
Towards Intelligent Distributed
Computing: Cell-Oriented Computing

Ahmad Karawash, Hamid Mcheick and Mohamed Dbouk

Abstract Distributed computing systems are of huge importance in a number of
recently established and future functions in computer science. For example, they are
vital to banking applications, communication of electronic systems, air traffic
control, manufacturing automation, biomedical operation works, space monitoring
systems and robotics information systems. As the nature of computing comes to be
increasingly directed towards intelligence and autonomy, intelligent computations
will be the key for all future applications. Intelligent distributed computing will
become the base for the growth of an innovative generation of intelligent distributed
systems. Nowadays, research centres require the development of architectures of
intelligent and collaborated systems; these systems must be capable of solving
problems by themselves to save processing time and reduce costs. Building an
intelligent style of distributed computing that controls the whole distributed system
requires communications that must be based on a completely consistent system.
The model of the ideal system to be adopted in building an intelligent distributed
computing structure is the human body system, specifically the body’s cells. As an
artificial and virtual simulation of the high degree of intelligence that controls the
body’s cells, this chapter proposes a Cell-Oriented Computing model as a solution
to accomplish the desired Intelligent Distributed Computing system.

Keywords Distributed computing � Intelligence � Cell theory

A. Karawash (&) � H. Mcheick
Department of Computer Science, University of Quebec at Chicoutimi (UQAC),
555 Boulevard de l’Université Chicoutimi, Chicoutimi G7H2B1, Canada
e-mail: ahmad.karawash1@uqac.ca

H. Mcheick
e-mail: hamid_mcheick@uqac.ca

A. Karawash � M. Dbouk
Department of Computer Science, Ecole Doctorale des Sciences et de Technologie (EDST),
Université Libanaise, Hadath-Beirut, Lebanon
e-mail: mdbouk@ul.edu.lb

© Springer International Publishing Switzerland 2015
A.T. Azar and S. Vaidyanathan (eds.), Computational Intelligence Applications
in Modeling and Control, Studies in Computational Intelligence 575,
DOI 10.1007/978-3-319-11017-2_2

27

1 Introduction

Distributed computing (DC) is the consequence of permanent learning, the
improvement of experience and the progress of computing knowledge. It offers
advantages in its potential for improving availability and reliability through repli-
cation; performance through parallelism; sharing and interoperability through
interconnection; and flexibility and scalability through modularity. It aims to identify
the distributable components and their mutual interactions that together fulfil the
system’s requirements. In order to achieve DC goals, the client/server model is
undoubtedly the most consolidated and regularly applied paradigm. With the
extensive deployment of DC, the management, interoperability and integration of
these systems have become challenging problems. Investigators have researched and
developed important technologies to cope with these problems. One of the results of
the continuous evolution of DC in the last decade is the Service-Oriented Computing
(SOC) paradigm, which offers an evolution of the internet-standards based DC
model, an evolution in processes of architecting, design and implementation, as well
as in deploying e-business and integration solutions. The other key result is the
Mobile Agent Computing (MAC) paradigm, which provides an alternative com-
puting paradigm to the traditional client-server paradigm. Moreover, the latest DC
technology is expressed by cloud computing, which evolved from grid computing
and provides on-demand resource provisioning. Grid computing connects disparate
computers to form one large infrastructure, harnessing unused resources.

Trends in the future of the Web require building intelligence into DC; conse-
quently the goal of future research is the Intelligent Distributed Computing (IDC).
The emergent field of IDC focuses on the development of a new generation of
intelligent distributed systems. IDC covers a combination of methods and tech-
niques derived from classical artificial intelligence, computational intelligence and
multi-agent systems. The field of DC predicts the development of methods and
technology to build systems that are composed of collaborating components.

Building a smart distributed model that controls the whole of Web communi-
cations needs to be based on an extremely consistent system. The ideal system that
can be adopted in building IDC is the model of the human body system, specifically
the body cell. Based on the high degree of intelligence that controls body cells, this
chapter proposes a Cell-Oriented Computing (COC) methodology. COC is an
artificial simulation of human cell functions that is proposed as a solution to achieve
the desired intelligent distributed computing.

All parts of the human body are made up of cells. There is no such thing as a
typical cell. Our bodies are composed of different kinds of cells. The diverse types of
cells have different, specialized jobs to do. Cell computing simulates the human cell
functions in the distributed systems environment. In fact, there are approximately 10
trillion cells in the human body [1]. Cells are the basic structural and functional units
of the human body. Each cell has a specialized function and works in collaboration
with other cells to perform a job. The cell acts like a mini computer. It is composed of
a decision centre (the nucleus), the protein industry (mitochondria), store of human

28 A. Karawash et al.

traits (genes) and a defence system (cell membrane). All cells in the body are
connected to a giant computer called Intelligence that controls their tasks. The
human intelligence works like a super-computer. Indeed, the human cell network is
millions of times larger than the communication networks of the whole Web. Each
cell has a great capacity to receive and transmit information to every cell in the body;
each remembers the past for several generations, stores all the impressions of past
and present human lives in its data banks and also evaluates and records possibilities
for the future. It has an internal defence system to face intruders when an external
attack occurs.

This chapter is arranged as follows: Sect. 2 discusses previous work on intel-
ligent distributed computing, Sect. 3 introduces the Cell computing methodology,
Sect. 4 discusses some definitions relating to the proposed model, Sect. 5 shows the
Cell components, Sect. 6 describes the strategy of Cell-oriented computing, Sect. 7
discusses the characteristics of the proposed computing type and finally, Sect. 8
summarizes the over-arching ideas of the chapter.

2 Background

Nowadays, most computing procedures are directed towards intelligence and
towards decrease processing time and cost, while the main research question today
is about how to add intelligence to distributed computing. Service computing and
software agent computing are the two dominant paradigms in distributed computing
work within the area of Service-Oriented Architecture (SOA). Although the service
computing paradigm constituted a revolution in World Wide Web, it is still
regarded as a non-autonomous pattern. With the support of mobile agent’s com-
puting aptitude, the service computing model may be improved to be more efficient
and dynamically prototyped. Furthermore, in the area of SOA, cloud and grid
computing have become more popular paradigms and their role in developing
distributed computing toward autonomy and intelligence is important. This section
discusses several previous researches dealing with distributed computing intelli-
gence from the service, agent, cloud and grid computing perspectives.

2.1 Service Paradigm

Service-oriented computing is the most cross-disciplinary paradigm for distributed
computing that is changing the way software applications are designed, architected,
delivered and consumed [2]. The paradigm is moving towards intelligent Web
services, WSMO (Web Service Modelling Ontology) and towards semantically
enhanced information processing empowered by logical inference that will even-
tually allow for the development of high quality techniques for the automated
discovery, composition and execution of services on the Web [3]. On the other

Towards Intelligent Distributed Computing … 29

hand, Suwanapong et al. [4] propose the Intelligent Web Service (IWS) system as a
declarative approach to the construction of semantic Web applications. IWS utilizes
a uniform representation of ontology axioms, ontology definitions and instances, as
well as application constraints and rules in machine-processable form. In order to
improve single service functions and meet complex business needs, Li et al. [5]
introduced composite semantic Web services based on an agent. To discover better
Web service, Rajendran and Balasubramanie [6] proposed an agent-based archi-
tecture that respected QoS constraints. To improve Web service composition, Sun
et al. [7] proposed a context-aware Web service composition framework that was
agent-based. Their framework brings context awareness and agent-based technol-
ogy into the execution of Web service composition, thus improving the quality of
service composition, while at the same time providing a more suitable service
composition to users. Another approach towards better Web service composition
was made by Tong et al. [8], who proposed a formal service agent model,
DPAWSC, which integrates Web service and software agent technologies into one
cohesive entity. DPAWSC is based on the distributed decision making of the
autonomous service agents and addresses the distributed nature of Web service
composition. From a different perspective, Yang [9] proposed a cloud information
agent system with Web service techniques, one of the relevant results of which is
the energy-saving multi-agent system.

