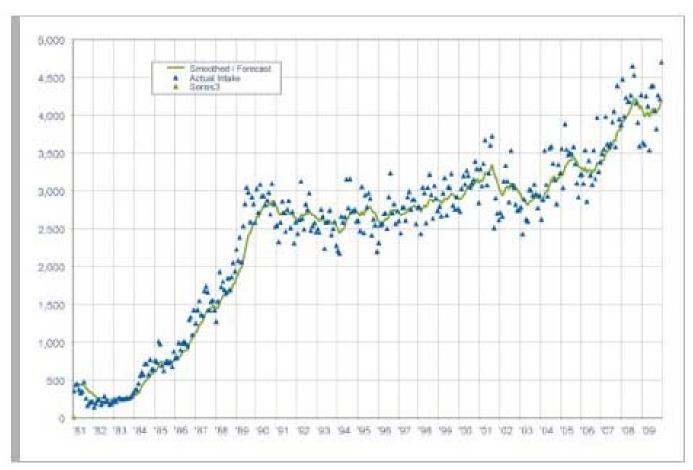


Scalable Text Data Mining for Improving Aviation Safety

Jiawei Han, ChengXiang Zhai Department of Computer Science, University of Illinois at Urbana-Champaign Ashok Srivastava, Nikunj C. Oza NASA Ames Research Center

2011 Annual Technical Meeting May 10–12, 2011 St. Louis, MO


www.nasa.gov

Abundance of text data in the aviation domain

Monthly intake has been increasing (4k reports/month)

January 1981 – December 2009

Slide source: http://asrs.arc.nasa.gov/overview/summary.html

ASRS Report ACN: 928983 (Date: 201101, Time: 1801-2400. ...)

We were delayed inbound for about 2 hours and 20 minutes. On the approach there was ice that accumulated on the aircraft. ... The Captain wrote up ... The flight crew [who picked up the plane] the following morning notified us of an incorrect remark section write up. I believe a few years ago, there was a different procedure for writing up aborted takeoffs. I think there was some confusion as to what the proper write-up for the aborted takeoff was. A <u>contributing factor</u> for this incorrect entry into the log may have been **fatigue**. I had personally been awake for about 14 hours and still had another leg to do. ...Also a <u>contributing factor</u> is that this event does not happen regularly.... A more thorough review and adherence to the operations manual section regarding aircraft status would have **prevented this**, [as well as], a better recognition of the onset of **fatigue**. The manual is sometimes so large that <u>finding pertinent data is difficult</u>. Even after it was determined that the event had occurred, it took me 15 to 20 minutes to find the section regarding aborted takeoffs.

• How can we turn the massive amount of text data into actionable knowledge?

Time	Location	Environment	 Narrative
199801	тх	Daylight	 I TOLD HIM I WAS AT 2000 FT AND HE SAID OK
199801	LA	Daylight	 WE STOPPED THE DSCNT AT CIRCLING MINIMUMS
199801	LA	Night	 THE TAXI/LNDG LIGHTS VERY DIM. NO OTHER VISIBLE TFC IN SIGHT
199902	FL	Night	 I FEEL WE SHOULD ALL EDUCATE OURSELVES ON CHKLISTS

How to organize the data to help experts efficiently explore and digest text data? (e.g. compare the reports before and after a major change in aviation system) How to help experts analyze a specific type of anomaly in different contexts? (e.g. what did pilots say about "landing without clearance" at daylight vs. night)

- How can we support an analyst to do this in a general way?
- How can we do this at large scale?

Event Cube: An Organized Approach for Mining and Understanding Anomalous Aviation Events

- Funded by NASA IVHM (Integrated Vehicle Health Management)
- Collaborations of UIUC, UTD, and Boeing
- Team
 - UIUC: Jiawei Han (PI), ChengXiang Zhai
 - UTD: Latifur Khan, Vincent Ng, Bhavani Thuraisingham

