Approximations to Optimal Alarm Systems for Anomaly Detection

Rodney A. Martin, Ph.D.
NASA Ames Research Center
October 30, 2008
Background

- State of the art involves setting a threshold (“redline”) based upon physics of failure
 - Butas et al. (J-2X engine health & status monitoring)
 - James et al. (Prognostic assessment component of BEAM)
 - Gorinevsky, Mah & Timuçin (Early detection of SRM failures via Kalman filter residual monitoring)
- No provision for false alarm mitigation!

- Pending paper:
 - Revised title will be “A State-Space Approach to Approximating Optimal Level-Crossing Predictions for Linear Gaussian Processes.”

![Failure-based thresholds graph](image)
Motivation

- “Anomaly Detection” Problem
 - Some recently developed algorithms use thresholds not based on physical limits
 - Functional distinction must be made between design and failure thresholds

- Often resistance to maturing more advanced data-driven techniques, with some notable exceptions
- With optimal alarm, these concerns are addressing by incorporating legacy techniques and potentially more advanced data-driven techniques
Introduction to Optimal Alarm Systems

- Optimal Alarm Systems
 - Based upon level-crossing event defined over a fixed prediction horizon
 - Level-crossing event can be constructed as logical expression
 - Incorporates predicted future process values
 - Design alarm system that elicits fewest false alarms for fixed detection probability (Neyman-Pearson Lemma) and trade-off with prediction horizon using area under the ROC curve.

- Novelty/Advantages/Disadvantages
 ✓ Uses recursive Kalman filtering
 ✓ Design criteria can be written as function of:
 ✓ Model parameters
 ✓ Level-crossing based failure threshold
 ✓ Adds predictive capability, and precise definition of optimality for alarms
 ✓ Independent alarm system design and critical event definition
 ❖ Must introduce approximations
 ❖ Currently applicable to stationary linear systems driven by Gaussian noise
 ❖ Not applicable to multivariate time series or able to exploit cross-correlations

ROC Curve for Illustrative Example: L=16, d = 5

- Redline
- Predictive
- Optimal
- Minimax
Current ARMD/Aviation Safety IVHM Impact

• Work considered for PART IVHM milestone 3.3.4 (Prognosis data mining: Forecasting technology that has the ability to predict at least 3 known anomalies in real or emulated data of large, fleet-wide heterogeneous data sources)
 – Advance the SOA in technologies related to predicting future anomalies
 – Baseline BEAM, which moves from "redlines" to prognostic assessment
 – Predictions provide confidence bounds on the exceedance of redlines, using theoretically and statistically sound approaches.
 – Cited to enjoy favorable false alarm rates, but no explicit theoretical allowance for false alarm mitigation

• Proposed Milestones
 ❖ FY09: Theoretical investigation of approximations, comparative analysis using varied architectures and techniques
 ❖ FY10: Improved approximations for alarm system design and improved machine learning techniques for model development
 ❖ FY11: Extend optimal alarm systems to allow for introduction of particle filtering
 ✔ FY12: PART Milestone Demonstration
Potential extensions to ARMD/Aviation Safety/IRAC

- Natural extension to conducting joint IVHM research w/IRAC into mitigation via modified aircraft operation (IVHM Milestone 3.4, Mitigation)

- Leverage previous research
 - Incorporate information at the time of alarm or other critical event into control actions via conditional expectation
 - Optimal control theory can be used via optimal reference modification
 - Optimal reference modification references:

- New questions and ideas:
 - Control and convex optimization: study of convexity of alarm regions and feasibility for use as a constraint in this paradigm
 - Controllability and observability are sufficient conditions for construction of an optimal alarm system based upon an LG model...but what if we don’t have an LG model?
 - What happens when the system is nearing margins of stability due to degraded performance?
 - Incorporate adapted dynamics into a new model to revise the failure propagation rate
 - Enforce response time of controller dynamics as constraints on prediction horizon