2.2 Mobile Agent Paradigm

The mobile agent paradigm provides many benefits in developments of distributed
application, while at the same time introducing new requirements for security issues
in these systems [10]. To achieve a collaborative environment, Liu and Chen [11]
proposed a role-based mobile agent architecture, in which agents are grouped into a
specific group according to their roles. Furthermore, through agent communication,
mobile agents of an agent group can collaborate with each other to contribute to
group tasks. In accordance with this agent-oriented programming approach, Tele-
com Italia launched the Java Agent Development Framework (JADE), which
supports the following features: (a) a completely distributed situation as an exis-
tential platform for the agents, (b) a very effective asynchronous message transport
protocol that provides location transparency, (c) implementation of white and
yellow pages, providing easy search mechanisms for agents and their services, (d)
easy, but still effective agent lifecycle management while monitoring the unique-
ness of agent’s ID, (e) support for agent mobility that provides a mechanism for
agent code transfer to other platforms (by storing the agent’s state) and (f) a flexible
core that allows programmers to add new features [12]. Elammari and Issa [13]
propose using Model Driven Architecture for developing Multi-Agent Systems
so as to increase their flexibility and avoid any previously imposed restrictions.

30 A. Karawash et al.

Brazier et al. [14] proposed a compositional multi-agent method, DESIRE, as a
methodological perspective, which was based on the software engineering princi-
ples of process and knowledge abstraction, compositionality, reuse, specification
and verification.

2.3 Cloud Paradigm

Cloud computing has recently emerged as a compel paradigm for managing and
delivering services over the Internet. It has rapidly modified the information tech-
nology scene and eventually made the goals of utility computing into a reality [15].
In order to provide distributed IT resources and services to users based on context-
aware information, Jang et al. designed a context model based on the ontology of
mobile cloud computing [16]. In the same area of smart cloud research, Haase et al.
[17] discussed intelligent information management in enterprise clouds and intro-
duced eCloudManager ontology in order to describe concepts and relationships in
enterprise cloud management . In an equivalent manner, the work of Block et al.
[18] establishes an alignment between ontologies in a cloud computing architecture.
However, this work did not rely on reasoning among the distributed ontologies. By
contrast, a distributed reasoning architecture, DRAGO, has been designed, based on
local semantics [19, 20]. It uses a distributed description logics outline [21] to
represent multiple semantically connected ontologies. Unlike DRAGO, the model
introduced in Schlicht and Stuckenschmidt [22, 23] creates a distributed, compre-
hensive and terminating algorithm that demonstrates consistency of logical termi-
nologies and promises that the overall semantics will be preserved.

2.4 Grid Paradigm

The aim of grid computing is to enable coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organizations [24]. Shi et al. pro-
posed an intelligent grid computing architecture for transient stable constrains that
reassign a potential evaluation of future smart grids. In their architecture, a model of
generalized computing nodes with an ‘able person should do more work’ feature is
introduced and installed to make full use of each node [25]. GridStat has been
introduced as a middleware layer capable of keeping pace with the data collection
capabilities of the equipment present in the power grid [26]. Liang and Rodrigues
[27] proposed a service-oriented middleware for smart grids. Their solution is
capable of tackling issues related to heterogeneous services, which are most
common in the smart grid domain.

Towards Intelligent Distributed Computing … 31

3 Cell Theory

Cell theory is the modular representation of human cell characteristics from the
perspective of computer science. It is a flexible and scalable virtual processing unit
that treats complex distributed computing smartly by organized and accurate
decisions. A cell is a software object that:

• Is sited within a command/execution environment;
• Holds the following compulsory properties:

– Collaborative: works in groups to finish a job;
– Inheritance: serves clients according to their environmental profile if there is

no specification in their requests;
– Shares business processes: each cell business process represents a group of

business processes of components with the same goal. However, every cell is
open for collaboration with all other cells and can keep up best process
quality via dynamic changes in process nodes. Thus, the cell has great
processing power since all cells’ business processes can be shared by one
cell to serve the client;

– Uniqueness: each cell deals with a specific type of job;
– Reactive: cell senses modification in the environment and acts in accordance

with those changes;
– Autonomous: has control over its own actions;
– Optimal: keeps to best functional and non-functional requirements;
– Federative: each cell has its own information resources;
– Self-error covering: monitors changes in the computing environment and

applies improvements when errors are detected;
– Dynamic decision making: applies decision alteration based on the change of

context;
– Learning: acclimatizes in accordance with previous experience;

In order to introduce the proposed cell theory, we discuss a new software design
style: the cell architecture and then show how cell computing works. For simplicity,
we identify the infrastructure of the Cell-Oriented Architecture (COA) and the
functionality of Cell-Oriented Computing (COC) model with definability in the
mathematical model.

3.1 Cell-Oriented Architecture

COA is a novel software design principle targeted generally at Web resource
computing devices. The architecture allows users to engage in smart collaborations
among devices during Web resource invocations. COA is based on a centre of
intelligence, which collects cells in order to exchange data between participants and
manage organized standard communication methods to obtain information.

32 A. Karawash et al.

The architecture is designed to achieve smart Web goals and overcome the
limitations of existing Web infrastructures. The cell architecture presented here is
device, network and provider independent. This means that COA works across
most computing machines and ensures a novel methodology of computing.

COA is designed to cater to smart Web requirements and aims to achieve at last
an ambient, intelligent Web environment. Cells in COA are internally secured,
sustain autonomic analysis of communications and are able to support the mech-
anism of collaborations through the following requirements:

[R1] Management and Communication: to establish local and remote sessions, the
underlying infrastructure provides the ability to find any other cells in the
network and then to establish a session with that cell.

[R2] Context-based Security: to enable secure interactions in the communication
spaces among all connected participants.

[R3] Analysis: supporting analysis of data exchange among cells, plus encom-
passing the interior analysis of cell process infrastructure.

[R4] Validation: to verify cell components and ensure consistent process combi-
nations among cells.

[R5] Output Calculation: to evaluate the suitable output results with less cost and
minimal use of resources.

[R6] Trait Maintenance: to avoid and deal spontaneously with all sources of
weakness in cells’ communications.

To realize these goals, we developed a complete command-execute architecture,
designed from the ground up to work over existing Web standards and traditional
networks. COA makes it possible to merge the material and digital worlds by
incorporating physical and computing entities into smart spaces. Put simply, it
facilitates the steps to achieving a pervasive form of computing. Figure 1 outlines
the components of this COA, its functionality and the operation of the underlying
protocols.

COA is composed of three main components: Cell Commander, Executive Cell
and Cell Feeding Source. Cell theory is introduced to provide intelligence in dis-
tributed computing; however, it combines client/server and peer-to-peer models at
once. This is a client/server representation because we have a client component (the

Commander
Cell

Feeding Source

Feeding Source

.

.

Executive
Cells

Client Cell
Provider

Cell

Https/XML

Https/XML

Fig. 1 Cell-oriented architecture

Towards Intelligent Distributed Computing … 33

Commander Cell) invoking a server component (the Executer Cells) to solve a
problem. On the other hand, virtually, it is an illustration of peer-to-peer applica-
tions because we have two types of cells communicating with each other.