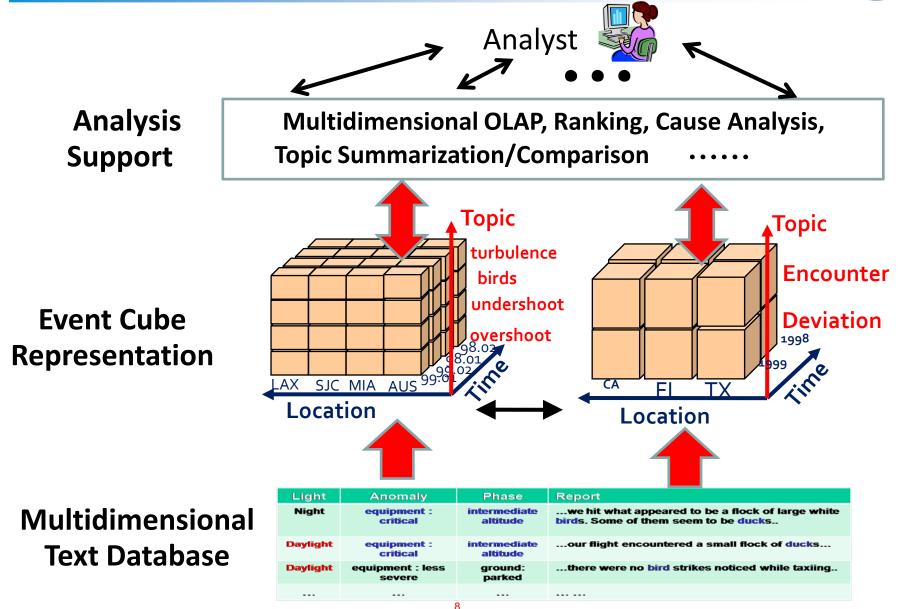
DALLAS

BDEING

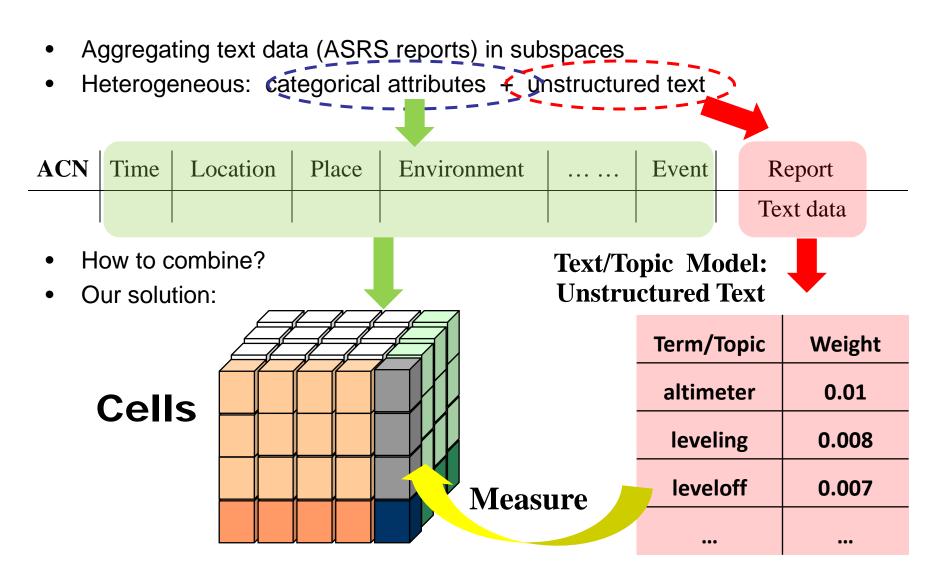
- Anne Kao (Boeing)

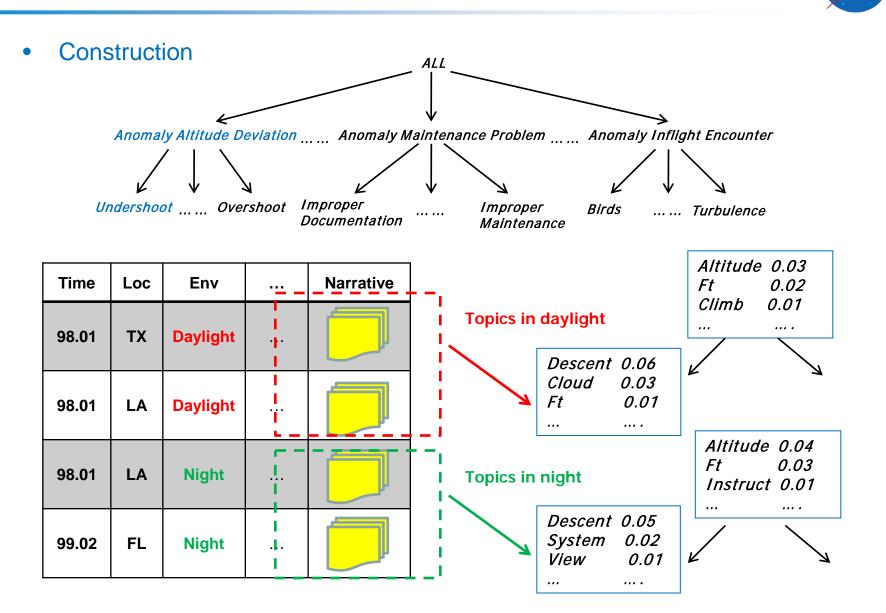
ILLINOIS

- Graduate students
- NASA collaborators: Dr. Ashok Srivastava, Dr. Nikunj C. Oza


http://eventcube.atwiki.com/

- **1. Overview of EventCube**
- 2. TopicCube for flexible topic analysis
- 3. Keyword-based mining
- 4. MicroTextCluster for online text summarization
- 5. Demo of iNextCube system


