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Cyclone Detection: Current State of Art

 Estimates of cyclone variability currently   derived 
from analyses of surface level pressure (SLP) 
fields 
Model output based on in-situ inputs

Extensive Field Campaigns to collect   
observations to track tropical cyclone in

Map of daily pressure observations  used by 
ECMWF Reanalysis forecast (6-29-02).   

observations to track tropical cyclone in 
Western Pacific and South Eastern Pacific.

Observations still need to be manually analyzed  

Satellite remote sensing provides global 
t ti ll ll i d t ti f
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coverage potentially allowing detection of 
most/all global cyclones



Multi-Satellite Cyclone Detection Problem
• Several heterogeneous sources capture same event over time 

• QuikSCAT – Wind measurements, Reliable detection, every 12 hrs
o Events occluded occasionally due to non-contiguous swaths

• TRMM Precipitation Weak detection every 3 hrs• TRMM – Precipitation, Weak detection, every 3 hrs
• GOES – IR, Cyclone structure, Reasonable detection, 

Every ½ - 2 hrs
o False alarms due to cloud cover

• Primary Solution
o Robust classification / detection from QuikSCAT windspeed
o Improve tracking temporal resolution and resolve occlusion using TRMM
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o Improve tracking temporal resolution and resolve occlusion using TRMM 
and GOES using predictive search and multisource classification



Improvements to the GLYDER system

• Incorporation of GOES data
– Higher temporal resolution than earlier QuikSCAT and TRMM

• New techniques for eye detection
Log spiral pattern matching for GOES images

Data Retrieval

TRMM– Log-spiral pattern matching for GOES images
– Graph-based method for QuikSCAT
– Generated classifier for Near Real-Time Data

• Predictive Multi-Cyclone tracker
– Ability to track multiple cyclones
– Kalman filter  for constrained cyclone search

Gridding

QuikSCAT

SubsettingSubsetting

TRMM
GOES

a a te o co st a ed cyc o e sea c

• GUI
– Menu-driven, User friendly parameter and processing selection

• Error detection and recovery

Segmenta
tion

Classificati

GriddingSegmenta
tion

• Automated Pre-processing steps
– Downloading of data files from FTP servers
– Automatic selection of NHC tracks (for error analysis)
– Gridding of data

• Multisource Cyclone tracker

C ass cat
on

Eye 
detection

Eye 
detection

Eye 
detectiony

– Share knowledge/information between disparate sources
– Fundamentally new learning mechanism  for multsource tracking

• Cyclone detection from Near real-time (NRT) data
– New Processing to handle lower quality of NRT datasets
– Assimilate RT track & prediction information  from various 

(RSS f d b i HTML )

Data Fusion:
Update Tracker

Cyclone Eye 
Prediction

sources (RSS feeds, website HTML pages, etc.)
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Geostationary Operational Environmental Satellite (GOES)

• Chief advantage: high temporal resolution
– Images available at 30 minute intervals
– Earlier version used 

• QuikSCAT: about 2 per day

NOAA CLASS 
ordering webpage

• QuikSCAT: about 2 per day
• TRMM 3B42: 3 hour intervals

• GOES-12 (located at 75W) for Atlantic coast

• GOES-11 (located at 135W) for Pacific coastGOES-11 (located at 135W) for Pacific coast

• We use Band 4: 10.2 µm – 11.2 µm Infrared
– Observe storm clouds at night too
– Spatial resolution: 4km at nadir

• Images downloaded from NOAA’s CLASS library

• Challenges
– Cyclones are not defined by cloud shapes 

• We use GOES imagery only after initial identification from 
QuikSCAT

– Characteristic spiral pattern develops only when intensity 
increases

– Large size of each image requires us to segment out the 
i t l l ti b f l l ti l tiapproximate cyclone location before calculating eye location
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Log spiral cloud pattern



Eye location from GOES
• Fit a log-spiral pattern over the image

• Pattern matching performed over the gradient images

• Score matrix: how well does pattern centered on that 
element match the image?

– Element with highest score is returned as the eye location
– Also implemented variant that compared the scores in every peak’s 

i hb h d
GOES image

Magnitude of 
GOES image 
gradient

neighborhood
• Reduced error in cases where two spiral patterns were visible in search 

region
Log spiral 
pattern 
gradient• Detected eye error decreases with 

ti
g

Pattern matching 
score matrix

— Maria 2005
--- Isabel 2003

time
– As a hurricane intensifies over time, the 

spiral shape of the cloud bands 
becomes more prominent.

