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1 Introduction

The Diagnostic Challenge Competition (DCC) will be the first of a series of international competitions to
be hosted yearly at the International Workshop on Principles of Diagnosis (DX). The objectives of the
competition are to accelerate research in theories, principles, and computational techniques for monitoring
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and diagnosis of complex systems, to encourage the development of software platforms that promise more
rapid, accessible, and effective maturation of diagnostic technologies, and to provide a forum that can be
utilized by algorithm developers to test and validate their technologies on real-world physical systems.

The overall goal of this competition is to systematically evaluate different diagnostic technologies and to
produce comparable performance assessments for different diagnostic methods. To achieve this goal, a num-
ber of standardized specifications are introduced, including a physical testbed, a standardized fault catalog,
a library of modular and standardized test scenarios, a test protocol, a common method for processing diag-
nostic data, and common metrics. Different diagnostic technologies will be run under the same conditions
and using the same data.

The competition will be announced at the 19’th International Workshop on Principles of Diagnosis (DX-
08) and hosted for the first time in 2009.

1.1 Participation Procedures

Those who wish to compete must submit an ”intent to participate” form, and must make their tool available
to competition organizers in an approved format (See Section 3.1). Both prerequisites must be met by
the deadlines specified in Table 1. Registration and competition information will be posted on DASHlink,
https://dashlink.arc.nasa.gov/topic/diagnostic-challenge-competition/.

Upon request, participants may be given access to the evaluation code that will be used to calculate their
tool’s performance. If the tool is accepted for the competition, the participants will be notified accordingly.
At least one author per prize-winning tool must come to the conference and discuss the system in person.
This will entail giving a short talk during the competition workshop and being ready to demonstrate the
system and answer questions during the demonstration session. The competition organizing committee
reserves the right to modify the rules of participation and disqualify any participants at their discretion.

1.2 Important Dates & Tentative Schedule

The tentative schedule of the competition is shown in Table. 1.

Date Venue Description
Sep 2008 DX’08 Formal announcement
Oct 2008 Submission deadline for intent to participate
Nov 2008 Full information release
Mar 2009 Deadline for submission of diagnostic algorithms
Jun 2009 DX’09 Present results and winners of challenge

Table 1: Important dates.

1.3 Chairs and Organizing Committee

Sriram Narasimhan from NASA Ames and Johan de Kleer from PARC will be co-chairs of DCC’09. Tolga
Kurtoglu from NASA Ames will be the organizing committee chair. Scott Poll and David Garcia from NASA
Ames and Lukas Kuhn from PARC are the other members of the organizing committee.

1.4 Acknowledgments

We extend our gratitude to Arjan van Gemund (Delft University of Technology), Gregory Provan (Univer-
sity College Cork), Peter Struss (Technical University Munich), the DX’09 organizers and many others for
valuable discussions, criticism and help.
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2 Competition Architecture

The first competition will start with two tracks (cf. Table 2). Each track will define one or more diagnostic
problems. Each diagnostic tool may compete in one or more tracks. There will be some incentives for the
winners in each track. (to be specified at a later date)

Identifier Name Tier Systems (See Table 3) Description
ind1 Industrial 1 ADAPT-Lite Basic faults injected into a sim-

plified EPS testbed.
ind2 Industrial 2 ADAPT More complex faults injected into

the full ADAPT system.
synt Synthetic 1 ISCAS-85, ISCAS-89 Arithmetic circuits, random

models, complex systems, etc.

Table 2: Tracks in the diagnostic competition. A party providing a system will be referred to as vendor in
the remainder of this document.

For the first competition we will have Advanced Diagnostics and Prognostics Testbed (ADAPT) in the
industrial track and ISCAS-85 and ISCAS-89 in the synthetic track. Each vendor will provide data and/or
a simulator for the artifacts he submits. If the data provided is generated from simulation, the simulation
software may or may not be open to the participants.

The industrial track has two tiers and the synthetic track has one. The first tier in the industrial track will
involve a simplistic version of the system and will include basic faulty behavior (single fault, no transients,
static loads, limited testbed configuration). This tier is intended to encourage competitors interested in
participating with minimal effort. The second tier will include complexities such as multiple faults, data
transients, multiple loads, and an extended system configuration. The synthetic track will involve select
benchmark problems from ISCAS-85, and ISCAS-89. The judges will decide the winner for each track/tier
using the evaluation results and the metric scores computed for each algorithm. The final rules will be posted
on the competition web page. There will be a presentation of the results and winners’ prizes during the
conference. Final scores for each entry will also be posted on the competition web page after the competition.
An artifact is what the participants are asked to model and diagnose. The Electrical Power System (EPS)
implemented by ADAPT is the sole artifact in the industrial track for our first competition. The 74181 ALU
is another artifact. An artifact consists of interconnected components, and each component is an instance
of a given component type (e.g., a relay, a valve, an and-gate, a wire).