1. Event Cube: Overview

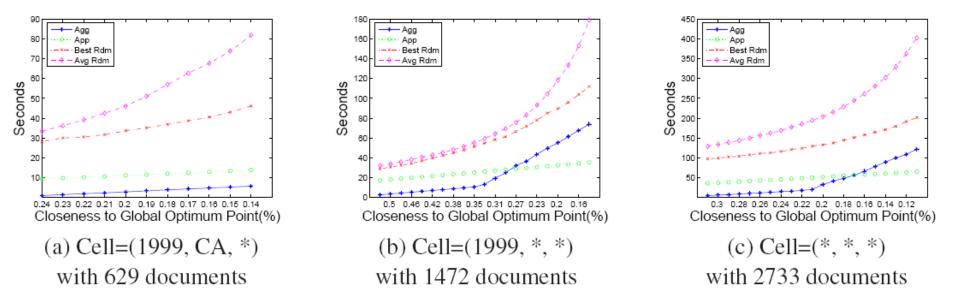


2. Key technique: Text/Topic Cube

Topic Cube Construction

landing without clearance

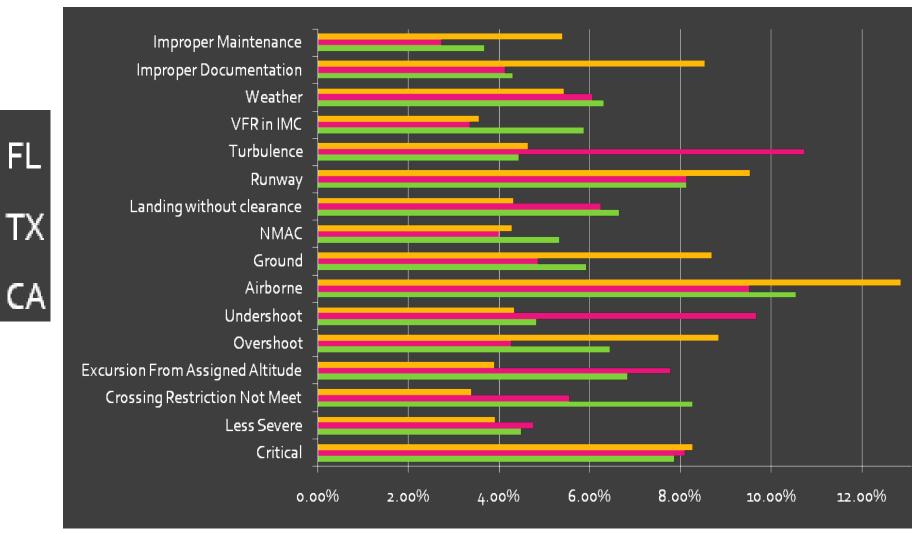
Context	Word	p(w θ)
	Tower	0.075
	Pattern	0.061
davlight	Final	0.060
daylight	Runway	0.053
	Land	0.052
	Downwind	0.039
	Tower	0.035
	Runway	0.029
night	Light	0.027
ingit	Instrument Landing System	0.015
	Beacon	0.014

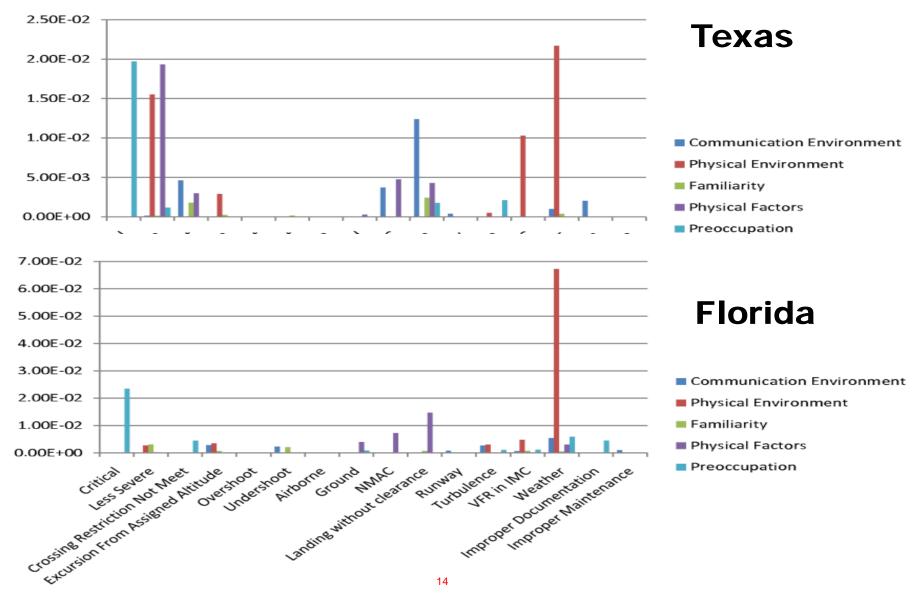

Sample Text:

WINDS ALOFT AT PATTERN ALT OF
1000 FT MSL, WERE MUCH
STRONGER AND A DIRECT XWIND.
NEEDLESS TO SAY, THE PATTERNS
AND LNDGS WERE DIFFICULT FOR
MY STUDENT AND THERE WAS LIGHT
TURB ON THE DOWNWIND

...I LISTENED TO HWD ATIS AND FOUND THE **TWR** CLOSED AND AN ANNOUNCEMENT THAT THE HIGH INTENSITY **LIGHTS** FOR **RWY** 28L WERE INOP. BROADCASTING IN THE BLIND AND LOOKING FOR THE **TWR BEACON** AND LOW INTENSITY **LIGHTS** AGAINST A VERY BRIGHT BACKGROUND CLUTTER OF STREET **LIGHTS**, ETC...

Topic Cube: Efficiency Experiments

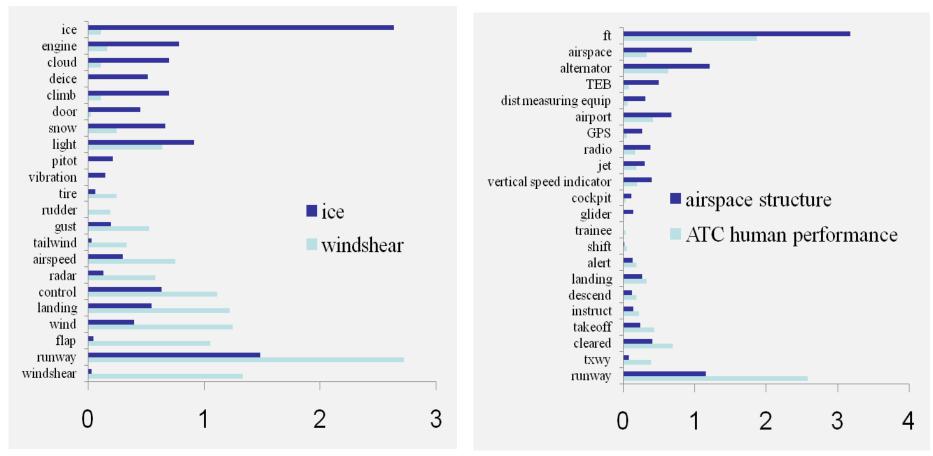

Agg: our aggregation method App: Agg with only top *K* words in each topic Best Rdm: one iteration of EM starting with a random point Avg Rdm: average time cost per iteration in standard PLSA


Sample Topic Coverage Comparison

Comparison of distributions of anomalies in FL, TX, and CA

Comparative Analysis of Shaping Factors

Text Cube for Comparative Analysis of Sub-Events



"ice" vs. "windshear" in

"Environment: Weather Elements"

"airspace structure" vs. "ATC human performance" in

"Supplementary: Problem Areas"

Comparison of Average TF of Words

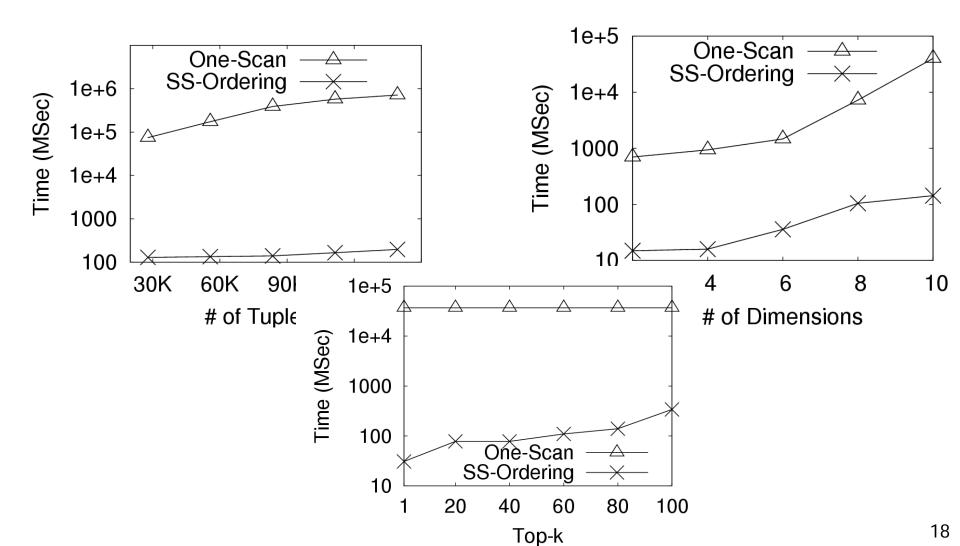
Leverage Sequential Pattern Mining: More Meaningful Units