Commander (Client) Cell: This is a commander component that looks for a
procedural module to accomplish a required function. The commander can be an
application, another service, or some other type of software module that needs the
service. The Commander Cell works like a brain cell in the human body; it demands
a solution for a definite problem and suggests a general view of the solution to be
realized by a specific type of executive cells.

Executive (Provider) Cell: This is an intelligence centre consisting of a definite
number of cells that are ready to serve commanders. Each cell is characterized by
uniqueness of goal, self-governance, federated role, internal security and interop-
erability. Cell business processes, which are called genes, are built directly by the
cell designer or else can be transformed by any type of service business processes.
Genes use the ontology of an abstract business process and link different processes
with the same purpose into a specific node. Similar to the gene in human body, each
artificial gene serves a specific type of job in a different style and no other gene is
capable of doing the same job. Based on gene characteristics, an Executive Cell is
unique in delivering a specific type of service; for example, if a client cell requires a
booking room service, there is only one, replicated, Executive book room cell to be
invoked. Cell theory maintains diversity and competition between companies to
serve clients; however, it hides complexity issues when selecting or composing
Web processes. Solutions are prepared in an autonomic manner without any
interference from the client; that is why there is no complex discovery and selection
of cells or processes of composition or intervention.

Feeding Source: It represents a pre-built component that forms a base for
building genes of Executive Cells. The Feeding Source can be a Web service pro-
vider, a company, or any third party that is capable to supplying a process design.
A cell’s internal system can use a pre-designed business process or demand the
building of new designs by process designers, making it suitable to be a cell gene.

4 Structure of COA Components

The abovementioned main components of COA are discussed in detail in this
section.

4.1 Commander Cell Structure

The Commander Cell represents the client side in COA and is the main requester of
an output. This section discusses the structure of cells from the client side (Fig. 2).

Command Cell Manager (CCM): the client cell’s ‘head’ that is responsible of
any external collaboration with the Executive Cells. It receives a client as a list of

34 A. Karawash et al.

four components: proposed cell input, interval of output of Executive Cell result,
proposed Cell process’s general design (if available) and the required cell process
quality. Some of these components can be inherited from the client cell’s envi-
ronment. The Command Cell Manager monitors the context profile of the Com-
mander Cell via the profile manager. It also manages the access to the client cell by
specified rules of internal security.

Internal Security System (ISS): this is protection software that is responsible of
giving tickets for Executive Cells to access the Command Cell manager. It depends
mainly on the analysis of the outer cell’s context profile to ascertain whether it can
collaborate with the client Cell.

Process Quality Manager (PQM): software used by the Commander Cell to
select the required quality of the cell process. For example, the client may need to
specify some qualities such as performance, cost, response time, etc. If there is no
selection of specific qualities, these qualities are inherited from the environment’s
qualities (as an employee may inherit a quality from his company).

Cell Process Designer (CPD): a graphical design interface that is used to build a
general cell process flow graph or to select an option from the available process
graphs. If there is no graph design or selection, the Executive Cell has the right to
pick a suitable gene based on the commander profile.

Logic Process Analyser (LPA): after designing a general proposition for the
executive gene design via the process designer, the job of the logic process analyser
is to transform the graph design into a logical command to be sent to the executive
side.

Context Profile Manager (CPM): this tool is responsible for collecting infor-
mation about the Commander Cell profile, such as place, type of machine, user
properties, etc. Since the commander profile is dynamic, several users may use the
same Commander Cell; the profile information is instantaneously provided when
needed.

Profile Core (PC): this storage is performed by a special database that stores
information about the Commander Cell profile and allows the Executive Cell to tell
whether there are several users utilizing the same Commander Cell.

CCM

CPM ISS

PQM

LPA

CPD

PC

Fig. 2 Structure of client cell

Towards Intelligent Distributed Computing … 35

4.2 Cell Provider Infrastructure

The cell provider represents the supplier side in the COA, which is responsible for
building suitable outputs for client invocation. This section discusses the structure
of the cell provider shown in Fig. 3.

Management and Control Centre (MCC): Smart software work like an agent
and is considered to be similar to the brain of the COA, in which it orchestrates the
whole computing infrastructure. It is composed of a virtual processing unit that
controls all the internal and external connections. So, Executive Cells are supported
and managed according to well-defined cell level agreements. It monitors every
connection among cells and prepares all decisions, such as update requirement,
communication logics, maintenance facilities, access control management, reposi-
tory stores and backups, etc. The COA management and control centre have stable
jobs inside the cell provider. However, it cannot respond to an external job from
other cells without security permission from the internal security system. Since one
of the main principles of cell theory is availability, the management and control
centre is replicated in order that collaboration can be carried out to serve cells. Each
cell uses its Decision System to communicate with the COA management centre.

Testing and Validation System (TVS): the cell testing and validation system
describes the testing of cells during the process composition phase of the Executive
Cell. This will ensure that new or altered cells are fit for purpose (utility) and fit for
use (warranty). Process validation is a vital point within cell theory and has often
been the unseen underlying cause of what were in the past seen as inefficient cell

ECB

CRA
MCC

CC

ISS

CFS

OFC

GU

TMS

TVS

PAC

CB

CPA
CP

M

GC
M

GMM

IM

PM

GM

PA
BR

C

PAR

QR

GR

AS

Fig. 3 Structure of cell provider

36 A. Karawash et al.

management processes. If cells are not tested and validated sufficiently, then their
introduction into the operational environment will bring problems such as loops,
deadlocks, errors, etc. In a previous book chapter [28] we have discussed a new
model of how to validate the business processes of Web service; the concepts of the
same validation method can be used to validate the cell business process (Gene).
Cell validation and testing’s goal means that the delivery of activities adds value in
an agreed and expected manner.

Cell Traits Maintenance System (TMS): the challenge is to make cell tech-
nology work in a way that meets customer expectations of quality, such as avail-
ability, reliability, etc., while still offering Executive Cells the flexibility needed to
adapt quickly to changes. Qualities of genes are stored in a QoG repository and the
maintenance system has permission to access and monitor these qualities. QoG can
be considered a combination of QoS with a set of Web services if the source of the
cell is a Web service provider. QoG parameters are increasingly important as cell
networks become interconnected and larger numbers of operators and providers
interact to deliver business processes to Executive Cells.

Process Analyser Core (PAC): since a cell process map can be composed of a
set of other components’ business processes, there should be a method for selecting
the best direction for the cell map. In addition to the context of environment
dependency, cell theory uses a deep quality of service analysis to define a best
process. This type of process map analysis is summarized by building a quality of
process data warehouse to monitor changes in process map nodes. Every process
component invokes a set of subcomponents, similar to sub services in a service
model, in which all these subcomponents are categorized in groups according to
goals. The process analyser core applies analysis to these subcomponents and
communicates with the cell broker to achieve the best map of the Executive Cell
process. In addition to analysing Executive Cell process, the process analyser core
also analyses and maps the invocations from the Commander Cells. This type of
dual analysis results in an organized store of collaboration data without the need to
re-analyse connections and without major data problems.

Output Fabrication Centre (OFC): depending on the specific output goal,
options may be available for executive cells to communicate with the output fab-
rication centre. This centre provides more control over the building of the executive
cell process to serve the client cell. Based on the results of the process analyser core
and the consequences of the test and validation system, executive cells, specifically
their output builder systems, collaborate with the output fabrication centre to return
a suitable output to the commander cell.

Cell Profile Manager (CPM): traditional styles of client/server communications
suffer from a weakness: the dominance of the provider. Indeed, a server can request
information about client profiles for security purposes, but power is limited in the
converse direction. In cell theory, every ell must have a profile to contact other
cells. The cell profile manager works to build suitable profiles for executive cells to
help in constructing a trusted cell instruction tunnel.