2.1 XML System Descriptions

XML system descriptions will be provided to describe the functioning of the artifacts. Beyond being for-
matted in XML, they are not formalized. This is to prevent biasing the modeling choices. We recognize the
fact that any artifact description (e.g., graphical, programmatic, etc.) contains certain biasing towards a
modeling approach, but the above applies not only to the description of the artifact but to the artifact itself.

Almost any diagnostic technology today uses some kind of graph-like structure for describing the system
structure, hence we will provide graphs of the physical connectivity of the system. This graph is not
annotated: for example there is no directional information, etc. The latter kind of data can be extracted
from the repository of documents describing the system, if available.

This is an example XML system description:

<system>
<systemName>polycell</systemName>
<description>
A familiar circuit. Contact: dekleer@parc.com. Publications: [dW87]

</description>
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Name Description
System Name Unique identifier
Artifact Description Brief text summary of the system and pointers to docu-

mentation, forums, mailing lists, and other resources
Component Catalog List of component identifiers, with reference to component

type and commands that affect the component
Interconnection Diagram Each node of the graph contains a component identi-

fier/instance identifier pair, and there is an edge for any
two (physically) connected components

Table 3: System description data.

<components>
<component>

<name>A</name>
<type>PROBE</type>

</component>
<component>

<name>M1</name>
<type>MUL</type>

</component>
<component>

<name>A1</name>
<type>ADD</type>

</component>
</components>

<connections>
<connection>
<c1>A</c1>
<c1>M1</c1>

</connection>
<connection>
<c1>M1</c1>
<c1>A1</c1>

</connection>
</connections>

</system>

2.2 XML Component Type Descriptions

Next we have to provide specifications for all component types mentioned in the system description.
Consider the “CircuitBreaker” ADAPT component type (referenced, for example, by the component with
unique ID CB180):

<componentType xsi:type="circuitBreaker">
<name>CircuitBreaker4Amp</name>
<description>
4 Amp CircuitBreaker. http://adapt.nasa.gov/ Contact: scott.poll@nasa.gov.

</description>
<modesRef>CircuitBreaker</modesRef>
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Name Description
Component Type Name Unique identifier
Component Description Brief summary of the component type and point-

ers to documentation, forums, and other resources
Modes Reference to a mode group (Table 5)
Component-Specific Info Examples: sensor min/max, load wattage, circuit

breaker rating

Table 4: Component description data.

<rating>4</rating>
</componentType>

Or an “ACVoltageSensor” ADAPT component type:

<componentType xsi:type="sensor">
<name>ACVoltageSensor</name>
<description>AC voltage sensor.</description>
<modesRef>ScalarSensor</modesRef>
<datatype>double</datatype>
<engUnits>VAC</engUnits>
<rangeMin>0</rangeMin>
<rangeMax>150</rangeMax>

</componentType>

As a part of a more abstract example we can consider a description of an and-gate, part of a digital circuit:

<componentType>
<name>AND2</name>
<description>
AND gate.

</description>
<modesRef>AndGate</modesRef>

</componentType>

2.3 XML Mode Catalog

Component operating modes are organized by Mode Groups. More than one component can refer to the
same group. The Mode Group format is described in Table 5.

Name Description
Modes Group Name Unique identifier for each mode class
Mode Names Names of the possible modes
Mode Descriptions Text descriptions

Table 5: Mode group description.

Consider the allowable modes for the CircuitBreaker component from the preceding section:

<modeClass>
<name>CircuitBreaker</name>
<mode>
<name>Nominal</name>
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<description>
Transmits current and voltage. Trips when current exceeds threshold.

</description>
</mode>
<mode>
<name>Tripped</name>
<description>
Breaks the circuit and must be manually reset.

</description>
</mode>
<mode xsi:type="faultMode">
<name>FailedOpen</name>
<description>
Trips even though current is below threshold.

</description>
</mode>

</modeClass>

2.4 Communications Regarding System Descriptions

Participants may ask vendors questions about the artifacts and their components. The vendor will decide
whether or not to answer these questions. The only condition is that all the dialog will become available to
all the participants in the competition via the competition website.