- Anomaly1 = aircraft equipment problem : critical
- Anomaly2 = inflight encounter : weather
- Anomaly3 = conflict : nmac

Pattern		Support	
	Anomaly1	Anomaly2	Anomaly3
LNDG UNEVENTFUL	11	0	0
LANDED WITHOUT INCIDENT	12	0	0
SHUT DOWN ENG	12	0	0
VISIBILITY FOG	0	13	0
CEILING VISIBILITY	0	15	0
DOWNWIND RWY	0	0	12
SAW OTHER ACFT	0	0	10
CLRED FOR RWY	0	0	44
TOOK EVASIVE ACTION	0	0	44
SUPPLEMENTAL FROM	17	10	31
CALLBACK WITH REVEALED FOLLOWING	37	13	24
CALLBACK WITH REVEALED FOLLOWING HAT	13	0	0

3. Keyword Search

- Find out when evasive action happens in ASRS reports
- Keyword query: "EVASIVE", "ACTION"


Condition	Light	Phase	Anomaly	Report
VMC	Daylight	descent	conflict	TILL THEY STARTED FLASHING TOO LATE FOR EVASIVE ACTION AND SMT X WAS PAST MLT Y
VMC	Daylight	cruise	conflict	I TOOK IMMEDIATE EVASIVE ACTION TURNING RIGHT AND DSNDING RAPIDLY TO 1200'.
IMC	Night	descent	equipment	MARCH GCA CTLR TOLD US TO NOTIFY HIM WHEN WE WERE INBND ON THE APCH.

- Main technical challenge: how to score many cells quickly?
- Solutions:
 - Proposed two general strategies: average model, cell document model
 - Proposed search-space-ordering heuristic algorithm to speed up

Experiments: Efficiency (average model)

• Default: # of Docs = 14K; # of Dimensions = 10; k = 80

Sample results of cell ranking

TextCube	TopicCube	Cell Ranking	Entity Ranking
Enter key words (space separated) b Key Words: rwy excursion	elow:		

Search

The top ranked cells are:

Rank	Year	State	Person	Weather	Light	Make/Model	Flight Phase	Primary Area	Event Anomaly	Resolutory Action	Score
1	2000	*	*	Rain	Night	*	landing : roll	*	aircraft equipment problem : critical	*	32.9466145601797
2	*	*	*	*	*	McDonnell Douglas	*	Airport	excursion : taxiway	none taken : anomaly accepted	31.6727570181821
3	2000	*	*	*	*	McDonnell Douglas	*	Airport	*	none taken : anomaly accepted	30.8608662261631

4. MiTexCluster Cube for summarization

- How can we <u>summarize</u> the content in text cells?
 - Neutral Summarization

Give the most representative documents within a text cell

<u>Topic-biased Summarization</u>

Give the most relevant documents to a query within a text cell that also cover the content of the text cell well

• Example:

 Table 1: An example of text database in ASRS

ACN	Time	Airport		\mathbf{Light}	Narrative
101285	199901	MSP		Daylight	Document 1
101286	199901	CKB	• • •	Night	Document 2
101291	199902	LAX		Dawn	Document 3

- What did those reports say about the anomalous events that happened at night in Jan. 1999?
- What did the pilots say about landing anomalies at LAX in 1999?

Basic idea of MiTexCluster

Goal: Improve online efficiency **Star Schema** :... ::: ... Time 2 ľ Environment Time key Fact table Day Environment_key Month Offline Light Time_key Year Location key Online Environment_key Location ➤ Measure 1 {Doc id} Location_key City {mean_i size_i} State ... or Country ➤ Measure 2 sub-cell list

Table 2: An Exam	ple of a	MiTexCluster	\mathbf{Cube}
------------------	----------	--------------	-----------------

Cell	Doc ID	Content	Micro-Text-Clusters
	d_1	\ldots due to stronger than forecasted winds and weather	
		going	
	d_2	I think that the weather, headwinds, shrinking dew-	
		point/temperature contributed to the fuel emergency \ldots	(weather 2.5, wind $1.2,$), 3
(Time=1999, Location=TX)	d_3	After an hour, the weather had not much improved.	
(111110=1999, Location=1X)		We were in the clear for a bit and then hit another cloud	
		bank	
	d_4	\ldots so that if we saw the ARPT, we could land \ldots	
	d_5	we were in class G and the IFR rules tell us to land	(land 2.1, rule 0.9,), 2

NASA

Neutral Summarization

...so that if we saw the ARPT, we could land...

...due to stronger than forecasted winds and weather going...

