fault detection 
(detecting that something is wrong), fault isolation 
(determining the location of the fault), fault identification 
(determining what is wrong; that is, determining the fault 
mode), and fault prognostics (determining when a failure 
will occur based conditionally on anticipated future usage). 
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We define diagnostics to include fault isolation and fault 
identification, so that full diagnostics requires determining 
the specific fault mode, rather than just reporting which 
sensor has an unusual value. We define prognostics to be 
detecting the precursors of a failure, and predicting how 
much time remains before a likely failure. Prognostics is 
the most difficult of these tasks. One must be able to detect 
faults before one can diagnose them. Similarly, one must 
be able to diagnose faults before one can perform 
prognostics. In addition to fault detection, diagnostics, and 
prognostics, ISHM also includes support for deciding what 
actions to take in response to a failure or a failure 
precursor. These actions can include reconfiguration of 
redundant or non-redundant hardware, maintenance actions 
performed by the crew, maintenance actions performed on 
the ground (for reusable vehicles), recalibration of sensor 
values or commanded values to compensate for degraded 
hardware, and mission replanning to accommodate 
degraded systems. The field of ISHM includes sensor 
development and optimization of sensor placement (Zhang, 
2005), but this survey focuses only on the algorithms used 
for fault detection, diagnostics, and (especially) 
prognostics. 

A simple form of prognostics, known as a life usage 
model, is widely in use. This method is applicable to 
components that have been mass produced. It gathers 
statistical information about the amount of time that a 
component lasts before failure, and uses these statistics 
collected from a large sample of components to make 
remaining life predictions for individual components. 
These predictions are based solely on the passage of time 
and/or measures of usage of the system or component. For 
example, for a timing belt on an automobile, the 
manufacturer may recommend that the belt be replaced 
after five years or 60,000 miles. The  recommendations 
from these life usage models are not based on any 
measured characteristics of the individual component. This 
survey is primarily concerned with condition-based 
prognostic methods, i.e., methods that take advantage of 
measured characteristics of a particular system or 
component of interest in order to make predictions, and not 
on life usage models. 

Frameworks that illustrate the use of computational 
intelligence algorithms within ISHM have been discussed 
in the literature. For example, Bonissone (2006) defines 
this framework in the cross product of the ISHM decision’s 
time horizon and domain knowledge type and structure.  



Within this framework, the full range of ISHM functions 
are defined. In contrast, the present paper classifies 
different types of ISHM algorithms  in a taxonomy shown 
in Figure 1. With the strong caveat that the boundaries 
between the different classes are not crisp, we distinguish 
here between algorithms that are model-based and 
algorithms that are data-driven. We use a narrow definition 
of the term “model-based” wherein  algorithms encode 
human knowledge via a (more or less) hand-coded 
representation of the system. Such a model can be either 
physics-based (encapsulating first principles knowledge 
using systems of differential equations, for example), or 
based on techniques from Artificial Intelligence (AI). Since 
AI is notoriously ill-defined, we adopt for the purpose of 
this paper a definition (in contrast to the more strict Turing  
test) that subsumes elements of learning and the ability to 
deal with ambiguity, including elements from soft 
computing, computational intelligence, machine learning, 
etc. Model-based AI techniques include rule-based expert 
systems such as SHINE (James & Atkinson, 1990) and G2 
(Gensym, 2007). Other examples of model-based AI 
techniques are finite-state machines, as in Livingstone 
(Williams & Nayak, 1996; Kurien & Nayak, 2000) and 
Qualitative Reasoning (Weld & de Kleer, 1989), where a 
hand-coded model uses qualitative, rather than numerical, 
variables to describe the physics of the system. 

Data-driven approaches automatically fit a model of 
system behavior to historical data, rather than hand-coding 
a model. Data-driven approaches can either use 
“conventional” numerical algorithms, such as linear 
regression or Kalman filters, or they can use algorithms 
from the machine learning and data mining AI 
communities, such as neural networks, decision trees, and 
support vector machines. The term “machine learning” is 

ill-defined as well. We adopt here a definition of machine 
learning that imposes a degree of complexity on the 
learning aspect. That definition excludes linear regression 
and (marginally) Kalman filters, but it includes decision 
trees, case-based reasoning, clustering, and neural 
networks, for example. 

