



Adding New Physics and Numerics into the BATSRUS MHD Code

Gábor Tóth

Alex Glocer, Yingjuan Ma, Xing Meng, Dalal Najib,
Bart van der Holst, Tamas Gombosi
Center for Space Environment Modeling
University Of Michigan

Outline

- **M** BATS-R-US code
- **Space Weather Modeling Framework**
- **™** Two fluid MHD and non-isotropic pressure
- **M** Multi-ion MHD results
- **Local time-stepping scheme**
- **M** Summary

BATS-R-US

Block Adaptive Tree Solar-wind Roe Upwind Scheme

M Physics

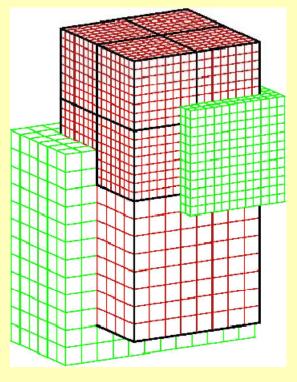
- Classical, semi-relativistic and Hall MHD
- Multi-species, multi-fluid, anisotropic pressure
- Radiation hydrodynamics with gray diffusion
- Multi-material, non-ideal equation of state
- Solar wind turbulence

M Numerics

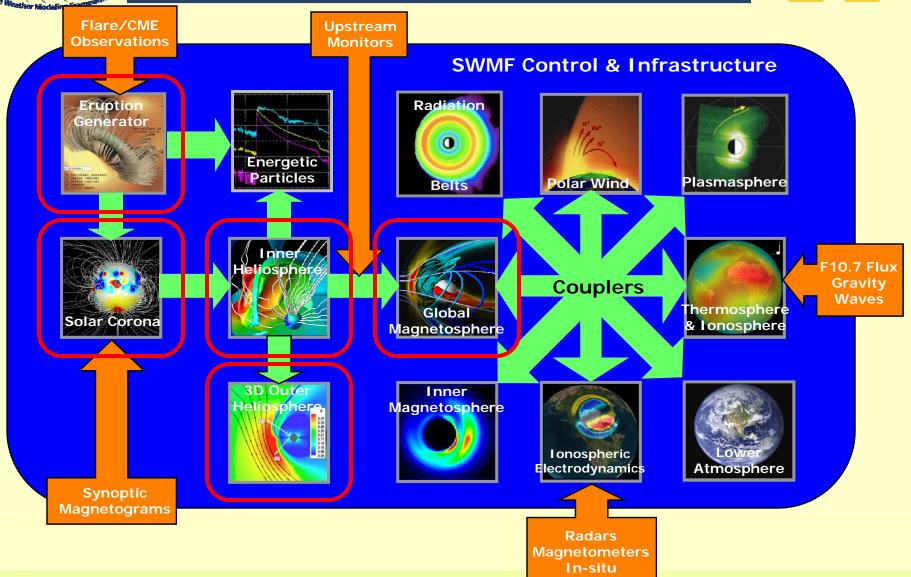
- Conservative finite-volume discretization
- Parallel block-adaptive grid
- Cartesian and generalized coordinates
- Splitting the magnetic field into B₀ + B₁
- Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
- Shock-capturing TVD schemes: Rusanov, HLLE, AW, Roe, HLLD
- Explicit, point-implicit, semi-implicit, fully implicit time stepping

M Applications

- Sun, heliosphere, magnetosphere, unmagnetized planets, moons, comets...
- **№** 100,000+ lines of Fortran 90 code with MPI parallelization



BATS-R-US in the Space Weather Modeling Framework



The SWMF is freely available at http://csem.engin.umich.edu

Resistive Hall MHD with electrons

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum:
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + \mathbf{p}) + \mathbf{p} \mathbf{v} \mathbf{E} \mathbf{u} \mathbf{x} \mathbf{B}$$

$$P = (p_{\perp} + p_e)I + (p_{\parallel} - p_{\perp})\mathbf{bb}$$
 $\mathbf{b} = \mathbf{B}/B$