Cell Federation System (CFS): the system coordinates sharing and exchange of
information which is organized by the cells, describing common structure and

Towards Intelligent Distributed Computing … 37

behaviour. The prototype emphasizes the controlled sharing and exchange of
information among autonomous components by communicating via commands.
The cell federation system ensures the highest possible autonomy for the different
cooperating components.

Cells’ Core (CC): this forms a centre of Executive Cells. A cell is an item of
smart software that performs a specific type of job. All cells have the same structure
but different processes. Thus, the executive cell is considered an example of a
general cell component. Each executive cell is composed of seven sub-components,
as follows: decision system, gene store system, trait maintenance system, output
builder system, process validation system, process analyser system, defence system
and gene storage. These sub-components communicate with the cell provider
subsystems to carry out their jobs.

Inheritance Manager (IM): a client is observed as a Commander Cell so as to
decide which types of cell inherit the properties of their environment. For example,
if the commander is a professor, they can be seen a part of a university environment
by Executive Cells. A commander can be part of more than one environment; and
results in a hybrid profile of context. The inheritance manager maps the commander
cell to its suitable environment. To serve a commander, the executive cell uses a
quality of process compatible with its surroundings or follows the commander’s
requirements to build a suitable process.

Cell Request Analyser (CRA): cell theory is based on the concept of collab-
oration to serve the client. However, every client has a different request, so a
computing component is needed to detect which cells will work in generating the
answer. In general, the job of the cell request analyser is to map the Commander
Cell to the appropriate Executer Cells to accomplish a job.

Cell Profile Analyser (CPA): this component is related to the security of cells.
One of the main concepts of cell theory is its context-based property. There are
sensors for profile context collecting information about the commander at the client
side. The cell profile analyser verifies the commander profile by a specific method
before allowing access to executer cells.

Internal Security System (ISS): since some commander cells can access sen-
sitive data, stringent protection must be provided from the server side. The available
security methods follow two types of protection: network and system protection. In
network protection, the data among nodes is encrypted to hide the content from
intruders. In system protection, a token (username and password), antivirus appli-
cation and firewall are used. Cell theory proposes a new type of protection which is
specific to the application itself. It is described as an internal system protection that
verifies the profile of the user by several methods before allowing access.

Cell Process Modelling (CPM): a procedure for mapping out what the Exec-
utive Cell process does, both in terms of what various applications are expected to
do and what the Commander Cells in the provider process are expected to do.

Enterprise Cell Bus (ECB): The enterprise cell bus is the interaction nerve core
for cells in cell-oriented architecture. It has the propensity to be a controller of all
relations, connecting to various types of middleware, repositories of metadata
definitions and interfaces for every kind of communication.

38 A. Karawash et al.

Cell Broker (CB): analytical software that monitors changes in cell processes
and evaluates quality of processes according to their modifications. The evaluation
of quality of process is similar to that of quality of service in the service model.
However, the new step can be summarized as the building of a data warehouse for
quality of process that permits an advance online process analysis.

QoG Repository (QR): a data warehouse for the quality of cell process. It
collects up-to-date information about process properties, such as performance,
reliability, cost, response time, etc. This repository has an OLAP feature that sup-
port an online process analysis.

COA Governance Unit (GU): the COA governance unit is a component of
overall IT governance and as such administers controls when it comes to policy,
process and metadata management.

Process Analysis Repository (PAR): a data warehouse of all cells’ process
connections. It stores information about cell processes in the shape of a network
graph, in which every sub unit of a process represents a node. The collected data
summarizes analytical measures such as centrality.

Gene Core Manager (GCM): software responsible of gene storage, backups
and archiving. It receives updates about business processes from sources and alters
the gene ontology, backs up the gene when errors occur and archives unused genes.

Gene Mediator (GM): the problem of communication between the gene core
manager and the sources of business processes may be complex, so GM defines an
object that encapsulates how a set of objects interact. With the gene mediator,
communication between cells and their sources is encapsulated by a mediator
object. Business process sources and cells do not communicate directly, but instead
communicate through the mediation level, ensuring a consistent mapping of dif-
ferent business process types onto the gene infrastructure.

Gene Meta-Data Manager (GMM): genes are complex components that are
difficult to analyse, so for analysis and validation purposes, the gene meta-data
manger invokes gene meta-data from the gene repository and supplies gene core
data through this process.

Gene Repository (GR): ontologies are used as the data model throughout the
gene repository, meaning that all resource descriptions, as well as all data inter-
changed during executive cell usage, are based on ontologies. Ontologies have been
identified as the central enabling technology for the Semantic Web. The general use
of ontologies allows semantically-enhanced information processing as well as
support for interoperability. To facilitate the analysis of the gene map, meta-data
about each gene is also stored in the gene repository.

Backup and Recovery Control (BRC): this refers to the different strategies and
actions occupied in protecting cell repositories against data loss and reconstructing
the database after any kind of such loss.

Process Archiving (PA): the archiving process helps to remove the cell process
instances which have been completed and are no longer required by the business.
All cell process instances which are marked for archiving will be taken out from the
archive set database and archived to a location as configured by the administrator.

Towards Intelligent Distributed Computing … 39

The job of the process archiving component includes the process-, task- and
business log-related content from the archive database.

Archive Set (AS): a database for unused genes that is accessed and managed by
the process archiving component.

4.3 Cell Source

Cell source can be any kind of code that can be reused and follow specific com-
position rules. Generally, the first sources of cells are Web service business pro-
cesses (such as BPEL and OWL-S) or reusable code (Java, C# etc.). This section
discusses the structure of the sources that feed Executive Cells (Fig. 4).

Resource Code (RC): a store of cell sources, such as business processes or
reusable code. If the cell source is a Web service provider, then its business process
may be BPEL, OWL-S, or another. Further, the cell source may be a reusable
programming code for a combination of objects (in Java, C#, etc.).

Source Mediator (SM): transformer software that maps the process of a cell’s
source into a gene. The mediator’s job is similar to that of the BPEL parser in a
Web service provider, which maps BPEL code into a WSDL code. In COA, every
source business process is converted into OWL-S ontology. However, the obtained
OWL-S ontology has a special property: the extension of OWL-S’ business
process.

Gene Store (GS): a store that is composed by mapping the source business
process. This is an abstract of a source process in shape of an ontology, organized in
a structure compatible with the cell’s job.

5 Definitions and Notations

Definition 1 Let WðP;Q; TÞ be a finite nonempty set that represents Web infra-
structure, where: P ¼ fp1; p2; . . .; png represents the set of feeding sources of Web
applications, Q ¼ fq1; q2; . . .; qmg represents the set of consumers of Web sources
and T ¼ ft1; t2; . . .; tkg represents the set of tools that are used by Web providers to
serve Web customer, where n;m; k 2 IN.

SM RCGS

Fig. 4 Structure of cell source

40 A. Karawash et al.

Definition 2 Let set J ¼ fSz
m jm=jmis specific goal and jm 6¼ jng and set S ¼

fSz
m sm=si is structure of componentg.

As with most things in the business world, the size and scope of the business plan
depend on specific practice. A specific practice is the description of an activity that
is considered important in achieving the associated specific goal. Set J represents a
group of components, each of which supports a specific computing goal based on a
particular practice. However, the structure of the studied components is denoted by
set S.

Proposition 1 A set r ¼ fSn
i Li=ridenote a Cellg{T, is a finite and ordered set

such that Jri \ Jrj ¼ ; and Sri ¼ Srj , where i; j; n 2 IN.