Er
ro

r (
km

)

6
Days



Eye location from QuikSCAT: Graph-based Method 

1) Segmentation and 
classification to locate

2) Compute normal vector to the 
directional vector for each pixel

Intuition: True eye should have largest number of 
wind vector pixels “leading” to it

1

2

classification to locate 
cyclone region

3) Compute 
number of 

nearest 
neighbors 

i ti t h

NHC Best Track

3

pointing to each 
pixel Construct spanning 

trees for pixels having 
the highest number of 

pointing neighbors
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p g g

The pixel that grows the largest5

2X improvement in accuracy over earlier centroid method:
Hurricane #images Error: GB (km) Error: Centroid (km)

Isabel 2003 21 87 175
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The pixel that grows the largest 
spanning tree is the cyclone eye

Isabel 2003 21 87 175

Maria 2005 14 90 199



Predictive Cyclone Tracker

QuikSCAT

K l d Sh i

Detector Predictor Detector Tracker

GOES TRMMKnowledge Sharing GOES, TRMM

• The tracker provides future cyclone 
location estimates as new satellite data 
becomes available

P t ti l f l iti true positive

becomes available
– This constrains the search region for the cyclone 
eye detection algorithms
– A smaller search region 

• reduces the incidence of false positives Potential false positive true positive

Error bet estimated & NHC eye locations

reduces the incidence of false positives
• reduces the computational processing time

• Kalman Filter Model-based tracking
– State model: how does cyclone eye move over time?

Error bet. estimated & NHC eye locations– Observation model: how are observations (results of eye detection 
algorithms) related to true eye location?

• Filter state estimates are smoothed versions 
of the observations (eye detections)
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of the observations (eye detections)
– State estimates reduce the effect of random errors



Tracking Multiple Cyclones

• Earlier: the system assumed that only exactly one 
hurricane is represented in the images

• Current tracker can track multiple cyclones 
simultaneously

– Separate filter is instantiated for each cyclone

N h ll C d bl h t b• New challenge: Correspondence problem has to be 
solved

– How to assign multiple observations to multiple tracked 
cyclones?
D t t l

Hurricanes Gustav, Hanna 2008

– Detect new cyclone
• distinguish from observation error

– Detect when a cyclone has ended
• Distinguish from temporary failure in observations

• Solutions: exploit characteristics of each data set
– Instantiate new cyclones only from QuikSCAT
– Use TRMM and GOES to propagate instantiated trackers
– New parametersp

• Max. allowable distance between observations and state
• Max. number of images without observing a tracked cyclone Hurricanes Carlos, Dolores 2009
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Graphical User Interface (GUI)
• Enable all input data and system parameters to be specified easily
• Allow plotting and processing to proceed independently

• Modularized the code: separate the major steps (initialization processing and plotting)• Modularized the code: separate the major steps (initialization, processing, and plotting)

• Automatic download of data files from relevant FTP servers
– QuikSCAT and TRMM

GOES data is downloaded using NOAA’s CLASS

Specify other parameters

– GOES data is downloaded using NOAA s CLASS

Search region

Start and end timesStart and end times

Select NHC tracks
(ground truth)

Download TRMM and QS data

Current image with
detected eyes

Estimated hurricane 
th
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Other improvements

To improve usability and running speed

• Gridding and segmenting of all data types 
(GOES TRMM Q ikSCAT)(GOES, TRMM, QuikSCAT) to a common extent

– Enable post-processing of data
– E.g..: feature-feature tracking

• Increased accuracy of GOES eye

Historical
Data: Remote 
data stores 
(FTP servers)

GOES
Quik‐

SCATTRMM

Data Stream

Search Query

Multi-Source Real-Time Data

5• Increased accuracy of GOES eye 
detection allows smaller search area

– Increases running speed since gridding 
is slowest step (GOES, QuikSCAT)

E d t ti d

Data Stream 
Retrieval

Classification

GOES Event Classification

1

2

Data Fusion

(Particle Filter)
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Source‐
I i t

5

• Error detection and recovery
– Check for feasibility of input parameters
– Recover from unexpected run-time errors

• Out-of-memory, missing data files
• Skip current image and continue processing

QuikSCATEvent Classification

4

Multi‐source 
Filtered event 
location

Multisource 
Event Tracking

Query Tool User-Interface

Invariant 
Descripto

rs 
6

Skip current image and continue processing

• Automatic selection of NHC tracks
– NHC tracks are used only for analysis of results
– Downloaded all NHC best tracks in advance

A i ll l l h k i hi ’

Subsetting3
8

Spatiotemporal 
Trajectory of 
Weather Event 
(Cyclones)

– Automatically select only those tracks within user’s 
space and time input range to calculate errors

11



Results on 2009 Cyclones
Detected and NHC track of Hurricane Bill 2009

La
tit

ud
e

12
Longitude

Tracks of Hurricanes Gustav, Hanna 2008

La
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ud
e
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Multisource Knowledge Transfer Overview
• Predictive tracker provides constrained search region for next observation
• Should leverage sequential observations from multiple sources for more robust 
tracking 