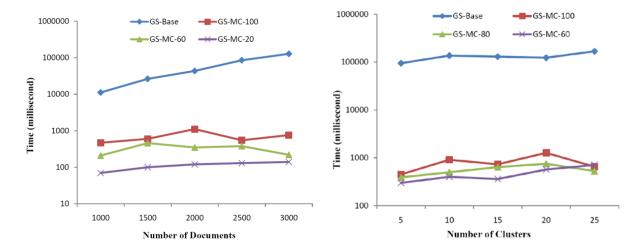
...resulted in RWY excursion during engine fail...

Summarization biased to "landing"

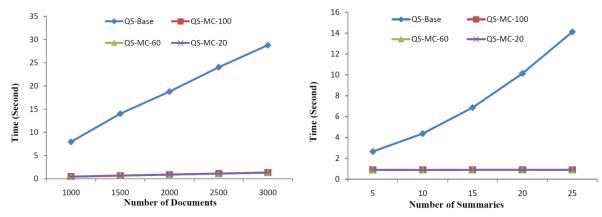
...so that if we saw the ARPT, we could <u>land</u>...

...after an hour, the weather had not much improved which forced us to <u>land</u>...

...SMA engine failure, forced **landing** at LGB by instructor...

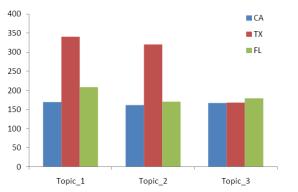

...we were in class G and the IFR rules tell us to <u>land</u>...

22


MiTextCluster is More Efficient than Direct Summarization

Neutral Summarization: document k-means v.s. micro-cluster k-means

<u>Topic-biased Summarization</u>: MMR v.s. micro-cluster ranking

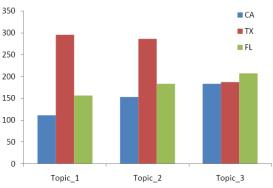

Application: Common Topic Comparison across cells

Topic Coverage Comparison across different Cells:

700

MiTexCluster based results are close to the document based result, and the more micro-clusters stored, the more close to the document based result

(a)


600 - TX 500 - FL 400 - FL 300 - 200 - 100 -

CA

Topic_1: (ft, 2.17672) (tfc, 1.41212) (alt, 1.41139) Topic_2: (rwy, 4.42674) (txwy, 3.18102) (twr, 2.98404) Topic_3: (eng, 3.58031) (fuel, 2.84583) (rptr, 1.71506)

(b)

- (a) Document based result
- (b) MiTexCluster based result (K = 100)
- (c) MiTexCluster based result (K = 500)
- Y: Number of documents
- X: Different locations

Topic_1: (alt, 2.40233) (ft, 2.34535) (arr, 1.90526) Topic_2: (rwy, 3.81793) (apch, 2.8462) (twr, 2.64009) Topic_3: (eng, 3.73188) (fuel, 2.81638) (maint, 1.78779)

(c)

5. The iNextCube System

NextCube -	ASRS data				
TextCube	TopicCub	<u>e</u>	Cell Ranking		Entity Ranking
becify one cell by e	ntering the dimensi	ons below:	1		1
extCube	TopicCul	be Cel	I Ranking	g Entit	ty Rankir
	_				-
imensions					
imensions Year: *		State:		v	Person:
			*	v	Person:
Year: *		State:	* *	·	Person:

http://inextcube.cs.uiuc.edu/nasa/

Sample Results: TextCube

Dimensions Year: * Weather: * Flight Phase: Resolutory Action: Reset all dimensions to * Que Daylight	 ✓ State: * ✓ Light: Day ✓ Primary * Area: ✓ Event incu Anomaly: incu 	Dimensions Year: * Weather: * Flight Phase: Resolutory Action: Reset all dimensions to *		a: nt incursion : landing
Term	Frequenc	Term	Fre	equency
tower	744	runway	251	
runway	734	approach	208	
approach	629	tower	191	
landing	398	landing	124	
clred	305	clearance	83	
clearance	248	frequency	72	
aircraft	235	clred	70	
land	205	aircraft	67	
frequency	182	visual	60	
traffic	173	final	59	
flight	170	did	53	
airport	163	landed	52	

Sample results: TopicCube

Resolutory Action: flight crew : landed in emergen

NASA

Less Topics More Topics

Landed in emergency

Reset all dimensions to *

Topic #1		Topic #2		Topic #3		Topic #4	Topic #4		
Term	Probability	Term	Probability	Term	Probability	Term	Probability		
engine	0.014598	pilot	0.039120	passenger	0.032967	passenger	0.034541		
landing	0.013588	airport	0.019560	flight	0.032967	flight	0.022746		
fuel	0.012704	did	0.014670	aircraft	0.032967	medical	0.019377		
aircraft	0.012510	flap	0.014670	numerous	0.021978	emergency	0.015164		
flight	0.011433	visual flight	0.012225	severe	0.021978	turbulence	0.010952		
ZZZ	0.009387	rules	0.012225	turbulence	0.021978	aircraft	0.010110		
gear	0.009353	flaps	0.012225	gate	0.021978	attendant	0.010110		
emergency	0.008537	landing	0.009780	got	0.021978	seat	0.009267		
runway	0.007728	vfr omni-		experienced	0.021978	zzz	0.009267		
feet	0.006651	directional radio range	0.009780	attendants	0.021978	captain	0.009267		
approach	0.005716	turned	0.009780	air traffic	0.001070	attendants	0.009267		
did	0.005481	currieu	0.009700	control	0.021978	date	0.007582		

