

Demonstration of Safe Human / Robot Coordination on the Athlete Lunar Rover

Professor Brian C. Williams, CSAIL MIT NASA AISRWorkshop, October, 16th, 2009

In joint collaboration with
Patrick Conrad, Shannon Dong, Andreas Hoffman,
and Julie Shah at MIT
Mitch Ingham, David Mittman, Vandi Verma at JPL
Supported under NSDEG and JPL SURP

Operating JPL's Athlete Lunar Rover

Commanded through time-stamped sequences, similar to Spirit and Opportunity.

NASA Trends

- Increased complexity in robot morphology.
- Increased task complexity;
- Humans work in the field, in close proximity to robots.

Project Objectives

- 1. Elevate level of commanding.
- 2. Increase safety and compliance around humans.
- 3. Improve fluidity of human / robot coordination.

Approach: Model-based Programming

Write Common sense instructions

Demonstrate actions by example

Collaborate with Verbal commands

Reactive Model-based Programming Language (RMPL)

Write Common sense instructions

```
method run ()
   [1s,200s] sequence {
      prepare limb(6) to attach gripper
      human voice commands the limb
      attach gripper to limb
      prepare limp to pick up rock with gripper
      parallel {
         sequence {
            human voice command the limb
            close gripper on rock
         sequence {
            limb5 prepare limb (5) to receive bin
            human voice commands the limb
        };
      position rock over bin with gripper
      ready bin for rock
      load rock in bin
      store bin for transport
```

Reactive Model-based Programming Language (RMPL)

Demonstrate actions by example

Demonstrate actions by example

Learns tubes of valid trajectories

Collaborate with Verbal commands

Model-based Programming of Human Robot Teams

A robot team mate should:

- 1. Successfully perform shared tasks under time pressure.
 - The robot must quickly adapt...
- →2. Operate safely among humans and their environment.
 - ... to the physical environment.
 - 3. Embody the fluidity of a good human teammate.
 - ... to its partner.

Example: Describe Walking Tasks with Qualitative Poses

[Muybridge, 1955] Depicted gaits as sequences of distinct qualitative poses

Specify as temporal plan over qualitative states

Describe Tasks as

Temporal Plans over Qualitative Poses

Muybridge

Input: Qualitative State Plan

Traditional biped control tracks a reference trajectory

Executive utilizes the flexibility of the Qualitative State Plan

Executive achieves compliance and robustness by precomputing all feasible trajectories, not just one!

Feasible trajectories must go through goal regions

[Hofmann & Williams, AAAI 06; ICAPS 06]

Feasible trajectories must go through goal regions

Compile Time:

• Construct all feasible trajectories (Flow Tubes).

• Learn tubes from examples.

[Hofmann & Williams, AAAI 06; ICAPS 06]

Feasible trajectories must go through goal regions.

Compile Time:

• Construct all feasible trajectories (Flow Tubes).

• Learn tubes from examples.

Dynamics couples through center of mass

[Hofmann & Williams, AAAI 06; ICAPS 06]

Robustness Requires Temporal Synchronization

Disturbance without temporal coordination

Disturbance with temporal coordination

Execution:

- 1. Select enabled tube.
- 2. Schedule goal arrival.
- 3. Execute control policy until goal achieved.

Execution:

- 1. Select enabled tube.
- 2. Schedule goal arrival.
- 3. Execute control policy until goal achieved.
- 4. If displaced from tube, adjust control parameters or schedule.

Execution:

- 1. Select enabled tube.
- 2. Schedule goal arrival.
- 3. Execute control policy until goal achieved.
- 4. If displaced from tube, adjust control parameters or schedule.
 - May require synchronization with other activities.
 - If unschedulable, switch plan. [Hofmann & Williams, AAAI 06; ICAPS 06]

Compliance Results

Lateral CM with push disturbance

- Blue 40 N
- Green 35 N
- Black 25 N
- Red Max allowed displacement

Human / Robot Task Coordination

A robot team mate should:

- 1. Successfully perform shared tasks under time pressure.
 - The robot must quickly adapt...
- 2. Operate safely among humans and their environment.
 - ... to the physical environment.
- →3. Embody the fluidity of a good human teammate.
 - ... to its partner.

A Good Human Teammate

An effective Scrub Nurse:

- works hand-to-hand, face-to-face with surgeon,
- assesses and anticipates needs of surgeon,
 - provides tools and assistance in order needed,
- responds quickly to changing circumstances,
- responds quickly to surgeon's cues and requests. [Shah Ph D, In Progress]

Task Plan

- Move striped balls to opposite end of workspace using hand-to-hand exchanges.
- Remove one ball from red bin.
- Remove one ball from blue bin.
- Remove one ball from pink bin.
- Remove one ball from green bin.

MENE Dalah basal kihadhal a kabak Syste

Agents choose and schedule activities

(Someone) Remove one ball from red bin

Remove one ball from red bin

- Nominal
- Tight Time Constraints

ERROR:

Right Robot takes a very long time to finish "Swap red striped ball."

Watch the Left Robot adapt to ensure task is completed under the tight time constraints.

- Off-nominal
- Partner adapts in response to teammate's failure.

Leader & Assistant

Leader

Assistant waits to see what Leader will do before acting.

Assistant

Idea: model leader durations and assignments as uncontrollable (TPNH).

Model-based Programming has been applied to a diverse set of robotic systems.

Model-based Programming

mers.csail.mit.edu

- Elevates programming to the goal-level through an idealization in which state is directly observable.
- Simplifies control by learning policies from examples.
- Exploits flexibility to expand robustness.
- Works safely around humans by supporting compliance.
- Supports human / robot teams, by enabling a robot to adapt fluidly and safely to its human counterpart.