In Table 1, we have constructed a matrix in which the 
rows represent the four types of algorithms from Figure 1, 
and the columns represent the three ISHM problems that 
we identified earlier in this section (fault detection, 
diagnostics, and prognostics). In each cell, we provide a 
representative (not exclusive) example of a method that 
uses the specified type of algorithm to solve the specified 
problem. Note that two cells are empty. There is little 
evidence of current activity in applying purely physics-
based algorithms to diagnostics. This is not to say that it 
has not been done or could not be done. Indeed, one could 
imagine a diagnostic system that has a physics-based 
model of the nominal operation of a system and physics-
based models of several fault modes. When the sensor data 
fails to match the nominal model, the system would 
simulate several candidate failure modes in parallel, and 
compare the simulated data from each failure mode with 
the sensor data. A match would result in a diagnosis. 
However, employing this approach to diagnostics may not 
be the most efficient way to accomplish diagnostics. One 
could also imagine a physics-based model augmented with 
if-then rules coded in a conventional programming 
language to perform diagnostics. Such a system would be 
considered a hybrid of a physics-based model and a very 
simple expert system. 

The second empty entry in Table 1 is for AI-model-
based prognostics for which no specific references are 
cited here. Again, one could of course imagine a rule-based 
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Figure 1: Taxonomy of ISHM algorithms. Examples of each of the four types are shown at the bottom of the figure. 

 
Table 1: An example method for each pair of ISHM problem (columns) and algorithm type (rows)
Fault detection Diagnostics Prognostics 
sics-based System Theory  Damage propagation models 

odel-based Expert systems Finite state machines  
ventional numerical Linear regression Logistic regression Kalman filters 
hine learning Clustering Decision trees Neural networks 



expert system being used for prognostics. For example, 
such a system might employ a set of rules that specify that 
when certain sensor values first exceed a particular set of 
thresholds, a component has a given amount of remaining 
useful life. One could argue that rule-based systems are 
found in fuzzy logic systems. However, most of the fuzzy 
logic systems that are used for prognostics are 
encapsulated in a learning paradigm so that the overall 
system looks more like a machine learning system than an 
expert system. 

Certainly, the work for which ample references are 
available in AI for prognostics—the subject of this 
symposium and of this survey—is in the domain of 
machine-learning. 

This survey also includes hybrid methods that combine 
the machine learning approaches with one or more of the 
other approaches. For all methods, we are interested in the 
full spectrum of technology readiness levels, from basic 
research to deployed systems. 

The next three sections are each devoted to one of the 
AI-related approaches described above. Since many 
systems use a combination of these approaches, they could 
fit into more than one of these sections. We have chosen, 
however, to include each system in the one section in 
which we feel it best fits.  

Most ISHM systems devote a large amount of effort to 
pre-processing the data using various algorithms including 
signal processing algorithms in order to extract the features 
that can be used for fault detection, diagnostics, and 
prognostics. While pre-processing is extremely important 
to the success of an ISHM system, it is not the focus of this 
study. 

We previously published a survey of data-driven 
prognostics in 2005 (Schwabacher, 2005). The present 
paper briefly summarizes that survey paper, and adds new 
work that has been published in the past two years. It also 
focuses more on work that uses the AI approach. Other 
recent survey papers have focused on the application of 
prognostics and other parts of ISHM to particular 
applications, such as heating, ventilation, and air 
conditioning (Katipamula & Brambley, 2005a; Katipamula 
& Brambley, 2005b), electronics (Vichare & Pecht, 2006), 
manufacturing (Goh et al., 2006), and wheeled mobile 
robots (Luo et al., 2005). Patterson-Hine, et al. (2005) 
presented a survey of diagnostic techniques for ISHM.  

Data-Driven Prognostics 
One of the most popular machine-learning approaches to 
prognostics is to use artificial neural networks to model the 
system (Bonissone & Goebel, 2002; Byington et al., 
2004b; Byington et al., 2004c; Byington et al., 2003; 
Chinnam & Baruah, 2003; Chinnam & Mohan, 2002; 
Gebraeel et al., 2004; Goebel et al., 2007; Kallappa & 
Hailu, 2005; Khawaja et al., 2005; Kozlowski et al., 2001; 
Lavretsky & Chidambaram, 2002; Lee, 1996; Naipei et al., 
2003; Roemer et al., 2005a; Shao & Nezu, 2000; Sharda, 
1994; Stone & Jamshidid, 2005; Studer & Masulli, 1996; 