Sample Results: Cell Ranking

iNextCube - ASRS data			
TextCube	ToploCube	Cell Ranking	Entity Ranking
Enter key words (space separated) belo			
Search		Fatigue	

The top ranked cells are:

Ra	nk Yea	ar	State	Person	Weather	Light	Make/Model	Flight Phase	Primary Area	Event Anomaly	Resolutory Action	Score
1	*		FL	*	*	*	Airbus	*	*	incursion : landing without clearance	*	34.6499617748931
2	*		FL	*	*	Night	*	landing : roll	*	incursion : landing without clearance	none taken : detected after the fact	34.622818450324
з	*		*	*	*	Dawn	*	descent : approach	*	non adherence : far	none taken : anomaly accepted	34.5521442932267
4	200	6	FL	*	*	Night	Airbus	*	*	*	*	34.5034423658916
5	200	06		flight crew : first officer	*	Night	Airbus	*	*	*	none taken : detected after the fact	34.1260320579751
6	*		FL	*	*	Night	*	landing : roll	*	incursion : landing without clearance	*	34.0639315928729
7	*		*	*	*	*	*	*	Cabin Crew Human Performance	non adherence : far	none taken : anomaly accepted	33.9984240321173
0	*		*	*	*	*	*	*	Environmental		none taken :	22 0404052425555

Sample results: Entity Ranking

Please choose one anomaly type:

8.1 incursion : landing without clear

Insursion: landing without clearance

The top ranked entities are:

Search

Person		Weather		Make/Model		Flight Phase		Primary Area		Resolutory Action	
Rank	Entity	Rank	Entity	Rank	Entity	Rank	Entity	Rank	Entity	Rank	Entity
1 2 3 4 5 6 7 8	flight crew : captain flight crew : first officer flight crew : single pilot instruction : instructor instructor instructor : trainee flight crew : relief pilot flight crew : second officer controller : local	1 2 3 4 5 6 7	Turbulence Fog Rain Snow Ice Thunderstorm Windshear	1 2 3 4 5 6 7 8 9 10 11 12	Boeing Cessna Bombardier McDonnell Douglas Piper Airbus Beechcraft Embraer British Aerospace Mooney Fairchild Dornier ATR	1 2 3 4 5 6 7 8	landing : roll descent : approach descent : vacating altitude ground : taxi landing : touch and go cruise : level climbout : takeoff descent : intermediate altitude	1 2 3 4 5 6 7 8 9	Flight Crew Human Performance ATC Human Performance Ambiguous Environmental Factor Company Weather ATC Facility Navigational Facility Passenger Human Performance	1 2 3 4 5 6	none taken detected after the fac none taken anomaly accepted controller : issued advisory flight crew : landed as precaution controller : issued new clearance none taken insufficient time
9	observation : observer			13 14	Saab Lockheed	9	ground : takeoff roll	10	Aircraft Maintenance	7	none taken

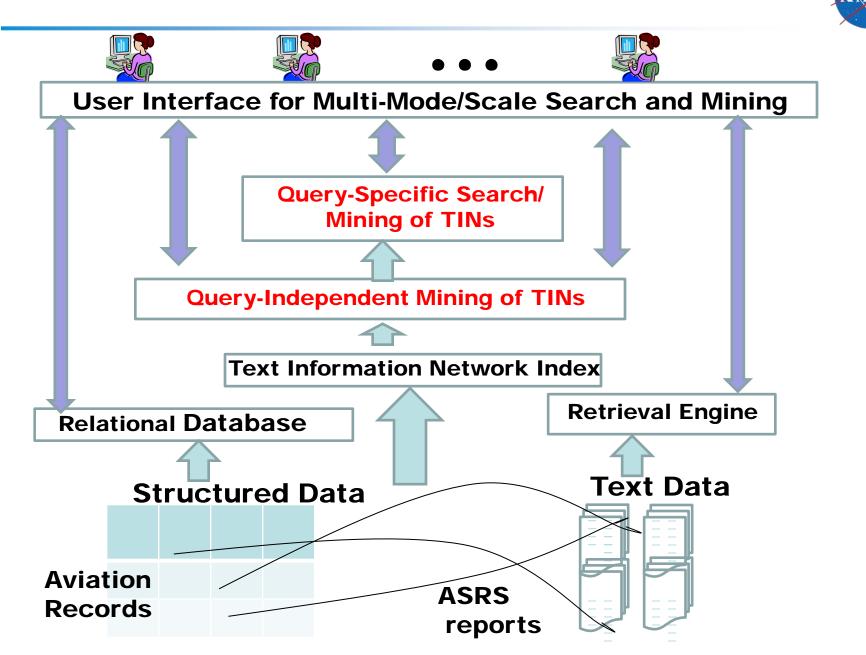
Sample results of iNextCube: Entity Ranking