3 Software Architecture for Running DCC

The DCC effort includes the development of a software framework for running and evaluating diagnostic
algorithms. The framework has been designed with the following considerations in mind: (1) the over-
head of interfacing existing diagnostic algorithms should be reduced by supplying minimalistic APIs, (2)
inter-platform portability should be provided by allowing clients to interface C++ and Java API or by im-
plementing a simple ASCII based TCP messaging protocol, and (3) the framework should be realistic by
reflecting industrial practices and needs.

To facilitate algorithm development and testing, we will provide binary packages for Windows and Linux.
All Java and C++ source code will be made available. Our framework will contain a very simple diagnostic
algorithm and a few examples.

3.1 Software Components

Figure 1 shows an overview of the DCC software components and the primary information flows. As we have
already mentioned, all communication is ASCII based and all the modules communicate via TCP ports by
using a simple message-based protocol which we describe in more detail below.
Next, we provide a brief description of each software component.

Scenario Loader: Executes the Scenario Data Source, Recorder, and Diagnostic Algorithm. Ensures sys-
tem stability and clean-up upon scenario completion. This is the main entry point for performing a
diagnostic experiment.

Scenario Data Source: Provides scenario data from previously recorded datasets. The provenance of the
data (whether hardware or simulation) depends on the system in question. A scenario dataset contains
sensor readings, commands1, and fault injection information (to be sent exclusively to the scenario
recorder).

1Note that the majority of classical MBD literature does not discern commands from observations.
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Figure 1: Architecture overview of the DCC software framework.

The Scenario Data Source will publish data following a wall-clock schedule specified by timestamps in
the scenario files.

Scenario Recorder: Receives fault injection data and diagnosis data, and compiles it into a Scenario
Results File. The results file contains a number of time-series which will be described below. These
time-series are used by the Evaluation module for scoring and can be supplied to the participants for
detailed analysis of the algorithmic performance.

The Scenario Recorder is the main timing authority, i.e., it timestamps each message upon arrival
before recording it to the Scenario Results File.

Diagnostic Algorithm: A Windows or Linux executable (or Java bytecode in an executable .jar file)
contained in a single directory, requiring no compilation, installation, or external libraries except the
sockets API and its dependencies. Receives sensor data and command data, performs diagnosis, and
sends diagnosis results back.

Evaluator: Takes Scenario Results File and applies metrics to evaluate Diagnosis Algorithm performance.
The metrics and evaluation procedures are detailed in Sec. 4.

3.2 Messaging Datatype Specifications

This section defines the data types for the messages that will be sent to and from the Diagnosis Algorithm.
The DCC API and TCP/IP interfaces conform to these data types. Documentation for these interfaces can
be found in Appendix A and Appendix B.

DiagnosisData
+timeStamp
+candidateSet: Set <Candidate>
+detectionSignal: boolean
+isolationSignal: boolean
+notes: string
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Candidate
+faults: Map<componentIds->componentStates>
+weight: double

SensorData
+timeStamp
+sensorValues: Map<sensorIds->sensorValues>

CommandData
+timeStamp
+actuatorID: string
+command: string

ErrorData
+timeStamp
+message: string

3.3 Diagnostic Session Overview

The diagnostic algorithms will be tested against a number of diagnostic scenarios. From the viewpoint
of the scenario player, a diagnostic scenario is a series of observations (sensor readings, commands) A =
{α1, α2, . . . , αn}, taken within an interval of time. The vendor produces A for each scenario with the help of
a physical test-bed, a simulator or other method for creating observations (it is not necessary for all available
sensor values to be reported to the diagnostic engine). The aim of the vendors is to provide scenarios with
varying levels of difficulty. The diagnostic scenarios will be kept secret from the participants, and only a
small number of diagnostic scenarios will be provided for testing.

The first competition will have non-intermittent faults only (this may be reconsidered in the follow-up
events). Note that multiple faults can be injected at different times.

We will analyze the progression of one diagnostic scenario. Each diagnostic session defines some standard
key points and intervals which are best illustrated by Fig. 2.
Figure 2 splits the diagnostic session in three important time intervals: ∆startup, ∆injection, and ∆shutdown.
During the first interval ∆startup, the diagnostic algorithm is given time to initialize, read data files, etc.
Though sensor observations may be available during ∆startup, no faults will be injected at this time. Fault
injection and diagnosis is to take place during ∆injection. Finally, to stimulate good programming practices,
the algorithms will be given some time to gracefully terminate during ∆shutdown. After this time, live
diagnostic processes will be killed and the system will be recycled for the next diagnostic experiment.