$$\mathbf{b} = \mathbf{B}/B$$

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

$$\frac{\partial p_{\perp}}{\partial t} + \frac{\partial \overline{y}}{\partial t} + (p_{\parallel} \mathbf{u}) = + \frac{2\eta e^{2} n_{e}}{(M_{i} - 1)^{p}} \left[-\frac{p_{\parallel}}{p} \right] - \frac{p_{\parallel} \mathbf{v}^{2} n_{e}^{2} n_{e}}{M_{i}} \left(p_{e} - p_{e} \right) \cdot \mathbf{b} \\ \frac{\partial p_{\parallel}}{\partial t} + \nabla \cdot (p_{\parallel} \mathbf{u}) = + \frac{2\eta e^{2} n_{e}}{M_{i}} (p - p_{e}) - 2p_{\parallel} \mathbf{b} \cdot (\nabla \mathbf{u}) \cdot \mathbf{b}$$

Electron pressure:

$$\frac{\partial p_e}{\partial t} + \nabla \cdot (p_e \mathbf{u}_e) = (\gamma - 1) \left[(-p_e \nabla \cdot \mathbf{u}_e + \eta \mathbf{J}^2 + \frac{3\eta e^2 n_e}{M_i} (p - p_e) + \nabla \cdot (\kappa \mathbf{b} \mathbf{b} \cdot \nabla T_e) \right]$$

Electron velocity: $\mathbf{u}_e = \mathbf{u} - \frac{\mathbf{J}}{\mathbf{J}}$

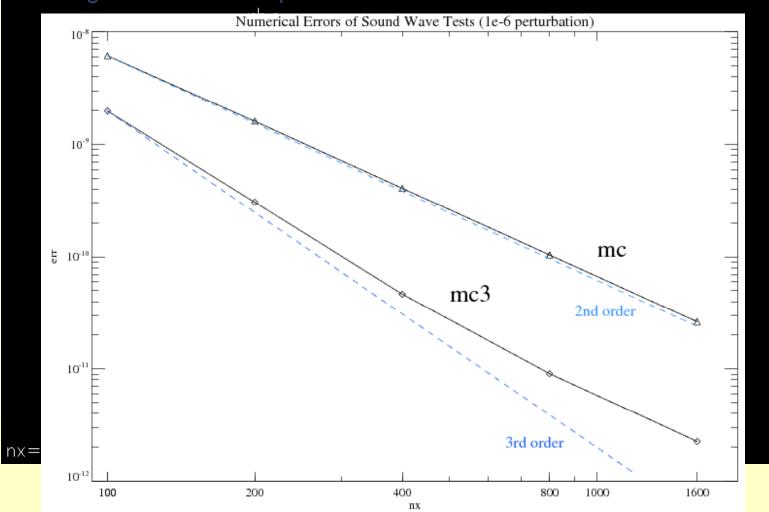
$$\mathbf{E} = -\mathbf{u} imes \mathbf{B} + \eta \mathbf{J} + rac{\mathbf{J} imes \mathbf{B}}{en_e} - rac{
abla p_e}{en_e} - rac{
abla \cdot [\mathbf{b} \mathbf{b} (p_\parallel - p_\perp)]}{en_e}$$

$$\mathbf{J} = \nabla \times \mathbf{B}$$

Tests for anisotropic pressure

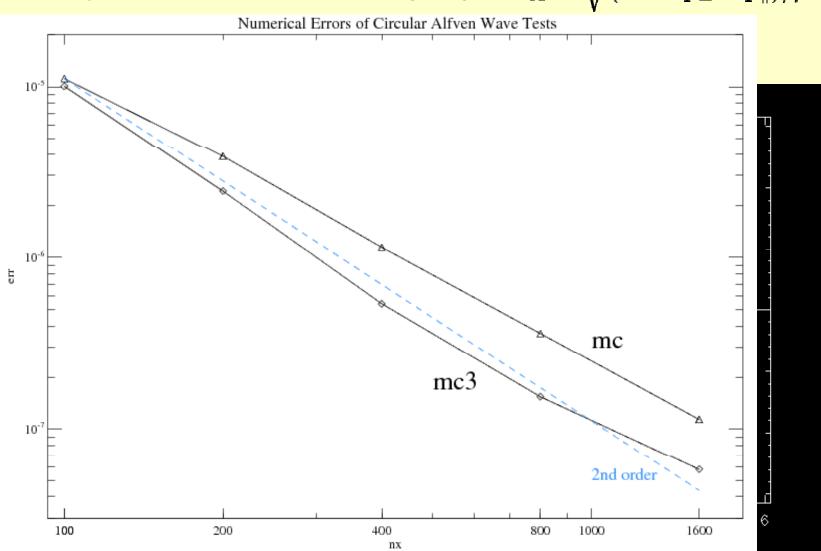
Sound wave propagating parallel to magnetic field at $\ c_s = \sqrt{3p_{\parallel}/
ho}$

