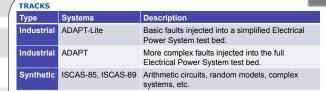
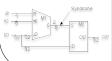
The Diagnostic Competition 2009 (DXC'09) https://

dashlink.arc.nasa.gov/topic/diagnostic-challenge-competition/

Organized By

NASA Ames Research Center & Palo Alto Research Center


The Competition


OBJECTIVES

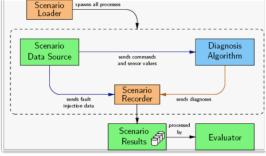
- · Accelerate research in theories, principles, and computational techniques for monitoring
- Encourage the development of software platforms that promise more rapid, accessible. and effective maturation of diagnostic technologies
- · Provide a forum that can be utilized by algorithm developers to test and validate their
- Systematically evaluate different diagnostic technologies and produce comparable performance assessment
- Create a launching pad for future competitions with expanded scope

- Different diagnostic technologies will be run under same conditions with same data
- The competition is expected to consist of multiple tracks (with independent winners)
- Each track will define one or more diagnostic challenges with some using real hardware test bed data and others using benchmark data
- Metrics, defined by the organizers, will then be computed based on the diagnostic output
- A panel of judges consisting of experts in the field will then determine the final winner(s)

Systems

ISCAS-85 & ISCAS-89 Benchmarks

widely accepted ISCAS-85 & ISCAS-89 introduced at the International Symposium of Circuits and Systems. The circuits are extracted from industrial designs but can be viewed as random logic circuits with no significant high-level structure.



ADAPT - Advanced Diagnosis & Prognosis Test Bed

ADAPT is a facility developed at NASA Ames for testing diagnostic tools and algorithms against a standardized test bed. The facility's hardware consists of an electrical power system with components for power generation, storage, and distribution. Over a hundred sensors report the status of the system. The test bed provides a controlled environment to inject failures, either through software or hardware, in a repeatable manner. It also provides an API for integration of diagnostic technologies.

Evaluation

DXC Evaluation Framework

Evaluation Metrics

Name	Description			
Per System Metrics				
False Positive Rate	Spurious faults rate			
False Negative Rate	Missed faults rate			
Detection Accuracy	Correctness of the detection			
Isolation Accuracy	Correctness of the isolation			
Per Scenario Metrics				
Fault Detection Time	Time for detection a fault			
Fault Isolation Time	Time for minimizing the diagnostic entropy			
CPU Load	CPU time spent			
Memory Load	Memory allocated			

Dates & People

KEY DATES

Date	Venue	Description
Sep 2008	DX 08	Formal Announcement
Oct 2008	Online	Submission of Intent to Participate
Nov 2008	Online	Full Release of Information
Mar 2009	Online	Deadline for Submission of Diagnostic Algorithms
Apr-May 2009	NASA Ames	Evaluation of Diagnostic Algorithms
Jun 2009	DX 09	Presenting Results and Winners of Challenge

ORGANIZERS				
Name	Designation	Affiliation		
Johan de Kleer	Co-Chair	PARC		
Sriram Narasimhan	Co-Chair	UC Santa Cruz @ NASA Ames		
Tolga Kurtoglu	Organizing Committee Chair	MCT @ NASA Ames		
Alexander Feldman	Organizing Committee Member	Delft University		
Scott Poll	Organizing Committee Member	NASA Ames		
Lukas Kuhn	Organizing Committee Member	PARC		
David Garcia	Organizing Committee Member	Perot Systems @ NASA Ames		

