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M BATS-R-US code

M Space Weather Modeling Framework

M Two fluid MHD and non-isotropic pressure
M Multi-ion MHD results

M Local time-stepping scheme

M Summary

http://csem.engin.umich.edu



BATS-R-US
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M Physics
& Classical, semi-relativistic and Hall MHD
® Multi-species, multi-fluid, anisotropic pressure
® Radiation hydrodynamics with gray diffusion
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® Multi-material, non-ideal equation of state ‘::.::“:—" E
& Solar wind turbulence - = sae

M Numerics THHEE o
® Conservative finite-volume discretization :;}Qf_‘: H B
@ Parallel block-adaptive grid T H O
@ Cartesian and generalized coordinates T j T
® Splitting the magnetic field into B, + B, ~L-

® Divergence B control: 8-wave, CT, projection, parabolic/hyperbolic
® Shock-capturing TVD schemes: Rusanov, HLLE, AW, Roe, HLLD
® Explicit, point-implicit, semi-implicit, fully implicit time stepping
M Applications
@ Sun, heliosphere, magnetosphere, unmagnetized planets, moons, comets...

M 100,000+ lines of Fortran 90 code with MPI parallelization
http://csem.engin.umich.edu



In the
Modeling Framework

SWMF Control & Infrastructure

Energetic
[TTParticles

lonospheric
Electrodynamics

The SWMEF is freely available at http://csem.engin.umich.edu



e, Resistive Hall MHD with
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Mass conservation: @ +V- (pu) =0

dpu
Momentum: 5 —— + V- (puu + Ip=lghfEBIucBB)

P=(p, +p.)I+ (p,—p.)bb b=B/B

oB

Induction: 7 +VxE=0

apL 2 e? ne
Pressure: 4—3@ —I&Vuzpu mT/[ 1 [-W np_%ﬁ%'[_f@e {DY]U) b

ap 2ne’n,

at” + v (pllu) + M% (p pe) 2p||b (VU) b
Electron pressure:
Ope 3ne’n,
ap; +V-(peue) = (y—1) [(—peV -u, +nJ? + WM. (p —pe) + V- (kbb - VTe)]
Electron velocity: u, = u — Y

eNe

JxB B Vp. V-|[bb(p, —p.)]

Electric field: E=-uxB+nJ+
ENe ENe ENe

Current: J=V xB

http://csem.engin.umich.edu 5
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Tests for anisotropic pressure

Sound wave propagating parallel to magnetic field at ¢, = 4/3p,/p

Gri

Numerical Errors of Sound Wave Tests {le-6 perturbation)

2nd order

3rd order
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Tests for anisotropic pressure
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Circularly polarized Alfven wave propagating at v4 = \/(B2 +p.—py)/p

MNumerical Errors of Circular Alfven Wave Tests
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For each ion fluid s (neglecting resistive terms):

0ps
ot + V- (Psus) = Sy,
a .S'uS nS s
pat +V - (psugu, + Ip,) = n‘i (I xB = Vp.) +n.qs (Us —uy) x B+ S,
Ops )

Ot + V- (psus) = — (v —1)psV - u, + Sp,

Induction equation (neglecting Hall term):

o8 V x ( B)=20
. X (L X —
ot "
where the charge-averaged ion-velocity is u, = 25 o5 s
ENe

http://csem.engin.umich.edu 8
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Initial Results with Multi-lon MHD

(Glocer et al, in press)

M Modeling two magnetic storms
@ May 4, 1998
@& March 31, 2001
M Multi-fluid BATS-R-US running in the SWMF coupled with
@ Polar Wind Outflow Model
® Ridley lonosphere-electrodynamics Model
@ Rice Convection Model (inner magnetosphere)
M Comparison with
@ single fluid model
® global indexes (Dst, CPCP)

® In situ satellite measurements

http://csem.engin.umich.edu
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Multi-fluid MHD with O* outflow
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M Time stepping schemes
& Explicit scheme with fixed time step is limited by most restrictive CFL condition

@ Time step in an implicit scheme is not restricted by stability, but expensive

& Local time stepping allows each cell/block advance in time limited by local CFL

M Issues in Local Time Stepping algorithm
& Time interpolation (and extrapolation!) of ghost cells
@ Order of advancing the cells
® Load balancing
® Conservative flux correction

11
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M Choices in Local Time Stepping algorithm
® Local time step is proportional to grid cell size (Berger and Colella)
+ relatively simple
- not optimal if the fastest wave speed varies a lot in the computational domain
® Local time step set by CFL condition and rate of change (Omelchenko et al)
+ optimal time step
+ stability is guaranteed
- complicated, difficult scheduling and load balancing
- multiple flux calculations between cells with similar time steps

® Local time step set by CFL condition, but rounded to powers of 2 fractions
(Flaherty et al., Crossley and Wright)

+ close to optimal time step (within factor of 2)
+ simpler scheduling and load balancing

+ few extra flux calculations

- have to be careful about stability

12



Local Time Stepping

M Current status
® Local time step is set on a block by block basis based on grid level
® Each level is load balanced separately

M Plan
® Eventually use powers of 2 time steps based on local block CFL condition

@ Possibly check stability condition during global time step and change local time
step if needed, but no load balancing at this stage

13
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M Added two-fluid (electron +ion) and anisotropic MHD to BATS-R-US.

M Initial verification tests pass for anisotropic pressure MHD.
M First multi-ion MHD results are now published (Glocer et al, JGR).

M Prototype local time stepping scheme has been implemented.

http://csem.engin.umich.edu
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WA - Numerical Diffusion

M Numerical diffusion is useful //

® Explicit scheme: needed for stability and to avoid spurious oscillations.

® Implicit scheme: needed to avoid spurious oscillations. — :?Hﬂ'izr(iinlferpol‘atitou y

® High order schemes have less diffusion in well resolved regilg:s lgezll;rpomn
M Total Variation Diminishing (TVD) schemes

® Fyr = |N (Ug —UL)/2

® Here U, and U, are the right and left states and A is the wave speed,
that is the Alfven speed for the magnetic field.

® Ui-U, is proportional to (Ax)"where n is the order of the scheme.

® Near fast changing gradients and at local extrema TVD schemes
become first order accurate: Uiz — U, = Ax dU/dx

M Typical affordable grid resolution near Earth is 1/4 Rcto 1/8 Rg

@ Far from well resolved, so first order numerical diffusion dominates.

15
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M Semi-relativistic correction

@® Classical Alfven speed vy = B/\/uop can exceed speed of light c.

® Boris (also Gombosi et al.) derived the semi-relativistic MHD equations,

where
semi __ VA

v —
A V1+vg/c?
® The semi-relativistic formulation is necessary for Saturn or Jupiter.

M Reducing the speed of light
® One can replace ¢ with a reduced c’, e.g. ¢’ = 0.01 ¢ = 3000km/s
® + Allows larger time steps for explicit time stepping
® + Reduces the numerical diffusion by reducing A = v, !
® - Changes the time accurate behavior of the MHD equations...

® Artificial reduction of c is used in many magnetosphere codes

16
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Limited Numerical Diffusion

M New idea: limit diffusive flux in the implicit TVD scheme
® Fup= N (Ug — U2 and [N'| = min(A,,, [A)

@ A

max

® + Numerical diffusion is reduced

can be set to any value, e.g. 2000km/s for magnetosphere simulation

@& + The physical behavior of the MHD equations is not modified

® - Oscillation-free property is not guaranteed. But in practice, it seems to work.

M Test: May 1998 magnetic storm

@& Both Boris correction and limited
numerical diffusion results in more
negative Dst.

@& Closer to observations.
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