Streaming Spatial Temporal Data from different sensor types observed sequentially (over time)

Measurement 
(Sensor) 1

Strong 
Measurements ( )

Streaming Data from 
multiple sources Feature Transformation

Spatial-Temporal Information / 
Knowledge Transfer

Measurement 

Weak 
Measurements

Knowledge Transfer
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(Sensor) 2



MultiSource Classification Solution 

Transform data into different component (feature) spaces 
for multisource classification over time and space

Common
tn tn+1

Strong
Measurement

Weak
Measurement

Common 
Feature

QuikSCAT TRMM

QuikSCAT TRMM

n n+1

QuikSCAT 
Unique 
Feature

TRMM 
Unique 
Feature

Temporal 
Classifier

Strong 
Classifier

Weak 
Classifier

Transfer 
Learning 
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Problem Definition: Generative Model
• Goal is to detect and classify the event over a length of time     to             

in space s which is represented by the set               . 

• Many prior machine learning and transfer learning solutions for learning

,( )t t tI s +∆

t t+ ∆t

Many prior machine learning and transfer learning solutions for learning 
and classification from multiple sources (say X, Y) assume that 
simultaneous measurements from all sensors (measurement sources)  
are available at all times, i.e. pairs of observations exist at every 
instance , etc.{ ( ), ( )}t tX s Y s { ( ), ( )}t tX s Y sinstance                     ,                    etc.
– Most practical scenarios involve un-co-registered measurements at 

different times t and different locations s.

• Observed sequence has alternate measurement observations from the

{ ( ), ( )}
o ot tX s Y s

1 1
{ ( ), ( )}t tX s Y s

Observed sequence has alternate measurement observations from the 
two sensors as follows                                      ……… 
– Existing multisource learning techniques (canonical corr, discriminative 

solns) will not work

1 2 3( ), ( ), ( ), ( ),
ot t t tX s Y s X s Y s

1
( ), ( )

N Nt tX s Y s
+

• Model multisource learning and classification as a generative 
process where observations are comprised of two components: 

– (a) components          that are common to all (both) data sources, and 
(b) t i t h d t t

( )tC s
( )U
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– (b) components           unique to each data stream( )tU s



Problem Definition: Multi-Source Knowledge Transfer

• Use an invertible data representation for multi-source measurements
– the components of each source measurement are orthogonal to each other 
– the transformation is linear in nature. Where

• Multi-phase classification using common & unique features from

( ) ( ) ( );
o o ot t X tX s C s U s= +

1 1 1
( ) ( ) ( );t t Y tY s C s U s= +

( ) ( )
o ot X tC s U s⊥

Multi phase classification using common & unique features from 
multiple-sources

• Transfer knowledge between strong source measurements at     and 
weak measurements at using common feature space ( ) ( )C s C s

0t
1tweak measurements at    using common feature space

• Multi-source knowledge transfer involves a pairwise classification of 
successive observations from sources X and Y  

1
( ), ( )

oX t Y tC s C s1t

1
{( ( ), ( )}

oX t Y tL C s C s
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Quikscat (at time t0) TRMM (at time t1)



Problem Definition: Multi-Source Classification

• Unique Component Classification in multi-source measurements
– Compute unique components              ,             for  each source X, Y
– Use source-specific classifiers          to label each data stream using the unique 

components

( )Y tU s
0

( )X tU s
{}W

( )U scomponents  . 

• Each data source differs in discriminative capabilities for event 
classification

( )tU s

classification
– Some data sources (say X) have strong discriminative power with a strong 

classifier using the unique features 
– Other sources (say Y) have limited discriminative capabilities and weak classifiers

0
{ ( )}X tW U s

{ ( )}W U s
– Use common feature classifier                                 to transfer knowledge to weak 

classifier                  . 

• Generalizes easily to multiple data sources (greater than 2)

1
{( ( ), ( )}

oX t Y tL C s C s1
{ ( )}Y tW U s

1
{ ( )}Y tW U s

Generalizes easily to multiple data sources (greater than 2)
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Problem Definition: Feature Space Computation

• Use mutual information metric to estimate the transformations for
common feature and unique feature spaces.
– Mutual information (joint-entropy) between the X and Y is maximized

– Common feature is the transform that maximizes the common or shared informationCommon feature is the transform that maximizes the common or shared information 
between X and Y. 