Below are some notable points for the example diagnostic scenario from Fig. 2:

tinj – A fault is injected at this time;

tfd – The diagnostic algorithm has detected a fault;

tffi – The diagnostic algorithm has isolated a fault for the first time;

tfir – The diagnostic algorithm has retracted its isolation assumption, expecting more faults;

tlfi – This is the last fault isolation during ∆injection.

A sequence diagram of an example diagnostic session is shown in Fig. 3.
At the end of the diagnostic session the scenario player has collected the following time-series and (actual
and hypothesized) fault data to be used in the metrics computation:
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Figure 2: Key time points, intervals, and signals.

Tinj – Fault injection signal;

Tfd – Fault detection signal;

ω? – An actual fault set (once all faults are injected).

Ω = {ω1, ω2, . . . , ωn} – A (possibly empty) set of candidate diagnoses.

In addition to that the scenario player should collect the following diagnostic engine session performance
data (to be used for the computation of performance metrics):

Td – Computation time in ms at each step;

Md – Amount of allocated memory in bytes at each step.

4 Metrics end Evaluation Engine

We have defined a number of metrics for evaluating the diagnostic engines. Each metric is a real-valued
function. Table 6 summarizes the eight metrics we plan to use for evaluating the results from a diagnostic
competition.
Table 7 provides a summary of the notation used throughout this section.
We will next describe each metric in more detail.

4.1 “Per System Description” Metrics

False Positives Rate (Mfp): The metric below penalizes diagnostic engines which announce spurious
faults. The false positive rate is defined as:

Mfp =
∑

s∈S mfp(s)
|S|

(1)
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Figure 3: Session sequence diagram.

where for each scenario s the “false positive” function mfp(s) is defined as:

mfp(s) =
{

1, if tfd < tinj

0, otherwise (2)

Some applications (e.g., aborting a mission and endangering human life based on false positive) do not
tolerate false positives. Other applications (e.g., run additional slightly more expensive tests upon suspicion)
would tolerate occasional false positives.

False Negatives Rate (Mfn): The metric defined next measures the ratio of missed faults by a diagnostic
engine.

Mfn =

∑
s∈Sf

mfn(s)

|Sf |
(3)

where for each scenario s the “false negative” function mfn(s) is defined as:

mfn(s) =
{

1, if tfd =∞
0, otherwise (4)

Detection Accuracy (Mda): The detection accuracy is the ratio of number of correctly classified cases
to the total number of cases. It is defined as:

Mda = 1−
∑

s∈S mfp(s) +mfn(s)
|S|

(5)

Isolation Accuracy (Mia): Let us denote the injected fault as ω∗. The isolation accuracy is then defined
as:

Mia =
∑

c∈COMPS

∑
ω∈Ωmia(c, ω, ω∗)
|Ω| · |COMPS|

(6)
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Symbol Name Description
“Per System Description” Metrics

Mfp False Positives Rate Spurious faults rate
Mfn False Negatives Rate Missed faults rate
Mda Detection Accuracy Correctness of the detection
Mia Isolation Accuracy Correctness of the isolation

“Per Scenario” Metrics
Mfd Fault Detection Time Time for detecting a fault
Mfi Fault Isolation Time Time for minimizing the diagnostic entropy
Mcpu CPU Load CPU time spent
Mmem Memory Load Memory allocated

Table 6: Metrics summary.

Symbol Description

S The set of scenarios for a given system description.
Sn The set of nominal scenarios for a given system description.
Sf The set of faulty scenarios for a given system description.
tfd The time when the fault detection signal has been asserted for the first

time.
tinj The time when the first fault has been injected.
tfi The time when the fault isolation signal has been asserted for the last

time.
ω∗ The injected fault.
Ω The last set of faults returned by the diagnostic engine.
(ω, c) The actual health state of a component c in a diagnosis ω.
ts The CPU time during startup.
Td A vector of CPU times spent during each time step in a scenario.
Md A vector of maximal memory allocation sizes during each time step in

a scenario.

Table 7: Metrics notation summary.

where mia(c, ω, ω∗) is defined as:

mia(c, ω, ω∗) =
{

0, (ω, c) 6= (ω∗, c)
1, otherwise (7)

and (ω, c) is the state of component c in diagnosis ω. Note that Mia is different from Mda as Mda considers
only if the component c is healthy/faulty (i.e., a Boolean state of c), while Mia allows multiple health/fault
states. An example case study including the calculation of all the aforemetioned per system description
metrics will later be posted on the competition website.