Watson & Byington, 2005; Weigend & Gershenfeld, 1993; 
Werbos, 1988). Artificial neural networks are a type of 
(typically non-linear) model that establishes a set of 
interconnected functional relationships between input 
stimuli and desired output where the parameters of the 
functional relationship need to be adjusted for optimal 
performance. This adjustment is typically accomplished by 
exposing the network to a set of examples, observing the 
response of the network, and readjusting the parameters to 
minimize the error. Several techniques can be employed to 
adjust (or “train”) these parameters, including a range of 
gradient descent techniques and optimization techniques 
(Bishop, 1995). 

Another machine-learning approach is anomaly 
detection algorithms (also known as novelty detection or 
outlier detection algorithms). These algorithms learn a 
model of the nominal behavior of the system, and then 
notice when new sensor data fail to match the model, 
indicating an anomaly that could be a failure precursor 
(Bock et al., 2006; Clifton, 2006; Volponi, 2005). Other 
machine-learning techniques used for prognostics include 
reinforcement learning (Bock et al., 2005; Kalgren & 
Byington, 2005), classification (Watson & Byington, 
2005), clustering (Byington et al., 2003), and Bayesian 
methods (Amin et al., 2005; Gebraeel, 2006). 

Data mining algorithms seek to discover hidden patterns 
in large data sets (Hand & Smyth, 2000). Some authors 
have addressed the use of data mining algorithms to 
assemble and process the data needed to train data-driven 
prognostic algorithms (Reichard et al., 2005b; Sandborn et 
al., 2005). 

Another popular AI technique that is used for 
prognostics is fuzzy logic (Amin et al., 2005; Bonissone & 
Goebel, 2002; Byington et al., 2004b; Byington et al., 
2004c; Byington et al., 2003; Chinnam & Baruah, 2003; 
Frelicot, 1996; Kozlowski et al., 2001; Studer & Masulli, 
1996; Volponi, 2005). Fuzzy logic provides a language 
(with syntax and local semantics) into which one can 
translate qualitative knowledge about the problem to be 
solved. In particular, fuzzy logic allows the use of 
linguistic variables to model dynamic systems. These 
variables take fuzzy values that are characterized by a 
sentence and a membership function. The meaning of a 
linguistic variable may be interpreted as an elastic 
constraint on its value. These constraints are propagated by 
fuzzy inference operations. The resulting reasoning 
mechanism has powerful interpolation properties that in 
turn give fuzzy logic a remarkable robustness with respect 
to variations in the system's parameters, disturbances, etc.  

When applied to prognostics, fuzzy logic is typically 
applied in conjunction with a machine learning method, 
and is used to deal with some of the uncertainty that all 
prognostics estimates face. Indeed, uncertainty 
representation and management is at the core of 
performing successful prognostics. Long-term prediction 
of the time to failure entails large-grain uncertainty that 
must be represented effectively and managed efficiently. 
For example, as more information about past damage 



propagation and about future use becomes available, means 
must be devised to narrow the uncertainty bounds. 
Prognostic performance metrics should take the width of 
the uncertainty bounds into account. Khawaja et al (2005) 
introduced a confidence prediction neural network that 
employs confidence distribution nodes based on Parzen 
estimates to represent uncertainty. The learning algorithm 
is implemented as a lazy or Q-learning routine that 
improves uncertainty of online prognostics estimates over 
time. Alternative techniques for dealing with uncertainty 
include Dempster-Shafer theory (Goebel et al., 2006; 
Kallappa & Hailu, 2005), or using a Bayesian framework 
with relevance vector machines combined with particle 
filters (Saha et al., 2007). In another effort to reduce 
uncertainty, the concept of prognostic fusion has been 
introduced (Goebel and Eklund, 2007; Xue et al., 2007). 
Here, similar to multiple classifier fusion, the output from 
several different prognostic algorithms is fused such that 
the resulting output is more accurate and has tighter 
uncertainty bounds than on average the output of any 
individual algorithm alone. 

It is not uncommon to find that researchers have been 
trying to extend tools commonly found in diagnostics to 
prognostics. For example, Przytula and Choi (2007) 
suggest the use of a Bayesian Belief Net (BBN) for 
prognostics where the past and future usage need to be 
discretized and inference on remaining life can be 
accomplished within the framework of BBNs. 