Grid convergence for smooth problem:



Tests for anisotropic pressure

Circularly polarized Alfven wave propagating at $\,v_A = \sqrt{({f B}^2 + p_\perp - p_\parallel)/
ho}$



Multi-Ion MHD

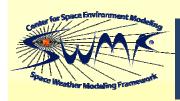
For each ion fluid s (neglecting resistive terms):

$$\begin{split} \frac{\partial \rho_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s) &= S_{\rho_s} \\ \frac{\partial \rho_s \mathbf{u}_s}{\partial t} + \nabla \cdot (\rho_s \mathbf{u}_s \mathbf{u}_s + Ip_s) &= \frac{n_s q_s}{n_e e} (\mathbf{J} \times \mathbf{B} - \nabla p_e) + n_s q_s (\mathbf{u}_s - \mathbf{u}_+) \times \mathbf{B} + S_{\rho_s \mathbf{u}_s} \\ \frac{\partial p_s}{\partial t} + \nabla \cdot (p_s \mathbf{u}_s) &= -(\gamma - 1) p_s \nabla \cdot \mathbf{u}_s + S_{p_s} \end{split}$$

Induction equation (neglecting Hall term):

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u}_{+} \times \mathbf{B}) = 0$$

where the charge-averaged ion-velocity is $\mathbf{u}_+ = rac{\sum_s n_s q_s \mathbf{u}_s}{e n_e}$



Initial Results with Multi-Ion MHD (Glocer et al, in press)

M Modeling two magnetic storms

- May 4, 1998
- March 31, 2001

Multi-fluid BATS-R-US running in the SWMF coupled with

- Polar Wind Outflow Model
- Ridley Ionosphere-electrodynamics Model
- Rice Convection Model (inner magnetosphere)

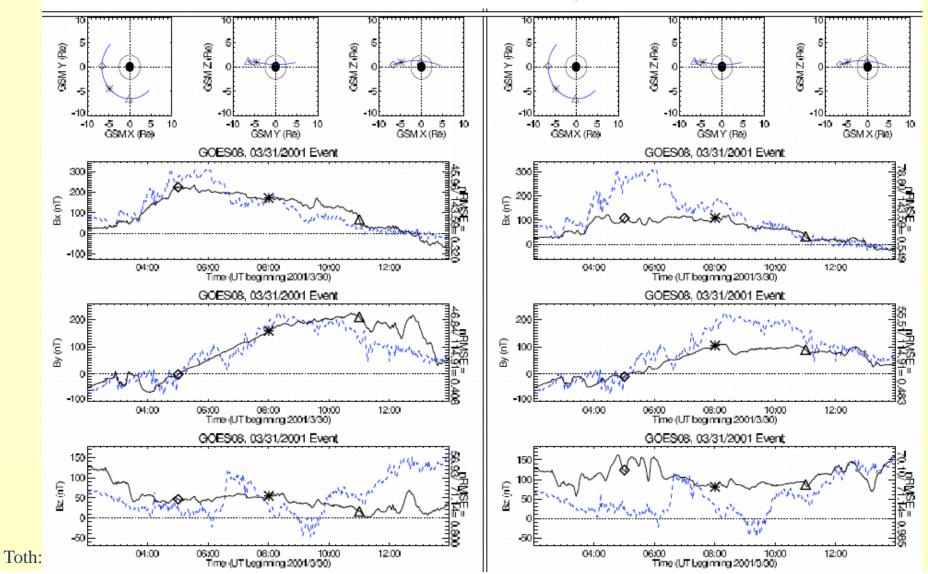
M Comparison with

- single fluid model
- global indexes (Dst, CPCP)
- in situ satellite measurements

Magnetic Field vs Goes 8 Satellite

Multi-fluid MHD with O⁺ outflow

Single-fluid MHD with no outflow



Local Time Stepping

M Time stepping schemes

- Explicit scheme with fixed time step is limited by most restrictive CFL condition
- Time step in an implicit scheme is not restricted by stability, but expensive
- Local time stepping allows each cell/block advance in time limited by local CFL