Please choose one anomaly type:

2 airspace violation

Airspace violation

The top ranked entities are:


Search

Person		Weather		Make/Model		Flight Phase		Primary Area		Resolutory Action	
Rank	Entity	Rank	c Entity	Rank	Entity	Rank	Entity	Rank	Entity	Rank	Entity
1	flight crew : single pilot flight crew :	1 2	Turbulence Thunderstorm	1 2	Cessna Piper Basebase ()	1 2	cruise : level descent : approach	1	Flight Crew Human Performance	1	none taker detected after the fa
2 3	captain controller : radar	3 4 5	Rain Fog Snow	3 4 5	Beechcraft Boeing Bombardier	з	climbout : intermediate altitude	2	ATC Human Performance FAA	2	controller : issued advisory
4	instruction : instructor	6 7	Windshear Ice	6 7	Mooney McDonnell Douglas	4	descent : intermediate altitude	4	Ambiguous Airspace	з	controller : issued new clearance
5	flight crew : first officer controller :			8	Airbus Bell	5	climbout : initial	6	Structure Weather	4	flight crew exited
6	approach instruction :			9	Helicopter Robinson	6	climbout : takeoff	7	Chart Or Publication		penetrated airspace
7	trainee controller :			10	Helicopter Company	7	cruise : enroute	8 9	ATC Facility Aircraft	5	none taker anomaly accepted
8	departure controller :			11 12	Embraer Dassault	1	altitude change climbout	10 11	Company Environmental	6	controller : issued aler

- TextCube/TopicCube provides a general and scalable support for analyzing topics in text data in high-dimensional databases
- Cell ranking and entity ranking enable flexible mining of topical cells and entities
- MiTextCluster enables efficient online summarization
- iNextCube system supports multiple ways to mine and analyze ASRS reports
- Multiple mining applications for improving aviation safety can be potentially supported with these component technologies

Future Work 1: Large-Scale Integrative Text Mining

Future Work 2: Text Mining for Proactive Prevention of Aviation Incidents

- Semantic Analysis of Text (Information Extraction):
 - How to recognize entities (e.g., people, devices, time, location) ?
 - How to recognize relations (e.g., what happened at what time)?
 - How to recognize sentences of special semantic categories (e.g., contributing factors, suggestions)?
- Mining ASRS to discover knowledge for preventing incidents
 - What problems and causal factors are increasingly reported in ASRS?
 - What **suggestions** have been made by reporters in ASRS?
 - How can we discover knowledge about human factors?
- Combine features extracted from text with other non-textual features to improve statistical prediction models

References

- Duo Zhang, ChengXiang Zhai, Jiawei Han, Ashok Srivastava, Nikunj Oza. Topic Modeling for OLAP on Multidimensional Text Databases: Topic Cube and its Applications, *Statistical Analysis and Data Mining*, Vol. 2, pp.378-395, Special Issue on the Best of SDM'09.
- Duo Zhang, Chengxiang Zhai and Jiawei Han, "Topic Cube: Topic Modeling for OLAP on Multidimensional Text Databases", *Proc. 2009 SIAM Int. Conf. on Data Mining* (SDM'09), Sparks, NV, April 2009.
- Bolin Ding, Bo Zhao, Cindy Xide Lin, Jiawei Han, Chengxiang Zhai, Ashok Srivastava, Nikunj C. Oza, "Efficient Keyword-Based Search for Top-K Cells in Text Cube", *IEEE Transactions on Knowledge and Data Engineering (TKDE)* (Special Issue: Keyword Search on Structured Data), accepted, Dec. 2010.
- Yintao Yu, Cindy X. Lin, Yizhou Sun, Chen Chen, Jiawei Han, Binbin Liao, Tianyi Wu, ChengXiang Zhai, Duo Zhang, and Bo Zhao, "iNextCube: Information Network-Enhanced Text Cube", *Proc. 2009 Int. Conf. on Very Large Data Bases (VLDB'09)* (system demo), Lyon, France, Aug. 2009.

More publications can be found in Dashlink: https://c3.ndc.nasa.gov/dashlink/

- EventCube Project is funded by NASA IVHM (Integrated Vehicle Health Management) Program
- Graduate students at UIUC: Duo Zhang, Bolin Ding, Cindy Xide Lin, Yintao Yu, Bo Zhao
- Other collaborators at UT Dallas & Boeing

Thank You!