In all other computing models, different components may perform similar jobs.
For example, two classes, in the object-oriented model, can utilize similar inputs
and return the same type of output but using different coding structures. Further-
more, in the discovery phase of service-oriented computing, service consumers
receive a set of services that do the same job before selecting which one of them to
invoke. The main advantage of Web service theory is the possibility of creating
value-added services by combining existing ones. Indeed, the variety involved in
serving Web customers is useful in that it gives several aid choices to each one of
them. However, this direction in computing failed since service customers found
themselves facing a complex service selection process. One of the main properties
of cell methodology is the avoidance of the ‘service selection’ problem. The cell is
developed to provide highly focused functionality for solving specific computing
problems. Every cell has its own functionality and goal to serve, so one cannot find
two different cells which support the same type of job. However, all cells are similar
in base and structure: they can sense, act, process data and communicate. That is to
say, regarding cell structure there is only one component to deal with, while in
function there are several internal components, each with a different computing
method and resource.

Definition 3 Let u be a property that expresses the collaboration relation such that
aub where a; b 2 r.

Business collaboration is increasingly taking place on smart phones, computers
and servers. Cells in COC are intelligent components that are capable of collecting
information, analysing results and taking decisions and identifying critical Web
business considerations in a collaborative environment.

Proposition 2 A collaboration relation u defined on the set r is transitive, in
which, if aub and buc ¼ [auc; where a; b; c 2 r.

Transitive structures are building blocks of more complex, cohesive structures,
such as response-cliques, which facilitate the construction of knowledge by con-
sensus [29]. The collaboration among cells follows a transitive mechanism to

Towards Intelligent Distributed Computing … 41

provide consistency. Transitivity among cells can be summarized by this example:
if we consider three cells X, Y, Z and if X collaborates with Y, Y collaborates with
Z, then indirectly X collaborates with Z.

Proposition 3 8ci 2 r and 8qe 2 Q, 9ri; rj; . . .; rn s.t.
S

i;jðriurjÞ ¼ [qe, where
i; j; e; n 2 IN.

COC’s goal is to be introduced to serving Web customers with minimal cost,
lower resource consumption and optimal results. For every customer request (te),
there exists a cell collaboration (

S
i;jðriurjÞ) to return the appropriate answer. Cell

collaboration is dynamic; results are produced without delay. Any future error in the
proposed results generated by COC is corrected by an automatic repairing
mechanism.

Definition 4 (cell subsystems)
An Executive Cell system is an ordered set C ¼ ðDS;GSS; TMS;

OBS;PVS;PAS;DFSÞ such that:
DS set builds and manages cell decisions
GSS set is responsible for cell process storage
TMS set monitors the cell’s characteristics
OBS set maintains best output results of cells
PVS set is responsible for cell process validation
PAS set analyses the cell’s business process
DFS set is responsible for cell security

Proposition 4 A relation between cell subsystems is managed according to a set of
mathematical mappings M (l; p; q; s; c; d; e; h; #) such that:

l : DFS ! DS

x ! lðxÞ ðF:1Þ

p : OBS ! DS

x ! pðxÞ ðF:2Þ

q : TMS ! OBS

x ! qðxÞ ðF:3Þ

s : PAS ! OBS

x ! sðxÞ ðF:4Þ

c : PVS ! OBS

x ! cðxÞ ðF:5Þ

42 A. Karawash et al.

d : GSS ! TMS

x ! dðxÞ ðF:6Þ

e : GSS ! PAS

x ! eðxÞ ðF:7Þ

h : GSS ! PVS

x ! hðxÞ ðF:8Þ

Theorem If q denotes a commander cell request and x denotes a cell gene, then:

l qð Þ � pðq d xð Þð Þ \ s e xð Þð Þ \ c h xð Þð Þ:

The management of a cell’s internal system is divided among its subsystems
according to a definite number of roles. In order to invoke a cell, a client request (q)
must pass the cell’s security system (F.1). After ensuring a secure cell invocation,
DS begins the response process. It demands building output by the OBS (F.2). OBS
output is based on a deep cell process analysis (F.4), a precise cell process vali-
dation (F.5) and assessing relevant cell characteristics (F.6). Tests (analysis and
validation) are applied to cell process storage through GSS (F.6–F.8).

6 Components of Executive Cell

The proposed executive cell in cell theory is composed of (Fig. 5): decision system
(DS), gene store system (GSS), trait maintenance system (TMS), output builder
system (OBS), process validation system (PVS), process analyser system (PAS),
defence system (DFS) and gene storage.

DS

PVS

TMS

OBS

PAS

GSS

DFS

Fig. 5 Components of
executive cell

Towards Intelligent Distributed Computing … 43

6.1 Decision System (DS)

The decision system is the brain of the Executive cell in COC. It is controlled by the
management and control centre and is responsible for taking decisions and directing
other components of the cell. Cell inputs are received by the DS which study the
client request and emit suitable outputs. Cell computing is characterized by two
levels of collaboration that are managed through DSs. The first collaboration level
is expressed by internal cooperation among cell subsystems, while the second level
of collaboration is applied among cells to build a complete answer for cell cus-
tomers. In the case of a customer request, the DS asks the defence system to verify
the customer identity and request before starting the answer process. If the customer
request is safe, DS sends the input to the OBS and waits for the answer. Sometimes,
one cell is not sufficient to serve a customer. In this case, the DS asks for collab-
oration from other cells to produce an answer.

6.2 Defence System (DFS)

Cell computing aims to correct the problems of the service model. One of the main
service-oriented computing problems is security. Security weakness is less of a
danger in the case of Web service, but currently most cloud services are public and
store sensitive data, so that any security fault may be fatal to some institutions. As a
way of obtaining strict computing resource protection, COC introduces internal cell
protection. As is well known, there are two main steps to protecting the Web. The
first step is network protection via several encryption methods. However, the
second step is characterized by server resources protection via user tokens and
security tools. The proposed COC security technique ensures protection against any
internal or external unauthorized access to a cell. In addition to network and system
protection, the cell defence system aims to introduce a double verification method.
This is a hidden type of cell protection that verifies, on one side, if a customer has
the right to invoke a cell, while it also checks, on the other side, if a customer’s
machine is capable of receiving an output from such a cell. COC aims to make the
distributed Web application as secure as possible.

6.3 Gene Store System (GSS)

There are several combinations of processes that return the same results in a dis-
tributed application. Some of these applications are Web services that are divided
into a set of groups, such that in each group all the applications can do the same
jobs. The problem for service theory is summed up by the question of how to select
the best service from an ocean of similar job services? COC has indeed found a

44 A. Karawash et al.

solution to the service selection problem. Simply put, why not transform all the
business processes into a new structure to be used by a novel model like COC? In
order to obtain a successful COC model, we need to build a suitable business
process (gene) for each cell. The first step in building cell genes is to transform the
service business processes and their combinations into a graph (or map) of abstract
business processes. The obtained graph has no abstract information about any
service business process. For example, if several services make a division job, then
all of their abstract business processes are linked to a division node of the gene
graph. Each cell uses a specific part of the obtained abstract graph and is known as a
cell business process or gene. The gene store system’s job is to store the genes and
classify them, shaped by logical rules in a database to be easily used by cell
subsystems.

6.4 Process Analyser System (PAS)

Changes allow companies to improve processes, to expand in new directions and to
remain up-to-date with the times and technology. A business process is a sequence
of steps performed for a given purpose. Business process analysis is the activity of
reviewing existing business practices and changing these practices so that they fit a
new and improved process. The role of PAS is to keep up-to-date analysis of the
cells’ business processes. A cell’s business process design is based on a compo-
sition of process combinations transformed from service business processes. In
order to return the best cell output, PAS must select the best plan from these
combinations. This job requires a permanent process design analysis. Since busi-
ness process combinations are transformed into a graph of abstract business pro-
cesses, the process design analysis is achieved by a multi-graph analysis. The multi-
graph analysis is discussed in detail in our book chapter [30].