4.2 “Per Scenario” Metrics

Fault Detection Time (Mfd): The next metric quantifies the reaction time for a diagnostic engine in
detecting an anomaly.

Mfd = tfd (8)

where tfd is the first time when the fault detection signal has been asserted.

11



Fault Isolation Time (Mfi): The next metric measures the time for isolating a fault. In many applications
this metric is less important than the diagnostic accuracy, but it is important in sequential diagnosis, probing,
etc.

Mfi = tfi (9)

where tfi is the first instance of time when the latest persistent fault isolation signal has been raised.

CPU Load (Mcpu): This is the average CPU load during the experiment:

Mcpu = ts +
∑
q∈Td

q (10)

In the above formula Ts is the startup time of the diagnostic engine and Td is a vector with the actual CPU
time spent by the diagnostic algorithm at every time step in the diagnostic session.

Memory Load (Mmem): This is the maximal memory load during the experiment:

Mmem = max
m∈Md

m (11)

In the above formula Md is a vector with the maximum memory size at every step in the diagnostic session.

4.3 Running and Scoring the Diagnostic Engines

The weighted sum of all the metrics for each scenario in each system description will be used for the ranking
of the diagnostic algorithms. The weights are vendor and application dependent, will be determined by the
panel of DCC jurors, and will be announced in advance of the competition.

The jury has the right to disqualify any engine which exploits the scoring mechanism to its advantage
(e.g., it is possible to cheaply get all points for CPU and memory performance without producing any
diagnoses).

5 Future Work

After DCC’09 we aim at broadening the competition by including problems from probing (determination of
“best” measurement), Model-Based Testing (ATPG-related problems), intermittent faults, planning prob-
lems related to diagnosis and recovery, and others.

A BNF Specification of Messaging

Below is the BNF specification for the TCP/IP messages to and from the Diagnostic Algorithm. It is
provided for informational purposes only and subject to change without notification up until the DXC full
information release date.

/*
* Messages from Scenario Data Source -> Diagnostic Algorithm
*/

<message_list> ::= <message_list> <message> |
<message>

;
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<message> ::= <command_message> |
<sensor_message> |
<error_message>

;

<command_message> ::= COMMAND_MESSAGE INTEGER /* timestamp */
<actuator_id> ’=’ <string_value> ’;’

;

<sensor_message> ::= SENSOR_MESSAGE INTEGER /* timestamp */
’{’ <sensor_reading_list> ’}’ ’;’

;

<error_message> ::= ERROR_MESSAGE STRING ’;’
;

<sensor_reading_list> ::= <sensor_reading_list> ’,’ <sensor_reading> |
<sensor_reading> |
/* empty */

;

<sensor_reading> ::= <sensor_id> ’=’ <value>
;

<actuator_id> ::= STRING
;

<sensor_id> ::= STRING
;

<value> ::= <bool_value> |
<real_value> |
<integer_value> |
<string_value>

;

<bool_value> ::= BOOL
;

<real_value> ::= DOUBLE
;

<integer_value> ::= INTEGER
;

<string_value> ::= STRING
;

/*
* Diagnostic Algorithm -> Scenario Recorder
*/
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<diagnosis_message> ::= DIAGNOSIS_MESSAGE
DETECTION_SIGNAL ’=’ BOOL ’,’
ISOLATION_SIGNAL ’=’ BOOL ’,’
’{’ <candidate_list> ’}’ ’,’
’{’ <weight_list> ’}’ ’,’
NOTES ’=’ STRING /* misc notes */

;

<candidate_list> ::= <candidate> |
<candidate_list> ’,’ <candidate> |
/* empty */

;

<candidate> ::= ’{’ <fault_list> ’}’
;

<fault_list> ::= <fault> |
<fault_list> ’,’ <fault> |
/* empty */

;

<fault> ::= <component_id> ’=’ <mode_id>
;

<weight_list> ::= <weight> |
<weight_list> ’,’ <weight> |
/* empty */

;

<component_id> ::= STRING
;

<mode_id> ::= STRING
;

<weight> ::= REAL
;

B DCC C++ and Java Diagnostic Algorithm API

The framework implementation has been well under way at the time of releasing the first revision of this
document. Upon completion of the API, the current Appendix is going to be updated with the actual
documentation generated from the source code and a new release of the document is to be released.
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