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Mining Framework
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SAX was invented by Eamonn Keogh and 
Jessica Lin, 2002

Multivariate symbolic sequences.

Multivariate continuous sequences.



Pair wise Similarity Measure
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� Solves a convex and quadratic optimization problem. 
� Can appropriately introduce a mixture of kernels in the convex cost function.
� Enables using non-linear kernel functions to learn complex separating planes.
� Results a model that can be used to classify new examples.

For more information, please see 

B. Schölkopf, A. Smola, R. Williamson, 
and P. L. Bartlett. New support vector 
algorithms. Neural Computation, 12, 
2000, 1207-1245. 
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Optimization problem
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One class SVMs training algorithms require solving the quadratic problem

Dual form

Linear equality 
constraint

Bounds on design 
variables

Control parameter

: Lagrange multipliers of the primal QP problemα



Anomaly scores

Datapoints with            will 
be the support vectors

Value of h: degree of anomalousness

Sign of h: if negative – outlier
if positive - normal

Indicator
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Decision boundary is determined only by margin and non-margin support 

vectors obtained by solving the QP problem



Experiment
Simulation data

Type 1 – (Missing event) Flaps were not 
extended to normal full deployment at 
landing.

Type 2 - (Extra event) Landing gear was 
retracted after being deployed on final 
approach.

Type 3 – (Out of order event) Gear deployed 
before initial flaps below flaps limit. 

Type 4 – (Continuous anomaly) High bank 
angles or rate of descent below 1,000 ft.
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Case study: FOQA anomaly detection

• The traditional methods cannot detect 

and monitor these anomalous activities 

that may have occurred simultaneously  

and are heterogeneous in nature.
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Conclusion

What can we summarize ?

1. Support flights safety experts
2. Schedule maintenance

Application

.… anomaly detection on multivariate 
mixed attributes where sequences 
may influence the system 
dynamics which is reflected on 
the continuous data streams. 

Performs

.. High detection rate on most 
operationally significant 
anomalies in fleet wide 
analysis on large datasets

.. Discover some “unknown 
unknowns”

Highlights



Thank you 

• Contact and feedback:

– Santanu Das

Santanu.Das−1@nasa.gov

• More resources on Dashlink website: 

https://c3.ndc.nasa.gov/dl/topic/multiple-kernel-learning-based-

heterogeneous-algorithm-2/

• Acknowledgement to Robert Lawrence, Dr. Irv

Statler and Dr. Kanishka Bhaduri for insightful 

discussions and suggestions during this research.