6.5 Process Validation System (PVS)

The cell business process, in COC, is built on a dynamic composition of a group of
service business processes. If there are problems in one or more business appli-
cations that support a cell business process, then the consequences of disruption to
the cell process can be serious. For example, some process compositions may result
in infinite loops or deadlocks. The process validation system’s job is to monitor and
validate the changes in altered or new composition processes. The validation
technique used by PVS is described in our chapter [28]. This validation technique is
divided into two steps. First the business process is transformed into a graph. Then,
a depth first search is applied on the obtained graph to detect deadlock errors.

Towards Intelligent Distributed Computing … 45

6.6 Traits Maintenance System (TMS)

A cell business process is a dynamically coordinated set of collaborative and
transactional activities that deliver value to customers. Cell process is complex,
dynamic, automated and long running. One of the key characteristics of a good cell
business process is continuous improvement. These improvements ensure a con-
stant flow of ideal traits into the cell process. Cell computing is built upon achieving
a group of architectural traits such as: performance, reliability, availability and
security. These qualities require stable monitoring to maintain the supply of cus-
tomers. Cells in COC apply internal and external efforts to maintain best traits.
External efforts are achieved via cell collaboration, while internally the job is done
by TMS. Indeed, TMS analyses the quality of gene (QoG) of a cell; these are
combinations of the traditional quality of service (QoS) analysis. It uses a data
warehouse of QoG to accomplish this type of analysis. The service analysis based
on the QoS data warehouse is discussed in details in our book chapter [31].

6.7 Output Builder System (OBS)

Cells in COC are considered as intelligent modular applications that can be pub-
lished, located and invoked across the Web. They are intended to give the client
best results by composing their distributed business processes dynamically and
automatically based on specific rules. Based on the service model, companies only
implement their core business and outsource other application services over the
Internet. However, no single Web service can satisfy the functionality required by
the user; thus, companies try to combine services together in order to fulfil the
request. Indeed, companies face a major problem: Web service composition is still a
highly complex task and it is already beyond human capability to deal with the
whole process manually. Therefore, building composite Web services with an
automated or semi-automated tool is critical. As a solution to the service compo-
sition problem, cell theory proposes a cell that is capable of achieving an automated
composition of its business process. In sum, after analysing, validating and ensuring
the good characteristics of business process choices to be used by a cell by PAS,
PVS and TMS, OBS selects and executes the best process plan based on the user’s
request. The role of OBS is to apply a dynamic and autonomic composition of the
selected business processes of the collaborating cells.

7 Strategy of Cell Computing

Cell computing allows sharing of the process to reach a solution. This way of
computing results, indirectly, in a shared resources environment similar to that of
grid computing. Recursively, a client cell has access to all other executive cells as

46 A. Karawash et al.

they are running on one machine. The cell network is organized, secure, reliable,
scalable and dynamic. Cell computing strategy, as shown in Fig. 6, is based on five
main layers of computation: command layer, management layer, collaboration
layer, analysis layer and feeding layer.

Command Layer: The command layer consists of solutions designed to make
use of the smart selection of cells that can provide a specific service. It makes up the
initial step of the exchange in cell architecture. An important role of the command
layer is to allow for clear separation between available solutions and a logical
methodology in producing a solution based on the client’s command. The tradi-
tional Web service methodology gives clients the right to select one of the pre-
designed Web applications that will process their solution depending on several
qualities and a complex selection process. However, cell methodology has
improved the process by making clients give commands and creating the applica-
tion according to these commands. This approach enables a slew of new applica-
tions to be created that make use of the COA’s cooperative capabilities, without
requiring in-depth knowledge of application processes, communication protocols,
coding schemes or session management procedures; all these are handled by the
upper layers of the cell strategy. This enables modular interfaces to incorporate new
services via a set of commands composed of specifying inputs, output intervals,
QoG requirements and the user profile.

Input Output

Profile

QoG

Command

Management Centre

Security Decision

Analysis/ValidationOutput

Communication Collaboration

Feeding Mediation & Transform

Source

Command

Management

Collaboration

Analysis

Feeding

Fig. 6 Strategy of cell computing

Towards Intelligent Distributed Computing … 47

Management Layer: this layer provides configurable controlling and reporting
for client commands and server facilities at operational and services levels. It also
provides visibility across physical, virtual-based layers, making it possible to
govern the enforcement and migration of COA across the distributed enterprise.
The management layer of the cell-based architecture not only reduces deployment,
maintenance and operation costs but also allows for the provision of better per-
formance, scalability and reliability. Its agent-based capabilities provide for com-
prehensive management of all cell collaboration procedures. The management layer
controls the start-up and status of solutions, the logging of maintenance events, the
generation and processing of Cells, the supervision of security and the management
of application failures. The management layer provides centralized solution control
and monitoring, displaying the real-time status of every configured solution object,
as well as activating and deactivating solutions and single applications, including
user-defined solutions. This layer additionally provides simple integration with a
variety of enterprise-level business intelligence, reporting and event correlation
tools for deeper analytics and insight. It automatically associates recovery with the
solutions as active conditions in the system until they are removed by another
maintenance event.

Collaboration Layer: in COA, cells work with each other to perform a task and
to achieve a shared goal. They utilize recursive processing and a deep determination
to reach the client’s objective. Most collaboration requires leadership; in COA, each
cell, by its decision system, can take the leading role. In particular, the collaborative
property of the cells results in better processing power when facing competition for
complex jobs. COA is based on specific rules of collaboration and manages the
communications among cells. These rules characterize how a group moves through
its activities. The desired cell collaboration aims to collect suitable sub-tasks that are
composed to achieve a complete and efficient process in carrying out a specific job.

Analysis Layer: the analysis layer generates the statistical data used for inter-
action management and control centre reporting. It also enables solutions to com-
municate with various database management systems. Through the analysis layer,
providers of processes can be seen as a store of dynamic, organized quality of
process, generating new cell processes. In this layer, the collected data of ontologies
that represent business processes are analysed, validated and tested before opera-
tional use by cells. Two types of analysis are used in cell methodology. The first
type studies the qualities of source processes; while the other type studies the graph
analysis measures of the selected sub-processes.

Feeding Layer: this layer aims to find sources of business processes and tries to
handle the complexity and diversity transforming business processes through a spe-
cial mediator. The feeding process starts by fetching sources about process designs
and results in a semantic design, as ontology, compatible with cell requirements.

48 A. Karawash et al.

8 Discussion

The most dominant paradigms in distributed computing are Web service and
software agent. Inserting intelligence into these paradigms is critical, since both
paradigms depend on non-autonomous driven architecture (SOA) that prevents one-
to-one concurrence with the needs of third party communication (i.e., the service
registry). In addition to this, the Web service and agent paradigms suffer from
negative complexity and migration effects, respectively. The complexity, in general,
comes from the following sources. First, the number of services accessible over the
Web has increased radically during recent years and a huge Web service repository
to be searched is anticipated. Second, Web services can be formed and updated
during normal processing; thus the composition system needs to detect this
updating at runtime and make decisions based on the up-to-date information [32].
Third, Web services can be developed by different organizations, which use dif-
ferent conceptual models to describe the services; however, there is no unique
business process to define and evaluate Web services. Therefore, building com-
posite Web services with an automated or semi-automated tool is critical.