In a similar vein, case-based reasoning (and its variants 
such as instance-based reasoning), an important tool in the 
domain of diagnostics, has been proposed for use in a 
diagnostic setting. Saxena et al. (2005) propose the use of 
time history traces as cases that can be used to perform 
prognosis. Xue et al. (2007) propose an instance-based 
model that they test out on aircraft engine date. In contrast 
to Saxena, the particular local models proposed here are 
not based on individual models that consider the track 
history of a specific engine nor are they based on a global 
model that would consider the collective track history of 
all the engines. Instead, the authors use local fuzzy models 
that are based on clusters of peers where a peer is 
described by similar instances with comparable operational 
characteristics and performance. A collection of competing 
instances is generated that are evaluated with respect to 
their performance in light of the currently available data. 
The models are refined using evolutionary search, and the 
best one is selected after a finite number of iterations. The 
best model at the end of the evolutionary process is used at 
run time to estimate remaining useful life. 

Some of the conventional numerical techniques used for 
data-driven prognostics include wavelets (Wang & 
Vachtsevanos, 2001; Chinnam & Mohan, 2002; Roemer et 
al., 2005a; Sheldon et al., 2007), Kalman filters (Byington 
et al., 2004b; Byington et al., 2004c), particle filters 
(Orchard et al., 2005; Saha et al., 2007), regression (Brown 
et al., 2006; Goebel et al., 2006; Veaux et al., 1998), 
demodulation (Roemer & Byington, 2007; Sheldon et al., 
2007), and statistical methods (Byington et al., 2004a; 

Kallappa & Hailu, 2005; Watson et al., 2004). Hernandez 
& Gebraeel (2006) combined a life usage model with a 
data-driven technique by using sensor data to automatically 
update the life usage model. 

Another area where prognostics intersect with artificial 
intelligence techniques is in the area of post-prognostic 
decision support. Challenges arise from the large amount 
of different information pieces upon which a decision 
maker has to act. Conflicting information from on-board 
and off-board ISHM modules, seemingly contradictory and 
changing requirements from operations as well as 
maintenance for a multitude of different systems within 
strict time constraints make operational decision-making a 
difficult undertaking. Post-prognostic decision support will 
enable the user to make optimal decisions based on his 
expression of rigorous trade-offs between different 
prognostic and external information sources. This can be  
accomplished through guided evaluation of different 
optimal decision alternatives under operational boundary 
conditions using user-specific and interactive 
collaboration. Iyer et al. (2006) present some preliminary 
results of the use of such a decision support tool. Tang et al 
(2007) describe a control reconfiguration that is based on 
prognostic information. Short-term objectives and long-
term objectives are dealt with in separate reasoners which 
are optimized to simultaneously accomplish several 
different goals. 

Some authors have collected laboratory data to be used 
for data-driven prognostics, but have not yet applied any 
algorithms to the data (Kalgren et al., 2007; Nanduri et al., 
2007). Some data repositories are being made publicly 
available which can be used to baseline different data-
driven algorithms (NASA Ames Research Center, 2007) 

Prognostic Architectures 
Several authors have proposed architectures for health 
management that include fault detection, diagnostics, and 
prognostics, and that can use both AI methods and 
conventional methods (Beshears & Butler, 2005; Bock et 
al., 2005; Brotherton et al., 2005; Byington et al., 2005; 
Byington et al., 2004a; Kalgren et al., 2006; Reichard et 
al., 2005a). BEAM (Beacon-based Exception Analysis for 
Multimissions) is a system developed at JPL that has nine 
components that use nine different approaches to fault 
detection, including supervised learning, unsupervised 
learning, and physics-based models (Mackey et al., 2000). 
BEAM has been tested on various space applications, 
including using historical data from the Space Shuttle Main 
Engine (Park et al., 2002). 

