
Survey of State-of-the-Art in Software Health Management
and V&V of ISHM Software

Johann Schumann Ole J. Mengshoel Adnan Darwiche and Knot Pipatsrisawat

Carnegie Mellon Silicon Valley

Abstract
Modern aircraft and spacecraft rely heavily on dependable operation of
safety-critical software components, making the health management of
software components (SWHM) extremely important. At the same time,
assessing the health of a piece of software exhibits severe challenges,
because software failure could be a result of faults (bugs) introduced at
different stages of the software life-cycle. In this work, we survey and
classify various techniques related to software health management and
identify some technological gaps in this area of research. In addition, we
discuss some practical techniques for V&V of integrated vehicle health
management (IVHM) systems.

Technique Purpose Automation Resources Completeness

Design and programming methodologies (design/development phase)
Model-based design Fault prevention Manual N/A No
Goal-based operations Fault prevention Manual N/A No
Aspect-oriented programming Fault prevention Semi-automatic N/A No
Recovery-based computing Fault prevention, fault tolerance (recovery) Manual N/A No
Verification and Validation (V&V) (testing phase)
Testing Fault removal Manual, semi-automatic Adjustable No

Simulation Fault removal Automatic Moderation-high No

Debugging Fault removal Semi-automatic Varied No
Numerical analysis Fault removal Manual Low No
Model checking Fault removal Automatic High In some cases

Theorem proving Fault removal Automatic High In some cases
Runtime techniques (post-deployment phase)
Redundancy-based fault tolerance Fault tolerance (compensation, isolation, reconfiguration) Automatic Varied No

Checkpointing and rolling back Fault tolerance (rollback) Automatic Varied No
Runtime monitoring Fault tolerance (concurrent detection) Automatic Minimal No
Trace analysis Fault tolerance (concurrent detection, preemptive detection, diagnosis) Automatic Varied No
Built-in tests Fault tolerance (concurrent detection, preemptive detection) Automatic Minimal No
Software rejuvenation Fault tolerance (rollback) Automatic Minimal No
Computer immunology Fault tolerance (concurrent detection, isolation) Automatic Minimal No
Self-healing software Fault tolerance (concurrent detection, compensation, rollback, reinitialization) Automatic varied No

Table 1. Classifications of software health management techniques

RIACS/USRA University of California, Los Angeles

Aeroperu 603 C-5 Military Jet Air France

Classification Dimensions
Software Life-cycle: design, development, and post-deployment.
Purposes: the way the technique deals with faults.
Automation: the level at which the technique can be utilized without
human intervention.
Resources: the amount of computational resources required.
Completeness: the extent of coverage the technique guarantees to provide.

Terminology
• Fault (bug): a cause of abnormal
system behavior
• Error: a system state that deviates
from what is intended
• Failure: an event in which the service
becomes unavailable or deviates from
the correct service

Technological Gaps
• Most approaches target discrete software rather than continuous
calculations (as required for GN&C)
• There is no or little work in the area of prediction and prognostics for
software
• Few approaches can be demonstrated to be correct and reliable,
addressing the issue that the SWHM-software is a safety-critical piece of
software itself
• Most techniques are for software and for software only, while many
failures occur at the software-hardware interface
• There is not much integration between approaches from different
phases of SW life-cycle.

Survey of SWHM Techniques

0%

20%

40%

60%

80%

100%

1940s 1970s 1990s

Avionics costs = SW costs

Model Compilation
Represent model as a Bayesian Network (BN),
compile into an Arithmetic Circuit. Benefits:
• Compilation can exploit structure to provide a compact representation
• Demanding computation is delegated to an offline phase
• Fast and predictable response times are suitable for runtime monitoring

V&V of IVHM at Code Level
Must verify and validate both the (compiled) data structure and the code
that will utilize it. Correctness as well as running time guarantee should be
ensured for system deployed during runtime. Some approaches:
• Automatic test-case generation
• Static analysis
• WCET analysis
• Dynamic monitoring

Flight control box
SW under consideration

V&V of IVHM Systems

We divide the process of V&V of IVHM systems into two main parts:
Model-level: make sure the model (i) correctly reflects the system and (ii)
that it represents the faults/errors/failures of interest.
Code-level: make sure the actual implementation/associated data structure
of the IVHM system can execute without problems. This needs to be done
both in the development phase and during the execution.

Analysis at Model Level
The model needs to be complete (covers all possible nominal and failure
behaviors), and sound (i.e., failure indicated by the model corresponds to a
failure in the actual system). Some desirable properties of models:
determinism, fidelity, scalability.

A developed model can be tested with different test scenarios in various
simulation environment. For example,
• IVHM test bed for RLV
• ERIS simulation environment for ARES-I FDDR