M Issues in Local Time Stepping algorithm

- Time interpolation (and extrapolation!) of ghost cells
- Order of advancing the cells
- Load balancing
- Conservative flux correction

Local Time Stepping

M Choices in Local Time Stepping algorithm

- Local time step is proportional to grid cell size (Berger and Colella)
 - + relatively simple
 - not optimal if the fastest wave speed varies a lot in the computational domain
- Local time step set by CFL condition and rate of change (Omelchenko et al)
 - + optimal time step
 - + stability is guaranteed
 - complicated, difficult scheduling and load balancing
 - multiple flux calculations between cells with similar time steps
- Local time step set by CFL condition, but rounded to powers of 2 fractions (Flaherty et al., Crossley and Wright)
 - + close to optimal time step (within factor of 2)
 - + simpler scheduling and load balancing
 - + few extra flux calculations
 - have to be careful about stability

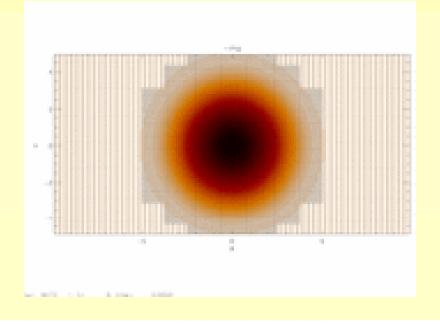
Local Time Stepping

M Current status

- Local time step is set on a block by block basis based on grid level
- Each level is load balanced separately

M Plan

- Eventually use powers of 2 time steps based on local block CFL condition
- Possibly check stability condition during global time step and change local time step if needed, but no load balancing at this stage



Summary

- **Added two-fluid (electron + ion) and anisotropic MHD to BATS-R-US.**
- **M** Initial verification tests pass for anisotropic pressure MHD.
- M First multi-ion MHD results are now published (Glocer et al, JGR).
- M Prototype local time stepping scheme has been implemented.

Numerical Diffusion

M Numerical diffusion is useful

- Explicit scheme: needed for stability and to avoid spurious oscillations.
- Implicit scheme: needed to avoid spurious oscillations.
- linear interpolationlimited linear interpolation
- High order schemes have less diffusion in well resolved regions only.

M Total Variation Diminishing (TVD) schemes

- $F_{\text{diff}} = |\lambda| (U_R U_L)/2$
- \bullet Here U_R and U_L are the right and left states and λ is the wave speed, that is the Alfven speed for the magnetic field.
- U_R - U_L is proportional to $(\Delta x)^n$ where n is the order of the scheme.
- Near fast changing gradients and at local extrema TVD schemes become first order accurate: U_R − U_L ≈ Δx dU/dx

™ Typical affordable grid resolution near Earth is 1/4 R_E to 1/8 R_E

Far from well resolved, so first order numerical diffusion dominates.

Boris Correction

M Semi-relativistic correction

- Classical Alfven speed $v_A = B/\sqrt{\mu_0 \rho}$ can exceed speed of light c.
- Boris (also Gombosi et al.) derived the semi-relativistic MHD equations, where

$$v_A^{semi} = \frac{v_A}{\sqrt{1 + v_A^2/c^2}}$$

The semi-relativistic formulation is necessary for Saturn or Jupiter.

M Reducing the speed of light

- One can replace c with a reduced c', e.g. c' = 0.01 c = 3000km/s
- + Allows larger time steps for explicit time stepping
- ♦ + Reduces the numerical diffusion by reducing λ ≈ v_A!
- Changes the time accurate behavior of the MHD equations...
- Artificial reduction of c is used in many magnetosphere codes

Limited Numerical Diffusion

M New idea: limit diffusive flux in the implicit TVD scheme

- δ λ_{max} can be set to any value, e.g. 2000km/s for magnetosphere simulation
- + Numerical diffusion is reduced
- + The physical behavior of the MHD equations is not modified
- Oscillation-free property is not guaranteed. But in practice, it seems to work.

™ Test: May 1998 magnetic storm

- Both Boris correction and limited numerical diffusion results in more negative Dst.
- Closer to observations.