The migration of processes and the control of that migration, together with their
effect on communication and security, was a problem for mobile agents. Indeed, the
first problem of the Web is security; giving an application the ability to move
among distributed systems and choose the place to make execution may cause
critical problems. Agent methodology has several advantages; however, it can
destroy human control if it is not covered by rules and limits.

How we can benefit from the wide use of service-oriented architecture in
building intelligent architecture? How can we avoid the complex selection process
of the Web service model? How can we achieve dynamic business process com-
position despite the variety of companies providing different types of service pro-
cessing? How can we use the intelligence of multi-agent systems as a control mode
from the client side? How can we reach the best non-functional properties of
processes in an autonomic manner? How can we avoid the security weaknesses
resulting from mobile agent communications? How can we prevent damage to
service caused by internal and subservice fail? Why not separate software processes
based on their purpose? How might we arrange procedures of distributed computing
in a way that evades big data analysis problems resulting from random connections
among distributed systems? How can globally consistent solutions be generated
through the dynamic interaction of distributed intelligent entities that only have
local information? How can heterogeneous entities share capabilities to carry out
collaborative tasks? How can distributed intelligent systems learn, improving their
performance over time, or recognize and manage faults or anomalous situations?
Why not use dynamic online analysis centres that monitor the on-the-fly qualities of
distributed software processes? How should we validate the processes of distributed
software at the design phase? How should we accomplish the internal protection of
distributed components based on the dual context-profile of both consumer and
solution provider?

Towards Intelligent Distributed Computing … 49

Cell methodology uses commands among smart components: neither an invo-
cation of non-smart component nor a migration of processes. It is based on cells that
can benefit from the variety of already built Web components to achieve intelligent
distributed computing. They have brains, decision support systems that can do the
same jobs as a mobile agent. This brain can communicate with the mobile agent on
the client side by messages without process migration. Furthermore, it has its own
strategy to analyse and organize connections based on communications with the
management and control centre. Cell methodology requires no discovery or
selection steps to use a cell because it uses a new model of the composition process
to realize the user’s request. It participates in solving the big data problem by
making a real time analysis of communications. It is highly secure, since it uses a
combination of context-aware and pervasive computing among cells.

Cells are smart components that combine a collection of characteristics from
different environments. They apply autonomy and intelligence based on a mobile
agent computational perspective. In addition, they map the human cell traits, such
as inheritance and collaboration, into distributed computing. From the software
engineering side, cells try to achieve best architecture properties such as security,
availability and performance.

8.1 Autonomy

The cell approach proposes that the problem space should be decomposed into
multiple autonomous components that can act and interact in a flexible way to
achieve a processing goal. Cells are autonomous in the sense that they have total
control over their encapsulated state and are capable of taking decisions about what
to do based on this state, without a third party intervention.

8.2 Inheritance

The commander cell inherits the profile property from its environment (company,
university, etc.). However, the executer cell can serve commanders according to
their environmental profile (selection of suitable qualities of a process) or by special
interference from the commander’s side to specify more precisely the general
design of a process and its qualities. This inheritance property in COA is similar to
the inheritance among generations of human beings. For example, babies inherits
traits of their parents such that cells combine traits from the father and the mother,
but the parent can ask a doctor for specific trait in a baby different from their own
traits (blue eyes, brown hair, etc.). In this case, they have given more specifications
to the cell in order to select suitable genes.

50 A. Karawash et al.

8.3 Internal Security

When application logic is spread across multiple physical boundaries, implement-
ing fundamental security measures such as authentication and authorization
becomes more difficult. In the traditional client-server model, the server is most
responsible for any protection requirements. Well-established techniques, such as
secure socket layer (SSL), granted a so-called transport level of security. Service
and agent models emphasize the emplacement of security logic at the messaging
level. Cell methodology applies an internal level of security in cells. Thus, com-
mand and executive cells can communicate after the protection steps summarized
by verifying the context profile of the cell that requests collaboration.

8.4 Availability

Availability of cells and data is an essential capability of cell systems; it is actually
one of the core aspects giving rise to cell theory in the first instance. The novel
methodology of cell theory decreases the redundancy of servers to ensure avail-
ability. Its strength lies in the ability to benefit from the redundancy of processes
that serve similar goal, so failures can be masked transparently with less cost.

8.5 Collaboration

Collaborative components are need in today’s primary resources to accomplish
complex outcomes. Cell methodology depends on collaboration-by-command that
enables coordination by one of the collaborative components. Collaboration allows
cells to attain complex goals that are difficult for an individual cell to achieve. The
cell collaborative process is recursive: the first collaborative agent makes a general
command that is passed gradually through collaborative cells to more specific cells
until reaching the desired results.

8.6 Performance

Distributed computational processes are disjointed; companies’ coding is not ideal
and it is difficult to monitor the complexity of every process. Thus, performance
problems are widely spread among computational resources. Cell theory introduces
a solution for performance problems in a distributed environment. The solution can
be summarized as applying a permanent analysis of different processes aiming for
the same goal, attached to a unified cell, then selecting the best process to do a job,

Towards Intelligent Distributed Computing … 51

based on basic properties such as response time and code complexity. Furthermore,
an increase in communication acquaintance can be a guide to an improvement in
performance as it enables cells to communicate in a more efficient manner.

8.7 Federation

Cells are independent in their jobs and goals. However, all distributed processes
that do same type of job are connected to a specific executive cell. Thus each
executive cell is federated with respect to the commander cell’s request. Cells map
can be considered as a set of federated components that are capable of collaborating
to achieve a solution.

8.8 Self-error Cover

There are two types of errors that can be handled by cell computing: structural and
resource errors. The cell process is based on a combination of codes that are
fabricated by different computational sides. These combinations may fail because of
coding or system errors and fall in deadlock. The process validation system’s job is
to monitor changes in process and recover errors if detected. Resource errors are
described as failure in providing a service from the computational resource. The
solution to these types of error is to connect spare procedures in each cell process to
achieve the same quality of job from different sources.

8.9 Interoperability

Cell interoperability comes from the ability to communicate with different feeding
sources and transform their business processes into cell business processes. For
example, in spite of differences among business processes, such as BPEL and
OWL-S, every provider of service is seen as a source of genes and as useful in cell
computing. Based on cell interoperability, all procedures and applications used by
service providers can be unified under a unique type of process computing, the cell
gene, with respect to cell provider.

9 Conclusion

With the extensive deployment of distributed systems, the management and inte-
gration of these systems have become challenging problems, especially after smart
procedures are implemented. Researchers build new technologies to deal with these

52 A. Karawash et al.

problems. Trends of the future Web require inserting intelligence into the distrib-
uted computing model; thus, the goal of future research is intelligent distributed
computing. At this time, the research introduces the cell computing theory to cover
the distributed system problems through intelligent method of processing. Cell
theory is the implementation of human cells’ functions in a distributed computa-
tional environment. The cell is an intelligent, organized, secure and dynamic
component that serves a specific type of job. Cell methodology divides the task
between two types of components, the commander and the executer. The com-
mander is a light cell that represents the client and can communicate smartly with its
distributed environment to request solutions. The executive cell works as a smart
supplier that depends on wide collaborations to fabricate a solution. Cell strategy is
based on high-level communication among Cells, a permanent analysing process
among collaborating components and context-based security among collaborating
cells.

Acknowledgments This work has been supported by the University of Quebec at Chicoutimi and
the Lebanese University (AZM Association).