T f b li li

( ( ), ( )) ( ( )) ( ( )) ( ( ), ( ))M X Y H X H Y H X Y= + −F F F F F F
• Transform can be linear or nonlinear

– Currently only linear transforms considered 

• Several linear and orthogonal transforms possible
– Wavelets , Fourier transforms (high-pass, low-pass, band-pass)
– Principal component analysis
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Quikscat common feature transformation (time t0) TRMM common feature transformation (t1)



MultiSource Classification Primary Steps 

Transform data into different component (feature) spaces 
for multisource classification over time and space

t 1

C TRMM

tn
tn+1

Strong
Source
X

Weak
Source
Y

( )( )tXF
Transform Transform

( 1)( )t nY +F
Common 
Feature

QuikSCAT TRMM

QuikSCAT TRMM

( )( )t nXF ( 1)( )t n+

( )X tC s 1
( )

nY tC s
+QuikSCAT 

Unique 
Feature

TRMM 
Unique 
Feature

Temporal 
Classifier

( )
nX tU s

1
( )

nY tU s
+

( )
nX t 1n+

{( ( ) ( )}L C s C s

Strong 
Classifier

Weak 
Classifier

Transfer 
Learning 

1
{( ( ), ( )}

n nX t Y tL C s C s
+
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{ ( )}
nX tW U s 1

{ ( )}
nY tW U s
+



MultiSource Classification Algorithm

Fourier 
Transform

QuikSCAT 
Input Data 

at tn

TRMM 
Input Data 

at   

Band-Pass 
Filter

QuikSCAT and 
TRMM Training 

Data 

Mutual 
Information 

Computation tn+1

Optimal Common 
Component Feature 

Space Transformation 

Band-Pass 
Cut-Off 

Selection

TRMM 
Component 

Feature 
Space 

QuikSCAT
Component 

Feature Space 

Gaussian 
Weak 

Classifier

A set ofp

Corners 
Detection

Corners 
Tracking

Lucas-Kanade Feature Tracker

Cyclone 
Classification

A set of 
likely 
regions

Clustered 
corners
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Detection Tracking Classification



MultiSource Classification Results
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Near-Real Time Cyclone Detection: Challenges
• 3B42RT provided by TRMM Science Data and 

Information System and GSFC Lab. for Atmospheres

• Combination of High Quality (3-hourly, 0.25°x0.25°) and 
calibrated Variable Rainrate

• Relatively minor differences in precipitation rates 
between 3B42 and 3B42RT

– Same eye detection algorithms for both 3B42 and 3B42RT data

La
tit

ud
e

Longitude

• Earlier version of GLYDER used QuikSCAT L2B data
• High quality since initialization of the ambiguity removal algorithm is done 

using actual analysis fields in data

• SeaWinds Real-Time MGDR data product

e

• Available within 1-3 hours of the satellite observation

• Significant differences between L2B and NRT images
• Earlier classification algorithm shows higher number of both False positives 

and False negatives

La
tit

ud• New classifier for NRT QuikSCAT
• Created separate training datasets for the SVM-based hurricane classifier

• First, identify potential segments containing a storm

• Based solely on wind velocity magnitude
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Longitude• Positive examples: wind vector segments containing a hurricane eye (NHC)

• Negative examples: segments with no eye



Near Real-Time Cyclone Tracking

• “Mashup” near real-time cyclone location information from numerous sites
– NHC, UniSys and others report various cyclones in near real-time
– Predictions of future locations also provided upto 48-72 hours in advance
– Yahoo Pipes enables mashup of online information from HTML, XML,RSS

Real-Time Remote multi-satellite data stream

Single source
location

Multi-source
Tracking
Estimate

Manual  track 
prediction  (multiple

Online sites)

Assimilated cyclone 
location report
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Future Work

• Improve detection algorithms from QS, TRMM, GOES

• Incorporate geostationary satellite data from other missions:co po a e geos a o a y sa e e da a o o e ss o s
– Meteosat, Kalpana; Track West Pacific and Indian ocean cyclones

• Improve, integrate multisource classification alg. from multi-satellite streams

• Improve, integrate near-real-time processing (include NHC data mashups)

• Release GLYDER: Host GLYDER system on a public-accessible website
– GIOVANNI
– Initial release will be as a self-contained executable to be run on the user’s computer

• Publications
– “Classification from Disparate Multiple Streaming Data Sources”, Workshop on Learning from Multiple Source, held 

at Neural Information Processing Systems (NIPS-2008), December 2008.
– “Automated Historical and Real-Time Cyclone Discovery With Multimodal Remote Satellite Measurements”, Eos 

Trans. AGU, 89(53), Fall Meet. Suppl., Abstract IN33B-1174, 2008
SPIE Defense & Security Symposium Optical Pattern Recognition Apr 2009– SPIE Defense & Security Symposium, Optical Pattern Recognition, Apr. 2009

– IJCAI-09 International Joint Conference on ArtificialIntelligence, Cross-media Information Access and Mining 
(CIAM2009), July 2009.

– 24