Applications of Prognostics 
Automated prognostics has been applied to several 
different types of engineered systems, including actuators 
(Byington et al., 2004b; Byington et al., 2004c; Watson & 
Byington, 2005), aerospace structures (Roemer et al., 



2005a), aircraft engines (Kallappa & Hailu, 2005; Volponi, 
2005),  batteries (Kozlowski et al., 2001), bearings 
(Gebraeel, 2006; Roemer & Byington, 2007; Sheldon et 
al., 2007), clutch systems (Watson et al., 2004), cracks in 
rotating machinery (Orchard et al., 2005), electronics 
(Brown et al., 2005; Brown et al., 2006; Byington et al., 
2005; Hernandez & Gebraeel, 2006; Kalgren & Byington, 
2005; Kalgren et al., 2007; Nanduri et al., 2007; Sandborn 
et al., 2005; Vichare & Pecht, 2006), gas turbines 
(Byington et al., 2004a; Clifton, 2006; Roemer et al., 
2006), hydraulic pumps and motors (Amin et al., 2005; 
Byington et al., 2003), military aircraft turbofan oil 
systems (Bock et al., 2006), semiconductor manufacturing 
(Stone & Jamshidid, 2005), heating, ventilation, and air 
conditioning (Katipamula & Brambley, 2005a; Katipamula 
& Brambley, 2005b), wheeled mobile robots (Luo et al., 
2005), and Unmanned Aerial Vehicle (UAV) propulsion 
(Brotherton et al., 2005). Some authors tested their systems 
on more than one application. Khawaja et al. (2005) tested 
their system on a Navy chiller and a helicopter gearbox. 
Ginart et al. (2006) applied their system to power 
electronics and electric machinery. 

The Joint Strike Fighter (JSF) aircraft is currently under 
development (JSF, 2007). It will be used by the U.S. Air 
Force, Navy, and Marines, and by certain U.S. allies. The 
current plan for it is to have a Prognostics and Health 
Management (PHM) system that provides fault detection 
and isolation for every major system and subsystem on the 
aircraft, and prognostics for selected components. PHM is 
a key element in the justification for the choice of a single-
engine aircraft and it is intended to both improve safety 
and reduce maintenance costs. It will use model-based, 
rule-based, and data-driven approaches. The proposed 
architecture includes an off-board PHM system (OBPHM), 
which will use data mining techniques. Recent publications 
in the area of prognostics for the JSF include (Bock et al., 
2005; Hess et al., 2005). 

Conclusion 
In our 2005 survey, we concluded that prognostics is 
extremely difficult, and noted that although much research 
had been done in the area, we were not aware of any 
deployed prognostic systems that take advantage of 
measured characteristics of the systems being monitored 
(but there are of course deployed life usage models). In the 
two years since then, we have been encouraged to see that 
more researchers have gotten to the point of building 
prototype systems that make predictions of remaining 
useful life, such as (Gebraeel, 2006; Amin et al., 2005). 
Other researches have built prototype systems that estimate 
the current level of degradation on a numerical scale, 
without making the final step of predicting the remaining 
useful life (Brown et al., 2006; Byington et al., 2003). 
However, we are still not aware of any deployed 
prognostic system, i.e., systems at a high technology 
readiness level (TRL 7-9). Some of the systems reviewed 
here are proposed architectures that have not yet been built 

(Beshears & Butler, 2005; Brotherton et al., 2005; 
Byington et al., 2005; Kalgren et al., 2006; Reichard et al., 
2005a), some are systems that have been tested using 
laboratory data (Kalgren et al., 2007; Kozlowski et al., 
2001; Nanduri et al., 2007; Roemer & Byington, 2007; 
Sheldon et al., 2007), and some are systems that have been 
tested using simulated data (Kallappa & Hailu, 2005; 
Watson et al., 2004). Simulations and laboratory tests offer 
the opportunity to simulate or induce faults that have never 
occurred in flight. Using real flight data, however, forces 
researchers to address all of the nuances that occur in real 
flight, such as noise and unexpected signals from unrelated 
subsystems. Prognostics of complex engineered systems 
remains an area in which much more research and 
development is needed. AI and related techniques can offer 
an important part of the solution, in conjunction with more 
conventional methods. 

One of the biggest challenges for AI-based prognostics 
and for the rest of ISHM is verification and validation 
(V&V). The complexity of AI systems makes them very 
difficult to verify and validate before deployment. AI-
based V&V may offer the potential to help solve this 
problem. Some research has been done in using the AI 
approach to verifying diagnostics models (Pecheur et al., 
2000). 

Another possible area for future AI research is the 
question of what to do after detecting a failure precursor. 
The research in AI planning and scheduling could be very 
relevant to planning maintenance actions or replanning the 
mission. Some research has been done in automatically 
planning the recovery actions to take after diagnosing a 
failure (Muscettola et al., 1998). 
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