References

1. Brain, M.: How cells work, howstuffworks? A Discovery Company (2013). http://science.
howstuffworks.com/life/cellular-microscopic/cell.htm

2. Petrenko, A.I.: Service-oriented computing (SOC) in engineering design. In: Third
International Conference on High Performance Computing HPC-UA (2013)

3. Feier, C., Polleres, A., Dumitru, R., Domingue, J., Stollberg, M., Fensel, D.: Towards
intelligent web services: the web service modeling ontology (WSMO). In: 2005 International
Conference on Intelligent Computing (ICIC’05), Hefei, 23–26 Aug 2005

4. Suwanapong, S., Anutariya, C., Wuwongse, V.: An intelligent web service system.
Engineering Information Systems in the Internet Context, IFIP—The International
Federation for Information Processing vol. 103 (2002), pp. 177–201 (2014)

5. Li, C., Zhu, Z., Li, Q., Yao, X.: Study on semantic web service automatic combination
technology based on agent. In: Lecture Notes in Electrical Engineering, vol. 227, pp. 187–194.
Springer, Berlin (2012)

6. Rajendran, T., Balasubramanie, P.: An optimal agent-based architecture for dynamic web
service discovery with QoS. In: International Conference on Computing Communication and
Networking Technologies (ICCCNT) (2010)

7. Sun, W., Zhang, X., Yuan, Y., Han, T.: Context-aware web service composition framework
based on agent, information technology and applications (ITA). In: 2013 International
Conference

8. Tong, H., Cao, J., Zhang, S., Li, M.: A distributed algorithm for web service composition
based on service agent model. IEEE Trans. Parallel Distrib. Syst. 22, 2008–2021 (2011)

9. Yang, S.Y.: A novel cloud information agent system with web service techniques: example of
an energy-saving multi-agent system. Expert Syst. Appl. 40, 1758–1785 (2013)

10. Maryam, M., Varnamkasti, M.M.: A secure communication in mobile agent system. Int.
J. Eng. Trends Technol. (IJETT) 6(4), 186–188 (2013)

11. Liu, C.H., Chen, J.J.: Role-based mobile agent for group task collaboration in pervasive
environment. In Second International Conference, SUComS 2011, vol. 223, pp. 234–240
(2011)

Towards Intelligent Distributed Computing … 53

http://science.howstuffworks.com/life/cellular-microscopic/cell.htm
http://science.howstuffworks.com/life/cellular-microscopic/cell.htm

12. Rogoza, W., Zabłocki, M.: Grid computing and cloud computing in scope of JADE and OWL
based semantic agents—a survey, Westpomeranian Technological University in Szczecin
(2014). doi:10.12915/pe.2014.02.25

13. Elammari, M., Issa, Z.: Using model driven architecture to develop multi-agent systems. Int.
Arab J. Inf. Technol. 10(4) (2013)

14. Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of component-based design of intelligent
agents. Data Knowl. Eng. 41, 1–27 (2002)

15. Shawish, A., Salama, M.: Cloud computing: paradigms and technologies. Stud. in Comput.
Intell. 495(2014), 39–67 (2014)

16. Jang, C., Choi, E.: Context model based on ontology in mobile cloud computing. Commun.
Comput. Inf. Sci. 199, 146–151 (2011)

17. Haase, P., Tobias, M., Schmidt, M.: Semantic technologies for enterprise cloud management.
In Proceedings of the 9th International Semantic Web Conference (2010)

18. Block, J., Lenk, A., Carsten, D.: Ontology alignment in the cloud. In Proceedings of ontology
matching workshop (2010)

19. Ghidini, C., Giunchiglia, F.: Local model semantics, or contextual reasoning = locality +
compatibility. Artif. Intell. 127(2), 221–259 (2001)

20. Serafini, L., Tamilin, A.: DRAGO: distributed reasoning architecture for the semantic web. In:
Proceedings of the Second European Conference on the Semantic Web: Research and
Applications (2005)

21. Borgida, A., Serafini, L.: Distributed description logics: assimilating information from peer
sources. J. Data Semant. 2003, 153–184 (2003)

22. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for ALC. In: Proceedings of the 21th
International Workshop on Description Logics (2008)

23. Schlicht, A., Stuckenschmidt, H.: Peer-peer reasoning for interlinked ontologies. Int.
J. Semant. Comput. (2010)

24. Kahanwal, B., Singh, T.P.: The distributed computing paradigms: P2P, grid, cluster, cloud,
and jungle. Int. J. Latest Res. Sci. 1(2), 183–187 (2012). http://www.mnkjournals.com/ijlrst.
htm

25. Shi, L., Shen, L., Ni, Y., Bazargan, M.: Implementation of an intelligent grid computing
architecture for transient stability constrained TTC evaluation. Journal Electr Eng Technol 8
(1), 20–30 (2013)

26. Gjermundrod, H., Bakken, D.E., Hauser, C.H., Bose, A.: GridStat: a flexible QoS-managed
data dissemination framework for the Power Grid. IEEE Trans. Power Deliv. 24, 136–143
(2009)

27. Liang, Z., Rodrigues, J.J.P.C.: Service-oriented middleware for smart grid: principle,
infrastructure, and application. IEEE Commun. Mag. 2013(51), 84–89 (2013)

28. Karawash, A., Mcheick H., Dbouk, M.: Intelligent web based on mathematic theory, case
study: service composition validation via distributed compiler and graph theory. Springer’s
Studies in Computation Intelligence (SCI) (2013)

29. Aviv, R.: Mechanisms of Internet-based collaborations: a network analysis approach. Learning
in Technological Era, 15–25 (2006). Retrieved from http://telem-pub.openu.ac.il/users/chais/
2006/04/pdf/d-chaisaviv.pdf

30. Karawash, A., Mcheick H., Dbouk, M.: Simultaneous analysis of multiple big data networks:
mapping graphs into a data model. Springer’s Studies in Computation Intelligence (SCI),
(2014a)

31. Karawash, A., Mcheick H., Dbouk, M.: Quality-of-service data warehouse for the selection of
cloud service: a recent trend. Springer’s Studies in Computation Intelligence (SCI) (2014b)

32. Portchelvi, V., Venkatesan, V.P., Shanmugasundaram, G.: Achieving web services
composition—a survey. Sci. Acad. Publ. 2(5), 195–202 (2012)

54 A. Karawash et al.

http://dx.doi.org/10.12915/pe.2014.02.25
http://www.mnkjournals.com/ijlrst.htm
http://www.mnkjournals.com/ijlrst.htm
http://telem-pub.openu.ac.il/users/chais/2006/04/pdf/d-chaisaviv.pdf
http://telem-pub.openu.ac.il/users/chais/2006/04/pdf/d-chaisaviv.pdf

http://www.springer.com/978-3-319-11016-5

	2 Towards Intelligent Distributed Computing: Cell-Oriented Computing
	Abstract
	1 Introduction
	2 Background
	2.1 Service Paradigm
	2.2 Mobile Agent Paradigm
	2.3 Cloud Paradigm
	2.4 Grid Paradigm

	3 Cell Theory
	3.1 Cell-Oriented Architecture

	4 Structure of COA Components
	4.1 Commander Cell Structure
	4.2 Cell Provider Infrastructure
	4.3 Cell Source

	5 Definitions and Notations
	6 Components of Executive Cell
	6.1 Decision System (DS)
	6.2 Defence System (DFS)
	6.3 Gene Store System (GSS)
	6.4 Process Analyser System (PAS)
	6.5 Process Validation System (PVS)
	6.6 Traits Maintenance System (TMS)
	6.7 Output Builder System (OBS)

	7 Strategy of Cell Computing
	8 Discussion
	8.1 Autonomy
	8.2 Inheritance
	8.3 Internal Security
	8.4 Availability
	8.5 Collaboration
	8.6 Performance
	8.7 Federation
	8.8 Self-error Cover
	8.9 Interoperability

	9 Conclusion
	Acknowledgments
	References

